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A mathematically-easy but conceptually-difficult paper
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Background concepts

Marginal or Cross-sectional model:

E [Yit |Xit ] = g(Xitβ)

Cross-sectional study:
A descriptive study providing data on the entire population at some
specific time.
Note: no control on covariates, and so covariates are RANDOM

Longitudinal data:
Each subject is followed over a period of time, and repeated observations
of the outcome and relevant covariates are recorded.
Note: CORRELATED outcomes
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Generalized Estimating Equations (GEE)

S(β) =
N∑
i=1

DT
i V−1i (Yi − g(Xiβ)) = 0,

β is the parameter representing cross-sectional association between
outcomes Y and covariates X.

Di is a partial derivative matrix of µi ≡ g(Xiβ) with respect to β.

Vi = A
1/2
i RiA

1/2
i is a working covariance matrix, where Ai is a diagonal

matrix with Var(Yit) on its diagonal line and Ri is a working correlation
matrix.
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GEE

As long as the marginal mean model E [Yi |Xi ] = g(Xiβ) is correctly
specified, GEE method gives a consistent and asymptotically Normal
estimate for β, for many sorts of correlated data.

However, GEE method fails (e.g. gives a biased estimate for β) for some
types of longitudinal data.
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Examples in the paper

Three different ways to generate longitudinal data:

1 Yit = αYi(t−1) + βXit + εit , where Yi0 = 0, Xit and εit have mean 0
and are independent of Yi(t−1) (i.e. an autoregressive process).

2 Yit = βXit(αYi(t−1)) + εit , where α = β−1, Yi0 = 1 and Xit has mean
1.

3 Yit = αi + βXit + εit , where αi is random effect with mean 0 and
independent of Xit and εit (i.e. random-effect model).

All models above have the same marginal mean model E (Yit |Xit) = Xitβ
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Examples in the paper

With the true β = 0.5 and 1,000 simulations, the average GEE estimates
for β are:

Model Identity Opt1 Opt2 Opt3

1 0.501 0.416 0.399 0.428
2 0.498 0.416 0.393 0.413
3 0.500 0.495 0.498 0.500

The estimates in the first column and last row are unbiased and
consistent.

Other estimates are clearly biased.

For longitudinal data, we can get a consistent and asymptotically Normal
estimate for β if either (i) we use independent working correlation matrix,
or (ii) we validate the following equality:

E (Yit |Xit) = E (Yit |Xis , s = 1, ..., ni )
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An insight look at a simple autoregressive model

Yit = Yi(t−1) + βXit + εit , where Yi0 = 0, Xit and εit have mean 0 and are
independent of Yi(t−1). For simplicity, we assume all cluster sizes are equal
to m.

E (Yit |Xit) = Xitβ

∵ Yit = Yi(t−1) + βXit + εit

= Yi(t−2) + β(Xit + Xi(t−1)) + (εi(t−1) + εit)

= · · ·

= Yi0 + β

t∑
s=1

Xis +
t∑

s=1

εis

∴ E (Yit |Xis , s = 1, ...,m) =
t∑

s=1

Xisβ

Jing Fan (University of Washington) Updated talk May 31, 2012 8 / 22



An insight look at a simple autoregressive model

Using diagonal (i.e.independent) working correlation matrix:

β̂ =

∑n
i=1

∑m
t=1 XitYit∑n

i=1

∑m
t=1 X

2
it

E [β̂|X ] = [1 +

∑n
i=1

∑m
t=2 Xit

∑t−1
j=1 Xij∑n

i=1

∑m
t=1 X

2
it

]β ≈ β

E [β̂] = E [E [β̂|X ]] = β
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An insight look at a simple autoregressive model

Using non-diagonal working correlation matrix:
For simplicity, suppose A = V−1 = (aij) which is a non-diagonal matrix,
for all clusters

β̂ =

∑n
i=1

∑m
j=1(

∑m
t=1 atjXit)Yij∑n

i=1 X
′
i AXi

E [β̂] = E [E [β̂|X ]]→ [1 +

∑m−1
t=1

∑m
j=t+1 atj∑m

j=1 λj
]β
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Proof of sufficient conditions

The unbiasedness and consistency of GEE estimates β̂ result from

E [S(β)] = 0

Let Wi = V−1i and µi = g(Xiβ), and then:

S(β) =
N∑
i=1

DT
i Wi (Yi − µi )

=
N∑
i=1


∂µi1
∂β0

· · · ∂µini
∂β0

...
. . .

...
∂µi1
∂βp−1

· · · ∂µini
∂βp−1


wi11 · · · wi1ni

...
. . .

...
wini1 · · · wi1nini


Yi1 − µi1

...
Yini − µini



=
N∑
i=1


∑ni

k=1 wik1
∂µik
∂β0

· · ·
∑ni

k=1 wikni
∂µik
∂β0

...
. . .

...∑ni
k=1 wik1

∂µik
∂βp−1

· · ·
∑ni

k=1 wikni
∂µik
∂βp−1


Yi1 − µi1

...
Yini − µini
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Proof of sufficient conditions

=
N∑
i=1


∑ni

j=1

∑ni
k=1 wikj

∂µik
∂β0

(Yij − µij)
...∑ni

j=1

∑ni
k=1 wikj

∂µik
∂βp−1

(Yij − µij)


=

N∑
i=1

ni∑
j=1

ni∑
k=1

wikj(
∂µik
∂β

)T (Yij − µij)

Note that:

∂µik
∂β

=
∂µik

∂(Xikβ)

∂Xikβ

∂β

=
∂µik

∂(Xikβ)
Xik
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Proof of sufficient conditions

Therefore,

S(β) =
N∑
i=1

ni∑
j=1

ni∑
k=1

XT
ik wikj(

∂µik
∂(Xikβ)

)(Yij − µij)
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Proof of sufficient conditions

If Wi is diagonal (i.e. working independence), wikj = 0 unless k = j , and
so,

S(β) =
N∑
i=1

ni∑
j=1

XT
ij wijj(

∂µij
∂(Xijβ)

)(Yij − µij)

E [S(β)] =
N∑
i=1

ni∑
j=1

E [XT
ij wijj(

∂µij
∂(Xijβ)

)(Yij − µij)]

=
N∑
i=1

ni∑
j=1

E [E [XT
ij wijj(

∂µij
∂(Xijβ)

)(Yij − µij)]|Xij ]

=
N∑
i=1

ni∑
j=1

E [XT
ij wijj(

∂µij
∂(Xijβ)

)(E [Yij |Xij ]− µij)]

= 0
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Proof of sufficient conditions

If Wi is non-diagonal, then,

E [S(β)] =
N∑
i=1

ni∑
j=1

ni∑
k=1

E [XT
ik wikj(

∂µik
∂(Xikβ)

)(Yij − µij)]

=
N∑
i=1

ni∑
j=1

ni∑
k=1

E [E [XT
ik wikj(

∂µik
∂(Xikβ)

)(Yij − µij)]|Xis , s = 1, ..., ni ]

=
N∑
i=1

ni∑
j=1

ni∑
k=1

E [XT
ik wikj(

∂µik
∂(Xikβ)

)(E [Yij |Xis , s = 1, ..., ni ]− µij)]

Clearly, E [S(β)] = 0, if E [Yij |Xis , s = 1, ..., ni ] = µij ≡ E [Yij |Xij ].
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An big question

Q: Does the biased estimator issue happen to GEE method ONLY?

A: No, it could happen to ANY estimator whose unbiasedness and
consistency rely on E [S(β)] = 0, where S(β) could be written in a form of
XTV−1(Y − g(Xβ)).

Linear Model and LMM in which β : S(β) = XTV−1(Y − Xβ) = 0

Some GLMs and GLMMs

Some general likelihood-based methods
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General likelihood-based methods

Approach 1: most common method

L(Y ,X ) = L(Y |X )L(X )

= (
N∏
i=1

L(Yi |Xi ))L(X )

Approach 2: also called Telescope/Sequencing method

L(Yi |Xi ) =
ni∏
t=1

L(Yit |Xit ,Yis ,Xis , s < t)L(Xit |Yis ,Xis , s < t)

Summary:
Those two likelihood-based methods do not help make correct inference on
cross-sectional effect β, unless L(Yit |Xis , s = 1, ..., ni ) = L(Yit |Xit) which
leads to E [Yit |Xis , s = 1, ..., ni ] = E [Yit |Xit ].
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A simulation illustration: setup

Model:

Yit = γ0 + γ1Xit + γ2Xi(t−1) + bi + eit

Xit = ρXi(t−1) + εit

bi , eit , εit are mutually independent with mean zero

Then,

E [Yit |Xis , s = 1, ..., ni ] = γ0 + γ1Xit + γ2Xi(t−1)

E [Yit |Xit ] = β0 + β1Xit , where β0 = γ0 and β1 = γ1 + ργ2

For the simulations, we use

bi ∼ N(0, 1), eit ∼ N(0, 1), εi0 ∼ N(0, 1) and εit ∼ N(0, 1− ρ2)

γ0 = 0, γ1 = 1, γ2 = 1
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A simulation illustration: results

For several different values of ρ, the average GEE estimates of β1 are:

ρ 0.9 0.7 0.5 0.3 0.1
β1 1.9 1.7 1.5 1.3 1.1

Independence 1.90 1.70 1.50 1.30 1.10
Exchangeable 1.73 1.54 1.37 1.19 1.01

AR(1) 1.70 1.31 1.07 0.89 0.74

LMM 1.73 1.54 1.37 1.19 1.01

Summary:

Similar to the examples in the paper, the estimates are biased, unless
independence working correlation matrix is used.

In addition, linear mixed effect model could not save us.
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Which model to fit?

Unless satisfying the sufficient conditions, we cannot get rid of biased
estimate issue when we apply marginal model to longitudinal data. So,
why not use other modelling approaches for longitudinal data?

We cannot arbitrarily choose model, since the choice should depend on the
question of scientific interest.

Fully-conditional model: interested in association between outcomes
and covariates at ALL times

Partly-conditional model: interested in association between outcomes
and covariates at not all but SOME times

Marginal model: interested in association between outcomes and
covariates at the SAME time.

Random/mixed effect model: interested in modelling mean AND
covariance
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Advantages of marginal models

Even when we are free to choose a model (e.g. exploratory study), it still
worth applying marginal model to longitudinal.data

Conceptually and computationally simple

Easy to deal with missing values

Simple data display (e.g. scatterplot) is okay
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Further considerations and concerns

When using GEE method to analyze longitudinal data in practice,
ALWAYS use independence working correlation matrix, if efficiency is
not a problem.

If efficiency matters, try to validate/assume
E (Yit |Xit) = E (Yit |Xis , s = 1, ..., ni ) based on correlation structures
(e.g. observation-driven model v.s. parameter-driven model).

How about fixed covariates in controlled study? Does the same issue
occur?

Questions?
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