Methods Review of Maximum Likelihood Estimation of Misspecified Models by Halbert White

Jim Harmon

University of Washington

May 08, 2012

This slide intentionally left blank.

Dead White Guy Quote

Vizzini: ...and you're no match for my brain.

Man in Black: You're that smart?

Vizzini: Let me put it this way. Have you ever heard of Plato, Aristotle,

Socrates?

Man in Black: Yes. Vizzini: Morons.

Note: replace "Vizzini" with "Halbert White"

Remind me...

Answers questions about the following in a unified framework:

- does MLE converge? (interpretation?)
- if yes, is MLE asymptotically normal?
- can properties of MLE determine model truth?

(now...fasten your seatbelts!)

Underlying Assumptions

A1: true density function g(u) for data U_t , with distribution function G

A2: family of distributions $F(u, \theta)$, with density $f(u, \theta)$, measurable in u

for all $\theta \in \Theta$, and continuous in θ for all $u \in \Omega$

Define
$$L_n(U,\theta) = n^{-1} \sum_{t=1}^n \log f(U_t,\theta)$$
.

Define QMLE = $\arg \max_{\theta} L_n(U, \theta)$ (quasi-MLE)

Theorem

Given A1 and A2, for all n there exists a measurable QMLE, $\hat{\theta}_n$.

Note: there is an underlying dominating measure ν

Further Assumptions

A3a: $E(\log g(U_t))$ exists and $|\log f(u,\theta)|$ is bounded by an integrable

function of u

A3b: KLIC $I(g:f,\theta)$ has a unique minimum at $\theta_* \in \Theta$.

Theorem

Given A1-A3, $\hat{\theta}_n \rightarrow_{a.s.} \theta_*$.

Note: All expectations are taken w.r.t. the truth, g.

Sandwich Time!!!

Need a consistent estimate of the covariance matrix:

$$\mathbf{A}(\theta) = E\left[\frac{\partial^2 log(f(U_t, \theta))}{\partial \theta_i \partial \theta_j}\right]$$

$$\mathbf{B}(\theta) = E\left[\frac{\partial log(f(U_t, \theta))}{\partial \theta_i} \frac{\partial log(f(U_t, \theta))}{\partial \theta_j}\right]$$

$$\mathbf{C}(\theta) = \mathbf{A}(\theta)^{-1}\mathbf{B}(\theta)\mathbf{A}(\theta)^{-1}$$

Guess what? - More Assummptions

A4: $\partial \log f(u,\theta)/\partial \theta_i$ with $i=1,\ldots,p$ are measurable functions of u for each θ and continuously differentiable functions of θ for each u.

A5: $|\partial^2 \log f(u,\theta)/\partial \theta_i \partial \theta_j|$ and $|\partial \log f(u,\theta)/\partial \theta_i \cdot \partial \log f(u,\theta)/\partial \theta_j|$ with $i,j=1,\ldots,p$ are dominated by functions integrable w.r.t. G for u and θ .

A6a: θ_* is interior to Θ

A6b: $\mathbf{B}(\theta_*)$ is nonsingular

A6c: $\mathbf{A}(\theta)$ has constant rank in some open neighborhood of θ_* (regular point)

Two Theorems

Theorem (Identification)

i: Given A1-A3a, A4-A6a, if θ_* is a unique minimum for $I(g:f,\theta)$ in an open neighborhood of Θ , and if θ_* is a regular point of $\mathbf{A}(\theta)$, then $\mathbf{A}(\theta_*)$ is negative definite.

ii: Given A1-A3a, A4-A6a, if $\mathbf{A}(\theta_*)$ is negative definite and if θ_* minimizes $I(g:f,\theta)$ in an open neighborhood of Θ , then there is an open neighborhood of Θ where θ_* is a unique minimum of $I(g:f,\theta)$.

Theorem (Asymptotic Normality)

Given A1-A6, $\sqrt{n}(\hat{\theta}_n - \theta_*) \rightarrow_d N(0, \mathbf{C}(\theta_*))$. Moreover, $\mathbf{C}_n(\hat{\theta}_n) \rightarrow_{a.s.} \mathbf{C}(\theta_*)$ element by element.

More Assumptions and Theorems?!?!

A7: $|\partial[\partial f(u,\theta)/\partial\theta_i\cdot f(u,\theta)]/\partial\theta_j|$ with $i,j=1,\ldots,p$ are dominated by functions integrable with respect to ν for all θ in Θ and the minimal support of $f(u,\theta)$ does not depend on θ .

Theorem (Information Matrix Equivalence)

Given A1-A7, if
$$g(u) = f(u, \theta_0)$$
 for $\theta_0 \in \Theta$, then $\theta_* = \theta_0$ and $\mathbf{A}(\theta_0) = -\mathbf{B}(\theta_0)$, so that $\mathbf{C}(\theta_0) = -\mathbf{A}(\theta_0)^{-1} = \mathbf{B}(\theta_0)^{-1}$ where $-\mathbf{A}(\theta_0)^{-1}$

is Fisher's Information Matrix.

Note: A1-A7 and $g(u) = f(u, \theta_0)$ are "usual MLE regularity conditions"

Wald Test under misspecification

Suppose we wish to test H_0 : $s(\theta_0)=0$ vs. H_1 : $s(\theta_0)\neq 0$ where

 $s: \mathbf{R}^p o \mathbb{R}^r$ is a continuous vector function of θ s.t. its Jacobian at θ_* ,

 $J_s(\theta_*)$ is finite with full row rank r.

Theorem (Wald Test)

$$\mathfrak{W}_n = n \cdot s(\hat{\theta}_n)' [J_s(\hat{\theta}_n) \mathbf{C}_n(\hat{\theta}_n) J_s(\hat{\theta}_n)']^{-1} s(\hat{\theta}_n) \rightarrow_d \chi_r^2$$

Lagrange Multiplier Test under misspecification

Let $\tilde{\theta}_n$ solve the constrained maximization problem $\max_{\theta \in \Theta} L_n(U,\theta)$ subject to $s(\theta)=0$

Theorem (Lagrange Multiplier Test)

Given A1-A6 and H₀,

$$\mathfrak{L}\mathfrak{M}_{n} = \nabla L_{n}(U, \tilde{\theta}_{n})' \mathbf{A}_{n}(\tilde{\theta}_{n})^{-1} J_{s}(\tilde{\theta}_{n})'$$

$$\times [J_{s}(\tilde{\theta}_{n}) \mathbf{C}_{n}(\tilde{\theta}_{n}) J_{s}(\tilde{\theta}_{n})']^{-1}$$

$$\times J_{s}(\tilde{\theta}_{n}) \mathbf{A}_{n}(\tilde{\theta}_{n})^{-1} \nabla L_{n}(U, \tilde{\theta}_{n})$$

$$\rightarrow_{d} \chi_{r}^{2}$$

Moreover $\mathfrak{W}_n - \mathfrak{L}\mathfrak{M}_n \rightarrow_p 0$

More Notation

 θ is a p-dimensional vector.

$$\begin{split} d_I(U_t,\theta) &= \partial log(f(U_t,\theta))/\partial \theta_i \cdot \partial log(f(U_t,\theta))/\partial \theta_j \\ &+ \partial^2 log(f(U_t,\theta))/\partial \theta_i \partial \theta_j \\ dim(d) &= q \times 1 \text{ with } q \leq p(p+1)/2 \\ D_{In}(\hat{\theta}_n) &= n^{-1} \sum_{t=1}^n d_I(u_t,\hat{\theta}_n) \\ J_D(\theta) &= n^{-1} \sum_{t=1}^n \partial d(U_t,\theta)/\partial \theta_k \\ W_n(\hat{\theta}_n) &= d(U_t,\hat{\theta}_n) - J_D(\hat{\theta}_n) \mathbf{A}(\hat{\theta}_n)^{-1} \nabla log(f(U_t,\hat{\theta}_n)) \\ \mathbf{V}(\theta) &= n^{-1} \sum_{t=1}^n W_n(\hat{\theta}_n) \cdot W_n(\hat{\theta}_n)' \end{split}$$

The First Specification Test!!!

A8: $\partial d_I(u,\theta)/\partial \theta_k$ for $I=1,\ldots,q,\ k=1,\ldots,p$ exist and are continuous functions of θ for each u.

A9: $|d_l(u,\theta)d_m(u,\theta)|$, $|\partial d_l(u,\theta)/\partial \theta_k|$, and $|d_l(u,\theta)\partial \log f(u,\theta)/\partial \theta_k|$, for $l,m=1,\ldots,q,\ k=1,\ldots,p$ are dominated by functions integrable w.r.t. G for all u and θ in Θ .

A10: $V(\theta_*)$ is nonsingular

Theorem (Information Matrix Test)

Given A1-A10, if
$$g(u) = f(u, \theta_0)$$
 for some $\theta_0 \in \Theta$, i)

$$\sqrt{n}D_n(\hat{\theta}_n) \rightarrow_d N(0, \mathbf{V}(\theta_0))$$

$$ii) \mathbf{V}_n(\hat{\theta}_n) \rightarrow_{a.s.} \mathbf{V}(\theta_0)$$

iii)
$$\mathfrak{I}_n = nD_n(\hat{\theta}_n)'\mathbf{V}_n(\hat{\theta}_n)^{-1}D_n(\hat{\theta}_n) \rightarrow_d \chi_q^2$$

Alternative Consistent QMLEs

Let Θ and Γ be p- and q- dimensional compact subsets of Euclidean spaces with

$$\Theta = \mathbb{B} \times \Psi$$
 and $\Gamma = \mathbb{B} \times \mathbb{A}$, $\mathbb{B} \subset \mathbb{R}^k$ (compact)

$$\hat{ heta}_n' = (\hat{eta}_n', \hat{\psi}_n')$$
 maximizes $n^{-1} \sum \log f(U_t, heta)$ over Θ

$$\tilde{\gamma}_n' = (\tilde{\beta}_n', \tilde{\alpha}_n')$$
 maximizes $n^{-1} \sum \log h(U_t, \gamma)$ over Γ

h is a density function satisfying

A11:
$$h$$
 satisfies A2-A6, and if $g(u) = f(u, \theta_0)$ for any $\theta_0' = (\beta_0', \psi_0') \in \Theta$,

then
$$\gamma_*' = (\beta_0', \alpha_*') \in \Gamma$$

Note: $\tilde{\beta}_n$ is a consistent estimator of β_0 and $\sqrt{n}(\tilde{\beta}_n - \beta_0)$ is asymptotically normal, consider $\sqrt{n}(\tilde{\beta}_n - \hat{\beta}_n)$

More Definitions

$$\mathbf{A}^f(\theta) = (E(\partial^2 \log f(U_t, \theta)/\partial \theta_i \partial \theta_j)), \text{ dimension } p \times p$$

$$\mathbf{B}^f(\theta) = (E(\partial \log f(U_t, \theta)/\partial \theta_i \cdot \partial \log f(U_t, \theta)/\partial \theta_j)), \text{ dimension } p \times p$$

$$\mathbf{A}^h(\gamma) = \left(E(\partial^2 \log h(U_t, \gamma) / \partial \gamma_i \partial \gamma_j) \right)$$
, dimension $q \times q$

$$\mathbf{B}^h(\gamma) = (E(\partial \log h(U_t, \gamma)/\partial \gamma_i \cdot \partial \log h(U_t, \gamma)/\partial \gamma_j)), \text{ dimension } q \times q$$

 $\mathbf{A}^{f,\beta\theta}(\theta)^{-1}$ is the matrix obtained by deleting the last p-k rows from the inverse of $\mathbf{A}^f(\theta)$ above.

 $\mathbf{A}^{h,\beta\gamma}(\gamma)^{-1}$ is the matrix obtained by deleting the last q-k rows from the inverse of $\mathbf{A}^h(\gamma)$ above.

Even more notation

$$\begin{split} \mathbf{R}(\theta,\gamma) &= (E(\partial \log f(U_t,\theta)/\partial \theta_i \cdot \partial \log h(U_t,\gamma)/\partial \gamma_j)) \\ \mathbf{S}(\theta,\gamma) &= \mathbf{A}^{h,\beta\gamma}(\gamma)^{-1} \mathbf{B}^h(\gamma) \mathbf{A}^{h,\beta\gamma}(\gamma)^{-1\prime} \\ &- \mathbf{A}^{h,\beta\gamma}(\gamma)^{-1} \mathbf{R}(\theta,\gamma)' \mathbf{A}^{f,\beta\theta}(\theta)^{-1\prime} \\ &- \mathbf{A}^{f,\beta\theta}(\theta)^{-1} \mathbf{R}(\theta,\gamma) \mathbf{A}^{h,\beta\gamma}(\gamma)^{-1\prime} \\ &+ \mathbf{A}^{f,\beta\theta}(\theta)^{-1} \mathbf{B}^f(\theta) \mathbf{A}^{f,\beta\theta}(\theta)^{-1\prime} \end{split}$$

A12: $S(\theta_*, \gamma_*)$ is nonsingular.

First of the second round of tests

Theorem (Hausman Test)

Given A1-A6, A11, and A12, if $g(u) = f(u, \theta_0)$ for $\theta_0 \in \Theta$, then

$$\mathfrak{H}_n = \textit{n}(\tilde{\beta}_n - \hat{\beta}_n)' \textbf{S}_n(\hat{\theta}_n, \tilde{\gamma}_n)^{-1} (\tilde{\beta}_n - \hat{\beta}_n) \rightarrow_d \chi_k^2$$

Gradient Test setup

$$\tilde{\gamma}_n' = (\tilde{\beta}_n', \tilde{\alpha}_n')$$
 maximizes $n^{-1} \sum \log h(U_t, \gamma)$ over Γ

 $\tilde{\psi}_n$ maximizes $\nabla L_n(U, \tilde{\beta}_n, \psi)$ over Ψ .

$$\tilde{\theta}_n' = (\tilde{\beta}_n', \tilde{\psi}_n')$$

 $\nabla_{\beta} L_n(U, \tilde{\theta}_n)$ is an indicator of model misspecification

investigate asymptotic behavior of $\sqrt{n} \nabla_{\beta} L_n(U, \tilde{\theta}_n)$

The Last One (I Promise!!)

 $\mathbf{A}_n^{f,\beta\beta}(\theta)^{-1}$ is the $k\times k$ submatrix of $\mathbf{A}_n^f(\theta)^{-1}$ obtained by deleting the

last p-k columns from $\mathbf{A}_n^{f,\beta\theta}(\theta)^{-1}$ (i.e., keep the upper left block)

Theorem (Gradient Test)

Given A1-A6, A11, and A12, if $g(u) = f(u, \theta_0)$ for some $\theta_0 \in \Theta$, then

$$\mathfrak{G}_n = \nabla_{\beta} L_n(U, \tilde{\theta}_n)' \mathbf{A}_n^{f, \beta\beta} (\tilde{\theta}_n)^{-1} \mathbf{S}_n (\tilde{\theta}_n, \tilde{\gamma}_n)^{-1} \mathbf{A}_n^{f, \beta\beta} (\tilde{\theta}_n)^{-1} \nabla_{\beta} L_n(U, \tilde{\theta}_n) \rightarrow_d$$

 χ_k^2

Moreover $\mathfrak{H}_n - \mathfrak{G}_n \rightarrow_n 0$

What Do We Do With All This???

THE METHOD (according to White)

- Step 1: Perform first test.
- Step 2a: If you "do not reject", MLE away!
- Step 2b: If you "reject", perform one of the other two tests
- Step 3a: If you "do not reject", use sandwich inference
- Step 3b: If you "reject", reconsider your model choice.

[Always in Motion is] The Future

Run simulations to verify that the tests work asymptotically

- Wald test
- Information Matrix Test (1st misspecification test)
- Hausman Test (2nd misspecification test)

Check confidence interval coverage using

- "the method" vs.
- just using sandwich vs.
- just using MLE inference