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The Paper

• A likelihood-based method for analysing longitudinal
binary responses

• Authors: Fitzmaurice and Laird

• Published in Biometrika in 1993



The Data

• Longitudinal Binary Responses

• Yi = (Yi1,...,YiT
)

• i ranges from 1 to n

• n is the total number of clusters/individuals

• each individual has a J × 1 covariate vector, xit , at time t



Overall Goal

• maximum likelihood estimates of the marginal mean
parameters

• find β̂ such that E [Yit |Xit ] = g(XT
it β)

• find Ψi and Ωi such that f (yi ,Ψi ,Ωi) is the joint pdf of Yi



Mini-Goal

• Derive the estimating equations.

• Write down a likelihood

• take a log, take some derivatives, set it equal to zero

n∑
i=1

XT
i DiV

−1
i11 (yi − µi) = 0

n∑
i=1

ZT
i

(
wi − νi − Vi21V

−1
i11 (yi − µi)

)
= 0

(most of these symbols have not been defined)



Likelihood

Note: I will suppress the index i so f (yi ,Ψi ,Ωi) = f (y ,Ψ,Ω)

f (y ,Ψ,Ω) = exp
(
ΨTy + Ωw − A(Ψ,Ω)

)
W = (Y1Y2, ...,YT−1YT , ...,Y1Y2...YT )T

two and higher-way cross products of Y

Ω = (ω12, ..., ωT−1T , ..., ω12...T )

The length of W and Ω is K = 2T − (T + 1).

A(Ψ,Ω) is a normalizing constant

exp(A(Ψ,Ω)) =
∑

exp(ΨTy + ΩTw)

(the sum is over all 2T possible values of Y )



Example

Suppose we only measure each person at two times points, so
T = 2. Also, suppose we only have a single covariate at each
time point, so X = (x1, x2).

f (y , ψ1, ψ2, ω12) = ∆−1exp(ψ1y1 + ψ2y2 + ω12y1y2)

∆ = 1 + eψ1 + eψ2 + eψ1+ψ2+ω12



Important new parameters
• µt is the expected value of yt

• ν is the expected value of w

µt = µt(β) = Pr(Yt = 1|xt , β) = expit(xTt β)

µ1 = ∆−1(eψ1 + eψ1+ψ2+ω12) = expit(x1β)

ν = ∆−1eψ1+ψ2+ω12

• α is a Q × 1 vector parameterizing Ω (a K × 1 vector)

Ω = Zα

Z is some K × Q design matrix. In our example we will let
Z = 1 so ω12 = α.



Log Likelihood

l = ΨTy + ΩTw − log(∆)

l = ψ1y1 + ψ2y2 + ω12y1y2 − log(1 + eψ1 + eψ2 + eψ1+ψ2+ω12)

A transformation:

(Ψ,Ω)→ (µ, Γ)

somewhat underwhelming because Γ = Ω



Score Equations

(
∂l/∂Ψ
∂l/∂Ω

)
=

(
y − µ
w − ν

)

(
∂l/∂Ψ
∂l/∂Ω

)
=

(
∂µ/∂Ψ ∂Γ/∂Ψ
∂µ/∂Ω ∂Γ/∂Ω

)(
∂l/∂µ
∂l/∂Γ

)
=

(
V11 0
V21 I

)(
∂l/∂µ
∂l/∂Γ

)

V11 is cov(Y ) and V21 is cov(Y ,W )



Example Derivatives

E (Y1) = µ1 = ∆−1(eψ1 + eψ1+ψ2+ω12)

∆ = 1 + eψ1 + eψ2 + eψ1+ψ2+ω12

∂µ1/∂ψ1 = µ1 − µ2
1 = cov(Y1)

∂µ1/∂ψ2 = ν − µ1µ2 = cov(Y1,Y2)

∂µ1/∂ω12 = ν − µ1ν = E (Y 2
1 Y2)− E (Y1)E (Y1Y2) = cov(Y1,Y1Y2)



Score Continued

(
∂l/∂µ
∂l/∂Γ

)
=

(
V−1
11 0

−V21V
−1
11 I

)(
y − µ
w − ν

)

The score we want uses the parameters α and β.

(
∂l/∂β
∂l/∂α

)
=

(
∂µ/∂β ∂Γ/∂β
∂µ/∂α ∂Γ/∂α

)(
∂l/∂µ
∂l/∂Γ

)
=

(
XTD 0

0 ZT

)(
∂l/∂µ
∂l/∂Γ

)

µ = expit(XTβ), Γ = Ω = ZTα, and D =diag(var(Y ))



More Score

(
∂l/∂β
∂l/∂α

)
=

(
XTD 0

0 ZT

)(
V−1
11 0

−V21V
−1
11 I

)(
y − µ
w − ν

)

and seven years ago...

n∑
i=1

XT
i DiV

−1
i11 (yi − µi) = 0

n∑
i=1

ZT
i

(
wi − νi − Vi21V

−1
i11 (yi − µi)

)
= 0



Next Step

Solve the estimating equations using the Fisher scoring
algorithm and an iterative proportional fitting algorithm.
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