
Likelihood-based method for longitudinal

binary data

Jan Irvahn

April 5, 2012



The Paper

• A likelihood-based method for analysing longitudinal
binary responses

• Authors: Fitzmaurice and Laird

• Published in Biometrika in 1993



The Data

• Longitudinal Binary Responses

• Yi = (Yi1,...,YiT
)

• i ranges from 1 to n

• n is the total number of clusters/individuals

• each individual has a J × 1 covariate vector, xit , at time t



The Goal

• maximum likelihood estimates of the marginal mean
parameters

• find β̂ such that E [Yit |Xit ] = g(XT
it β)

• find Ψi and Ωi such that f (yi ,Ψi ,Ωi) is the joint pdf of Yi



GEE vs Likelihood
GEE

n∑
i=1

∂g(xiβ)

∂βT
V−1i (Yi − g(xiβ)) = 0

Likelihood

n∑
i=1

XT
i ∆iV

−1
i11 (yi − µi) = 0

n∑
i=1

ZT
i

(
wi − νi − Vi21V

−1
i11 (yi − µi)

)
= 0



Likelihood Approach

The joint distribution of Yu has the following distribution.

f (yi ,Ψi ,Ωi) = exp(ΨT
i yi + ΩT

i wi − A(Ψi ,Ωi))

Wi = (Yi1Yi2, ...,YiT−1YiT , ...,Yi1Yi2...YiT )T

two and higher-way cross products of Yi

Ωi = (ωi12, ..., ωiT−1T , ..., ωi12...T )

A(Ψi ,Ωi) is a normalizing constant

exp(A(Ψi ,Ωi)) =
∑

exp(ΨT
i yi + ΩT

i wi)

(the sum is over all 2T possible values of Yi)



Parameter Interpretation

Ψir is a conditional probability.

Ψir = logit(Pr(Yir = 1|Yis = 0,∀s 6= r))

ωirs can be interpreted in terms of conditional log odds-ratios.

exp(ωirs) =

(
Pr(Yir=1,Yis=1|Yit=0,∀t 6=r ,s)
Pr(Yir=0,Yis=1|Yit=0,∀t 6=r ,s)

)
(

Pr(Yir=1,Yis=0|Yit=0,∀t 6=r ,s)
Pr(Yir=0,Yis=0|Yit=0,∀t 6=r ,s)

)

Higher order ω terms are more complicated.



Likelihood Equations

li = ΨT
i yi + ΩT

i wi − A(Ψi ,Ωi)

(a 1-1 transformation from (Ψi ,Ωi) to (µi ,Λi) is used)

0 =

(
∂li/∂β
∂li/∂α

)
=

(
∂µi/∂β ∂µi/∂α
∂νi/∂β ∂νi/∂α

)T (
Vi11 Vi12

Vi21 Vi22

)−1(
yi − µi

wi − νi

)

(
Vi11 Vi12

Vi21 Vi22

)
=

(
cov(Yi) cov(Yi ,Wi)

cov(Wi ,Yi) cov(Wi)

)
νi = E (Wi)



Likelihood Equations

n∑
i=1

XT
i ∆iV

−1
i11 (yi − µi) = 0

n∑
i=1

ZT
i

(
wi − νi − Vi21V

−1
i11 (yi − µi)

)
= 0

Ωi = Ziα

Zi is a K× Q design matrix

α is a Q× 1 parameter vector

∆i = diag(var(Yit)) is a T × T diagonal matrix



Prior Work

This method is similar to a pseudo-maximum likelihood
approach taken by Zhao and Prentice in 1990.

That work was, in turn, an extension of work done on
multivariate binary data by Cox in 1972.

To solve the Likelihood equations Fitzmaurice and Laird use
an iterative proportional fitting procedure developed by
Deming and Stephan in 1940.



Prior Work
Zhao and Prentice parameterized their model in terms of
correlations. Fitzmaurice and Laird parameterized their model
in terms of conditional log-odds-ratios. This allows the
incorporation of higher order associations.

“One important advantage of this parameterization is that the
maximum likelihood estimates of the marginal mean
parameters are robust to misspecification of the time
dependence.”

example:
logit(µ) = β0 + β1Treatment + β2Sequence

parameterized either by
(i) ρ12, the pairwise correlation, or
(ii) ω12, the log odds-ratio



Graphical Comparisons



Graphical Comparisons

from Fitzmaurice, Laird, and Rotnitsky 1993



Graphical Comparisons

from Fitzmaurice, Laird, and Rotnitsky 1993



Why this method is good (and bad)

• β is unbiased even when the time dependence is
misspecified

• parameter space is orthogonal, the asymptotic variance of
β is the same whether α is known or estimated

• the conditional association parameters are not constrained

• interpreting the parameters is difficult

• the method is not appropriate for clusters of different sizes
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