Better Bootstrap Confidence Intervals by Bradley Efron

Gregory Imholte

University of Washington, Department of Statistics

May 29, 2012

・ 同 ト ・ ヨ ト ・ ヨ ト

э

We wish to make a confidence interval for some parameter $\theta \equiv T(F)$ (e.g. $\theta = E_F X$), based on data

$$X_i \stackrel{\text{i.i.d.}}{\sim} F \in \mathcal{F}.$$

Exact intervals

- Normal approximation $(\hat{\theta} \pm 1.96 \times se(\hat{\theta}))$
- Approximations based on series expansions
- Bootstrap confidence intervals

Exact intervals and series expansions are hard, solutions differ from problem to problem. Normal approximation can be poor. Even certain bootstrap confidence intervals can be sub-par!

For simplicity, we start by assuming that $\hat{\theta} \sim f_{\theta}$ estimates $\theta \in \Theta$. We make the following assumptions regarding our estimator. For our family $\{f_{\theta} : \theta \in \Theta\}$, there exists a monotone increasing transformation h and constants z_0 and a such that

$$\hat{\phi} = h(\hat{ heta}) \qquad \qquad \phi = h(heta)$$

satisfy

$$\hat{\phi} = \phi + \sigma_{\phi}(Z - z_0)$$
 $Z \sim N(0, 1)$

with

 $\sigma_{\phi} = 1 + a\phi$

- The constant z₀ is the bias correction constant
- The constant a is the acceleration constant

Let $\hat{G}(s) = P_{\hat{\theta}}\{\hat{\theta}^* < s\}$ denote the bootstrap distribution function. We can either estimate this via Monte Carlo (i.e., resample data x^* with replacement and compute $\hat{\theta}^*$ over and over), or use $\hat{\theta}^* \sim f_{\hat{\theta}}$.

Lemma

Under the conditions in the previous slide, if $1 - \Phi\left(\frac{1}{|a|} - |z_0|\right) < \alpha < .5$ the correct central confidence interval of level 1 - 2α for θ is

$$\left[\hat{G}^{-1}(\Phi(z[\alpha])), \hat{G}^{-1}(\Phi(z[1-lpha]))
ight]$$

where

$$z[\alpha] = z_0 + \frac{(z_0 + z^{(\alpha)})}{1 - a(z_0 + z^{(\alpha)})}$$

The interval in Lemma 1 defines the BC_a method, and we compute it with suitable estimates of z_0 and a.

We can consider the BC_a interval as a generalization of two methods. The *percentile method*:

$$\left[\hat{G}^{-1}(\alpha),\hat{G}^{-1}(1-\alpha)\right]$$

The BC method:

$$\left[\hat{G}^{-1}(\Phi(2z_0+z_{\alpha}),\hat{G}^{-1}(\Phi(2z_0+z_{(1-\alpha)}))\right]$$

Essentially, the percentile method works if we assume existence of a normalizing transformation with a = 0 and $z_0 = 0$. The *BC* method is a predecessor to the *BC*_a method, and arises if we assume existence of a normalizing transformation with a = 0 and $z_0 \neq 0$.

The *BC* and *BC_a* methods provide increasingly powerful corrections to the percentile interval, by adjusting the endpoint for error in our estimation of the sampling distribution by the bootstrap distribution.

・ 同 ト ・ ヨ ト ・ ヨ ト

How much in error is the ordinary percentile interval? How do the BC and BC_a intervals compensate? To answer the question, the Edgeworth and Cornish-Fisher expansions will come in handy. Consider the quantity

$$S_n = rac{\sqrt{n}(\hat{ heta} - heta)}{\sigma}.$$

Under a certain class of asymptotically standard normal estimators, we can express the c.d.f. and quantiles of S_n in terms of polynomials and standard normal related quantities.

The Edgeworth expansion gives a c.d.f. approximation

$$P(S_n \le x) = \Phi(x) + n^{-1/2} p_1(x) \phi(x) + O(n^{-1}).$$

The quantity $p_1(x)$ is an even polynomial of x with coefficients related to the cumulants of S_n . The Cornish-Fisher expansion gives an expansion of the quantiles of S_n . Let u_α denote the α quantile of S_n . We have

$$u_{\alpha} = z_{\alpha} - n^{-1/2} p_1(z_{\alpha}) + O(n^{-1}).$$

We can also produce valid expansions for a bootstrap distribution:

$$\begin{split} P\{n^{1/2}(\hat{\theta}^* - \hat{\theta})/\hat{\sigma} &\leq x | \mathcal{X}\} &= \Phi(x) + n^{-1/2} \hat{p}_1(x) + O_p(n^{-1}) \\ \hat{u}_{\alpha} &= z_{\alpha} - n^{-1/2} \hat{p}_1(z_{\alpha}) + O_p(n^{-1}). \end{split}$$

The polynomial \hat{p}_1 is the same as p, except bootstrap estimates replace population valued coefficients. Generally,

$$\hat{p}_1(x) - p_1(x) = O_p(n^{-1/2}).$$

Our percentile endpoints are defined via $P(\hat{\theta}^* \leq \hat{y}_{\alpha} | \mathcal{X}) = \alpha$. We can write \hat{y}_{α} in terms of expansion quantities:

$$P\{n^{1/2}(\hat{\theta}^* - \hat{\theta})/\hat{\sigma} \le \hat{u}_{\alpha} | \mathcal{X}\} = \alpha$$

$$P\{\hat{\theta}^* \le \hat{\theta} + n^{-1/2} \hat{\sigma} \hat{u}_{\alpha} | \mathcal{X}\} = \alpha$$

This implies

$$\begin{split} \hat{y}_{\alpha} &= \hat{\theta} + n^{-1/2} \hat{\sigma} \hat{u}_{\alpha} \\ &= \hat{\theta} + n^{-1/2} \hat{\sigma} [z_{\alpha} - n^{-1/2} \hat{p}_{1}(z_{\alpha})] + O_{p}(n^{-3/2}) \\ &= \hat{\theta} + n^{-1/2} \hat{\sigma} z_{\alpha} - n^{-1} \hat{\sigma} p_{1}(z_{\alpha}) + O_{p}(n^{-3/2}). \end{split}$$

So we have our percentile endpoint in terms of Edgeworth quantities. How does this compare to an "ideal" interval?

We introduce yet another Edgeworth/Cornish Fisher pair for the quantity

$$T_n = rac{\sqrt{n}(\hat{ heta} - heta)}{\hat{\sigma}}$$
:

$$P(T_n \le x) = \Phi(x) + n^{-1/2} q_1(x) \phi(x) + O(n^{-1})$$

$$\nu_\alpha = z_\alpha - n^{-1/2} q_1(z_\alpha) + O(n^{-1}).$$

If we knew our sampling distribution for T_n , we would know ν_{α} , and we could make the ideal interval endpoint

$$\hat{\theta} - n^{-1/2} \hat{\sigma} \nu_{(1-\alpha)} = \hat{\theta} + z_{\alpha} n^{-1/2} \hat{\sigma} + n^{-1} q_1(z_{\alpha}) \hat{\sigma} + O_p(n^{-3/2})$$

◆ 同 ♪ ◆ 三 ♪

Relating these two quantities, if we shift the percentile interval \hat{y}_{α} by

$$n^{-1}\hat{\sigma}\left[p_1(z_{\alpha})+q_1(z_{\alpha})\right]=n^{-1}\hat{\sigma}\left[2p(0)+\frac{1}{6}C\sigma^{-3}z_{\alpha}^2\right],$$

we would have a second order correct interval. We'll discuss C soon. Plugging in \hat{p} and \hat{q} retains this property.

We'll show that the BC interval gets us part of the way, and that the BC_a interval achieves the full correction.

Recall from before the BC interval

$$\left[\hat{G}^{-1}(\Phi(2z_0+z_{\alpha}),\hat{G}^{-1}(\Phi(2z_0+z_{(1-\alpha)}))\right]$$

We estimate

$$\hat{z}_0 = \Phi^{-1} \left(\hat{G}(\hat{\theta}) \right)$$

= $n^{-1/2} \hat{p}_1(0) + O_p(n^{-1}).$

Using a Taylor series expansion about z_{α} ,

$$\begin{split} \Phi(2\hat{z}_0 + z_\alpha) &= \Phi(z_\alpha) + 2\hat{z}_0\phi(z_\alpha) + O_p(n^{-1}) \\ &= \alpha + n^{-1/2}2\hat{p}_1(0)\phi(z_\alpha) + O_p(n^{-1}) \\ &\equiv \beta \end{split}$$

□→ < □→</p>

 For \hat{u}_{β} defined by $P\left\{\frac{\sqrt{n}(\hat{\theta}^*-\hat{\theta})}{\hat{\sigma}} \leq \hat{u}_{\beta}|\mathcal{X}\right\} = \beta$, via a Cornish-Fisher expansion and Taylor series arguments for Φ^{-1} and p_1 ,

$$\begin{aligned} \hat{u}_{\beta} &= z_{\alpha} - n^{-1/2} \hat{p}_{1}(z_{\alpha}) + n^{-1/2} 2 \hat{p}_{1}(0) + O_{p}(n^{-1}) \\ \hat{G}^{-1}(\Phi(2z_{0} + z_{\alpha})) &= \hat{\theta} + \hat{\sigma} n^{-1/2} z_{\alpha} - n^{-1} \hat{p}_{1}(z_{\alpha}) \hat{\sigma} \\ &+ n^{-1} \hat{\sigma} 2 p_{1}(0) + O_{p}(n^{-3/2}) \\ &= \hat{y}_{\alpha} + n^{-1} \hat{\sigma} 2 p_{1}(0) + O_{p}(n^{-3/2}) \end{aligned}$$

The BC interval only makes part of the required correction, in blue.

We can play a similar game with the BC_a endpoint. Define $a = n^{-1/2} \frac{1}{6} C \sigma^{-3}$. This *a* is the same acceleration constant from earlier. Then, as from Lemma 1

$$\begin{aligned} z[\alpha] &= \hat{z}_0 + \frac{(\hat{z}_0 + z_\alpha)}{1 - \hat{a}(\hat{z}_0 + z_\alpha)} \\ &= z_\alpha + 2\hat{z}_0 + \hat{a}z_\alpha^2 + O_p(n^{-1}) \end{aligned}$$

We end up with

$$\hat{G}^{-1}(\Phi(z[\alpha])) = \hat{y}_{\alpha} + n^{-1}\hat{\sigma}\left[2p(0) + \frac{1}{6}C\sigma^{-3}z_{\alpha}^{2}\right] + O_{p}(n^{-3/2})$$

This is exactly the correction we require! The BC_a intervals are second order correct.

Meanwhile, suppose we bootstrap the quantities

$$t_b^* = rac{\sqrt{n}(\hat{ heta}^* - \hat{ heta})}{SE(\hat{ heta}^*)}$$

and let $\hat{\nu}_{\alpha}$ be the α quantile of the t^*s . The bootstrap-t interval is

$$\left[\hat{\theta}-\mathsf{n}^{-1/2}\hat{\sigma}\hat{\nu}_{(1-\alpha)},\hat{\theta}-\mathsf{n}^{-1/2}\hat{\sigma}\hat{\nu}_{\alpha}\right]$$

and this interval is also second order correct. This interval directly estimates the "ideal interval".

To understand *C* and *a* we need to go back and look at when these expansions are valid. Suppose that X_1, X_2, \ldots are i.i.d. column vectors of fixed dimension *k* with mean μ . Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ denote the vector of component-wise means. Let $A : \mathcal{R}^d \to \mathcal{R}$ be a smooth function satisfying $A(\mu) = 0$. We are interested in functions such as

$$A(\bar{X}) = \frac{g(\bar{X}) - g(\mu)}{h(\mu)} \quad \text{or} \quad A(\bar{X}) = \frac{g(\bar{X}) - g(\mu)}{h(\bar{X})}$$

where our parameter of interest is $\theta = g(\mu)$ and $h(\mu)^2$ is the asymptotic variance of $\sqrt{n}\hat{\theta}$. Note that this model covers maximum likelihood estimation in exponential families as well as any number of nonparametric quantities.

▲ □ ▶ ▲ 三 ▶ ▲

Calculating \hat{a} can be a chore. We let

$$\hat{a}_{i} = \frac{\partial}{\partial x^{(i)}} A(x) \Big|_{x=\bar{X}}$$

$$\hat{\mu}_{ijk} = \frac{1}{n} \sum_{l=1}^{n} (X_{l} - \bar{X})^{(i)} (X_{l} - \bar{X})^{(j)} (X_{l} - \bar{X})^{(k)}.$$

Then

$$\hat{a} = n^{-1/2} \frac{1}{6} \hat{\sigma}^{-3} \sum_{i=1}^{d} \sum_{j=1}^{d} \sum_{k=1}^{d} \hat{a}_i \hat{a}_j \hat{a}_k \hat{\mu}_{ijk}.$$

<ロ> <同> <同> < 同> < 同>

æ

To estimate *a* in a non-parametric framework, consider parameters θ defined as functions of arbitrary vectors of populations moments μ , $\theta = t(\mu)$. We define the *empirical influence function*

$$U_i = \lim_{\Delta o 0} rac{t \left[(1 - \Delta) ar{X} + X_i \Delta
ight] - t(ar{X})}{\Delta}.$$

We then have

$$\hat{a} = \frac{1}{6} \frac{\sum_{i=1}^{n} U_i^3}{\left(\sum_{i=1}^{n} U_i^2\right)^{(3/2)}}.$$

◆ 同 ♪ ◆ 三 ♪

for n = 10. The sampling distribution looks like

Sampling Distribution of the mean, n = 10

We can also examine one-sided interval coverage: $P(\theta \leq \hat{\theta}[\alpha])$.

Gregory Imholte Better Bootstrap Confidence Intervals

	as below:	
	Actual Coverage	Mean Interval Length
Boot-T Interval	0.94	0.45
Percentile Interval	0.83	0.18
BC Interval	0.83	0.19
BCa non Interval	0.86	0.20
BCa par Interval	0.91	0.31
Standard Interval	0.83	0.19

At the 95% level, these intervals have width and nominal coverage

Table: 4

æ

- ► The percentile, *BC*, and *BC_a* methods can be seen as extending each other
- We can understand their performance via the Edgeworth expansion
- ► The BC_a interval is not as "automatic" as Efron might want you to believe
- The bootstrap-t interval may be preferable in the presence of a stable estimate of variance