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Remind me...

Answers questions about the following in a unified framework:

does MLE converge? (interpretation?)

if yes, is MLE asymptotically normal?

can properties of MLE determine model truth?
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What White (Re)Proved

Convergence

Kullback-Leibler Information Criterion Minimizing Parameter

Asymptotically Normal (with Sandwich Covariance)

Inference Results

Wald Test

Lagrange Multiplier Test (Score Test)

Misspecification Results

Information Matrix Test

Hausman Test

Gradient Test
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Model Used for Testing

Yi = β0 + β1Xi + εi

E [Yi | β0, β1,Xi ] = β0 + β1Xi

Xi ∼ Unif (−2, 2)

β0 = 2

β1 = 3
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To Err is Human

εi ∼ N(0, 1)

∼ N(0, σ2
i = 1 + |Xi |)

∼ (1/3) ∗ N(1, 1) + (2/3) ∗ N(−1/2, 1)

∼
√

28/30 (t30)

∼ Cauchy(0, 1)

∼ Unif (−
√

3,
√

3)

∼ skew − N(0, 1, 1.5)
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Set-up

Sample sizes from 10 to 10,000

10,000 simulated datasets per size

Same X -covariates within a sample size
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Wald Test

H0 : (β0, β1) = (2, 3), H1 : (β0, β1) 6= (2, 3)

(a) MLE results (b) Sandwich results
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Lagrange Multiplier Test

H0 : (β0, β1) = (2, 3), H1 : (β0, β1) 6= (2, 3)

(c) MLE results (d) Sandwich results
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Information Matrix Test

H0 : εi ∼ N(µ, σ2), H1 : εi 6∼ N(µ, σ2)
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Hausman and Gradient Tests

H0 : εi ∼ N(µ, σ2), H1 : εi 6∼ N(µ, σ2)

(e) Hausman Test (f) Gradient Test
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What Do We Do With All This???

THE METHOD (according to White)

Step 1: Perform Information Matrix test.

Step 2a: If you ”do not reject”, MLE away!

Step 2b: If you ”reject”, perform one of Hausman or Gradient tests.

Step 3a: If you ”do not reject”, use sandwich inference.

Step 3b: If you ”reject”, reconsider your model choice.
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The Method

(g) β1 Confidence Interval
coverage

(h) β1 Confidence Interval
coverage (adjusted)
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Naive MLE and Savvy Sandwich

(i) β1 Confidence Interval
coverage (MLE)

(j) β1 Confidence Interval
coverage (Sandwich)
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Takeaway

The method works pretty well...

But the Sandwich works just as well
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(War, Hunh!) What is it good for?

A model check based on decision theory

A reminder that the Sandwich works

(A warning of five words)
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Coverage of β0 - METHOD

(k) β0 Confidence Interval
coverage

(l) β0 Confidence Interval
coverage (adjusted)

Jim Harmon (University of Washington) MLE of Misspecified Models May 29, 2012 17 / 34



Coverage of β0 - SIMPLE

(m) β0 Confidence Interval
coverage (MLE)

(n) β0 Confidence Interval
coverage (Sandwich)
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Underlying Assumptions

A1: true density function g(u) for data Ut , with distribution function G

A2: family of distributions F (u, θ), with density f (u, θ), measurable in u

for all θ ∈ Θ, and continuous in θ for all u ∈ Ω

Define Ln(U, θ) = n−1
∑n

t=1 log f (Ut , θ).

Define QMLE = arg maxθ Ln(U, θ) (quasi-MLE)

Theorem

Given A1 and A2, for all n there exists a measurable QMLE, θ̂n.

Note: there is an underlying dominating measure ν
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Further Assumptions

A3a: E (log g(Ut)) exists and | log f (u, θ) | is bounded by an integrable

function of u

A3b: KLIC I (g : f , θ) has a unique minimum at θ∗ ∈ Θ.

Theorem

Given A1-A3, θ̂n →a.s. θ∗.

Note: All expectations are taken w.r.t. the truth, g .
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Sandwich Time!!!

Need a consistent estimate of the covariance matrix:

A(θ) = E

[
∂2log(f (Ut , θ))

∂θi∂θj

]
B(θ) = E

[
∂log(f (Ut , θ))

∂θi

∂log(f (Ut , θ))

∂θj

]
C(θ) = A(θ)−1B(θ)A(θ)−1
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Guess what? – More Assummptions

A4: ∂ log f (u, θ)/∂θi with i = 1, . . . , p are measurable functions of u for

each θ and continuously differentiable functions of θ for each u.

A5: | ∂2 log f (u, θ)/∂θi∂θj | and | ∂ log f (u, θ)/∂θi · ∂ log f (u, θ)/∂θj |

with i , j = 1, . . . , p are dominated by functions integrable w.r.t. G for u

and θ.

A6a: θ∗ is interior to Θ

A6b: B(θ∗) is nonsingular

A6c: A(θ) has constant rank in some open neighborhood of θ∗ (regular

point)
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Two Theorems

Theorem (Identification)

i: Given A1-A3a, A4-A6a, if θ∗ is a unique minimum for I (g : f , θ) in an
open neighborhood of Θ, and if θ∗ is a regular point of A(θ), then A(θ∗)
is negative definite.
ii: Given A1-A3a, A4-A6a, if A(θ∗) is negative definite and if θ∗ minimizes
I (g : f , θ) in an open neighborhood of Θ, then there is an open
neighborhood of Θ where θ∗ is a unique minimum of I (g : f , θ).

Theorem (Asymptotic Normality)

Given A1-A6,
√

n(θ̂n − θ∗)→d N(0,C(θ∗)). Moreover, Cn(θ̂n)→a.s. C(θ∗)
element by element.
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More Assumptions and Theorems?!?!

A7: | ∂[∂f (u, θ)/∂θi · f (u, θ)]/∂θj | with i , j = 1, . . . , p are dominated by

functions integrable with respect to ν for all θ in Θ and the minimal

support of f (u, θ) does not depend on θ.

Theorem (Information Matrix Equivalence)

Given A1-A7, if g(u) = f (u, θ0) for θ0 ∈ Θ, then θ∗ = θ0 and

A(θ0) = −B(θ0), so that C(θ0) = −A(θ0)−1 = B(θ0)−1 where −A(θ0)−1

is Fisher’s Information Matrix.

Note: A1-A7 and g(u) = f (u, θ0) are ”usual MLE regularity conditions”
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Wald Test under misspecification

Suppose we wish to test H0 : s(θ0) = 0 vs. H1 : s(θ0) 6= 0 where

s : Rp → Rr is a continuous vector function of θ s.t. its Jacobian at θ∗,

Js(θ∗) is finite with full row rank r .

Theorem (Wald Test)

Wn = n · s(θ̂n)′[Js(θ̂n)Cn(θ̂n)Js(θ̂n)′]−1s(θ̂n)→d χ
2
r
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Lagrange Multiplier Test under misspecification

Let θ̃n solve the constrained maximization problem maxθ∈Θ Ln(U, θ)

subject to s(θ) = 0

Theorem (Lagrange Multiplier Test)

Given A1-A6 and H0,

LMn = ∇Ln(U, θ̃n)′An(θ̃n)−1Js(θ̃n)′

× [Js(θ̃n)Cn(θ̃n)Js(θ̃n)′]−1

× Js(θ̃n)An(θ̃n)−1∇Ln(U, θ̃n)

→d χ
2
r

Moreover Wn − LMn →p 0
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More Notation

θ is a p-dimensional vector.

dl(Ut , θ) = ∂log(f (Ut , θ))/∂θi · ∂log(f (Ut , θ))/∂θj

+ ∂2log(f (Ut , θ))/∂θi∂θj

dim(d) = q × 1 with q ≤ p(p + 1)/2

Dln(θ̂n) = n−1
n∑

t=1

dl(ut , θ̂n)

JD(θ) = n−1
n∑

t=1

∂d(Ut , θ)/∂θk

Wn(θ̂n) = d(Ut , θ̂n)− JD(θ̂n)A(θ̂n)−1∇log(f (Ut , θ̂n))

V(θ) = n−1
n∑

t=1

Wn(θ̂n) ·Wn(θ̂n)′

Jim Harmon (University of Washington) MLE of Misspecified Models May 29, 2012 27 / 34



The First Specification Test!!!

A8: ∂dl(u, θ)/∂θk for l = 1, . . . , q, k = 1, . . . , p exist and are continuous

functions of θ for each u.

A9: | dl(u, θ)dm(u, θ) |, | ∂dl(u, θ)/∂θk |, and | dl(u, θ)∂ log f (u, θ)/∂θk |,
for l ,m = 1, . . . , q, k = 1, . . . , p are dominated by functions integrable

w.r.t. G for all u and θ in Θ.

A10: V(θ∗) is nonsingular

Theorem (Information Matrix Test)

Given A1-A10, if g(u) = f (u, θ0) for some θ0 ∈ Θ, i)
√

nDn(θ̂n)→d N(0,V(θ0))

ii) Vn(θ̂n)→a.s. V(θ0)

iii) In = nDn(θ̂n)′Vn(θ̂n)−1Dn(θ̂n)→d χ
2
q
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Alternative Consistent QMLEs

Let Θ and Γ be p- and q- dimensional compact subsets of Euclidean

spaces with

Θ = B×Ψ and Γ = B× A, B ⊂ Rk (compact)

θ̂′n = (β̂′n, ψ̂
′
n) maximizes n−1

∑
log f (Ut , θ) over Θ

γ̃′n = (β̃′n, α̃
′
n) maximizes n−1

∑
log h(Ut , γ) over Γ

h is a density function satisfying

A11: h satisfies A2-A6, and if g(u) = f (u, θ0) for any θ′0 = (β′0, ψ
′
0) ∈ Θ,

then γ′∗ = (β′0, α
′
∗) ∈ Γ

Note: β̃n is a consistent estimator of β0 and
√

n(β̃n − β0) is asymptotically

normal, consider
√

n(β̃n − β̂n)
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More Definitions

Af (θ) =
(
E (∂2 log f (Ut , θ)/∂θi∂θj)

)
, dimension p × p

Bf (θ) = (E (∂ log f (Ut , θ)/∂θi · ∂ log f (Ut , θ)/∂θj)), dimension p × p

Ah(γ) =
(
E (∂2 log h(Ut , γ)/∂γi∂γj)

)
, dimension q × q

Bh(γ) = (E (∂ log h(Ut , γ)/∂γi · ∂ log h(Ut , γ)/∂γj)), dimension q × q

Af ,βθ(θ)−1 is the matrix obtained by deleting the last p − k rows from the

inverse of Af (θ) above.

Ah,βγ(γ)−1 is the matrix obtained by deleting the last q − k rows from the

inverse of Ah(γ) above.
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Even more notation

R(θ, γ) = (E (∂ log f (Ut , θ)/∂θi · ∂ log h(Ut , γ)/∂γj))

S(θ, γ) = Ah,βγ(γ)−1Bh(γ)Ah,βγ(γ)−1′

− Ah,βγ(γ)−1R(θ, γ)′Af ,βθ(θ)−1′

− Af ,βθ(θ)−1R(θ, γ)Ah,βγ(γ)−1′

+ Af ,βθ(θ)−1Bf (θ)Af ,βθ(θ)−1′

A12: S(θ∗, γ∗) is nonsingular.
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First of the second round of tests

Theorem (Hausman Test)

Given A1-A6, A11, and A12, if g(u) = f (u, θ0) for θ0 ∈ Θ, then

Hn = n(β̃n − β̂n)′Sn(θ̂n, γ̃n)−1(β̃n − β̂n)→d χ
2
k
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Gradient Test setup

γ̃′n = (β̃′n, α̃
′
n) maximizes n−1

∑
log h(Ut , γ) over Γ

ψ̃n maximizes ∇Ln(U, β̃n, ψ) over Ψ.

θ̃′n = (β̃′n, ψ̃
′
n)

∇βLn(U, θ̃n) is an indicator of model misspecification

investigate asymptotic behavior of
√

n∇βLn(U, θ̃n)
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The Last One (I Promise!!)

Af ,ββ
n (θ)−1 is the k × k submatrix of Af

n(θ)−1 obtained by deleting the

last p − k columns from Af ,βθ
n (θ)−1 (i.e., keep the upper left block)

Theorem (Gradient Test)

Given A1-A6, A11, and A12, if g(u) = f (u, θ0) for some θ0 ∈ Θ, then

Gn = ∇βLn(U, θ̃n)′Af ,ββ
n (θ̃n)−1Sn(θ̃n, γ̃n)−1Af ,ββ

n (θ̃n)−1∇βLn(U, θ̃n)→d

χ2
k

Moreover Hn −Gn →p 0
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