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We wish to make a confidence interval for some parameter
θ ≡ T (F ) (e.g. θ = EF X ), based on data

Xi
i.i.d.∼ F ∈ F .

I Exact intervals

I Normal approximation (θ̂ ± 1.96× se(θ̂))

I Approximations based on series expansions

I Bootstrap confidence intervals

Exact intervals and series expansions are hard, solutions differ from
problem to problem. Normal approximation can be poor. Even
certain bootstrap confidence intervals can be sub-par!
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For simplicity, we start by assuming that θ̂ ∼ fθ estimates θ ∈ Θ .
We make the following assumptions regarding our estimator. For
our family {fθ : θ ∈ Θ}, there exists a monotone increasing
transformation h and constants z0 and a such that

φ̂ = h(θ̂) φ = h(θ)

satisfy
φ̂ = φ+ σφ(Z − z0) Z ∼ N(0, 1)

with
σφ = 1 + aφ

I The constant z0 is the bias correction constant

I The constant a is the acceleration constant
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Let Ĝ (s) = Pθ̂{θ̂
∗ < s} denote the bootstrap distribution function.

We can either estimate this via Monte Carlo (i.e., resample data x∗

with replacement and compute θ̂∗ over and over), or use θ̂∗ ∼ fθ̂.

Lemma
Under the conditions in the previous slide, if

1− Φ
(

1
|a| − |z0|

)
< α < .5 the correct central confidence interval

of level 1 - 2α for θ is[
Ĝ−1(Φ(z [α])), Ĝ−1(Φ(z [1− α]))

]
where

z [α] = z0 +
(z0 + z(α))

1− a(z0 + z(α))
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The interval in Lemma 1 defines the BCa method, and we compute
it with suitable estimates of z0 and a.
We can consider the BCa interval as a generalization of two
methods. The percentile method :[

Ĝ−1(α), Ĝ−1(1− α)
]

The BC method :[
Ĝ−1(Φ(2z0 + zα), Ĝ−1(Φ(2z0 + z(1−α)))

]
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Essentially, the percentile method works if we assume existence of
a normalizing transformation with a = 0 and z0 = 0. The BC
method is a predecessor to the BCa method, and arises if we
assume existence of a normalizing transformation with a = 0 and
z0 6= 0.

The BC and BCa methods provide increasingly powerful
corrections to the percentile interval, by adjusting the endpoint for
error in our estimation of the sampling distribution by the
bootstrap distribution.
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How much in error is the ordinary percentile interval? How do the
BC and BCa intervals compensate? To answer the question, the
Edgeworth and Cornish-Fisher expansions will come in handy.
Consider the quantity

Sn =

√
n(θ̂ − θ)

σ
.

Under a certain class of asymptotically standard normal estimators,
we can express the c.d.f. and quantiles of Sn in terms of
polynomials and standard normal related quantities.
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The Edgeworth expansion gives a c.d.f. approximation

P(Sn ≤ x) = Φ(x) + n−1/2p1(x)φ(x) + O(n−1).

The quantity p1(x) is an even polynomial of x with coefficients
related to the cumulants of Sn. The Cornish-Fisher expansion gives
an expansion of the quantiles of Sn. Let uα denote the α quantile
of Sn. We have

uα = zα − n−1/2p1(zα) + O(n−1).

Gregory Imholte Better Bootstrap Confidence Intervals



Background Recap
Second Order Correctness

Computing a
Example

We can also produce valid expansions for a bootstrap distribution:

P{n1/2(θ̂∗ − θ̂)/σ̂ ≤ x |X} = Φ(x) + n−1/2p̂1(x) + Op(n−1)

ûα = zα − n−1/2p̂1(zα) + Op(n−1).

The polynomial p̂1 is the same as p, except bootstrap estimates
replace population valued coefficients. Generally,

p̂1(x)− p1(x) = Op(n−1/2).
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Our percentile endpoints are defined via P(θ̂∗ ≤ ŷα|X ) = α. We
can write ŷα in terms of expansion quantities:

P{n1/2(θ̂∗ − θ̂)/σ̂ ≤ ûα|X} = α

P{θ̂∗ ≤ θ̂ + n−1/2σ̂ûα|X} = α

This implies

ŷα = θ̂ + n−1/2σ̂ûα

= θ̂ + n−1/2σ̂[zα − n−1/2p̂1(zα)] + Op(n−3/2)

= θ̂ + n−1/2σ̂zα − n−1σ̂p1(zα) + Op(n−3/2).

So we have our percentile endpoint in terms of Edgeworth
quantities. How does this compare to an “ideal” interval?
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We introduce yet another Edgeworth/Cornish Fisher pair for the
quantity

Tn =

√
n(θ̂ − θ)

σ̂
:

P(Tn ≤ x) = Φ(x) + n−1/2q1(x)φ(x) + O(n−1)

να = zα − n−1/2q1(zα) + O(n−1).

If we knew our sampling distribution for Tn, we would know να,
and we could make the ideal interval endpoint

θ̂ − n−1/2σ̂ν(1−α) = θ̂ + zαn−1/2σ̂ + n−1q1(zα)σ̂ + Op(n−3/2)
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Relating these two quantities, if we shift the percentile interval ŷα
by

n−1σ̂ [p1(zα) + q1(zα)] = n−1σ̂

[
2p(0) +

1

6
Cσ−3z2

α

]
,

we would have a second order correct interval. We’ll discuss C
soon. Plugging in p̂ and q̂ retains this property.

We’ll show that the BC interval gets us part of the way, and that
the BCa interval achieves the full correction.
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Recall from before the BC interval[
Ĝ−1(Φ(2z0 + zα), Ĝ−1(Φ(2z0 + z(1−α)))

]
We estimate

ẑ0 = Φ−1
(

Ĝ (θ̂)
)

= n−1/2p̂1(0) + Op(n−1).

Using a Taylor series expansion about zα,

Φ(2ẑ0 + zα) = Φ(zα) + 2ẑ0φ(zα) + Op(n−1)

= α + n−1/22p̂1(0)φ(zα) + Op(n−1)

≡ β
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For ûβ defined by P
{√

n(θ̂∗−θ̂)
σ̂ ≤ ûβ|X

}
= β, via a Cornish-Fisher

expansion and Taylor series arguments for Φ−1 and p1,

ûβ = zα − n−1/2p̂1(zα) + n−1/22p̂1(0) + Op(n−1)

Ĝ−1(Φ(2z0 + zα)) = θ̂ + σ̂n−1/2zα − n−1p̂1(zα)σ̂

+n−1σ̂2p1(0) + Op(n−3/2)

= ŷα + n−1σ̂2p1(0) + Op(n−3/2)

The BC interval only makes part of the required correction, in blue.
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We can play a similar game with the BCa endpoint. Define
a = n−1/2 1

6 Cσ−3. This a is the same acceleration constant from
earlier. Then, as from Lemma 1

z [α] = ẑ0 +
(ẑ0 + zα)

1− â(ẑ0 + zα)

= zα + 2ẑ0 + âz2
α + Op(n−1)

We end up with

Ĝ−1(Φ(z [α])) = ŷα + n−1σ̂

[
2p(0) +

1

6
Cσ−3z2

α

]
+ Op(n−3/2)

This is exactly the correction we require! The BCa intervals are
second order correct.
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Meanwhile, suppose we bootstrap the quantities

t∗b =

√
n(θ̂∗ − θ̂)

SE (θ̂∗)

and let ν̂α be the α quantile of the t∗s. The bootstrap-t interval is[
θ̂ − n−1/2σ̂ν̂(1−α), θ̂ − n−1/2σ̂ν̂α

]
and this interval is also second order correct. This interval directly
estimates the ”ideal interval”.
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To understand C and a we need to go back and look at when
these expansions are valid. Suppose that X1,X2, . . . are i.i.d.
column vectors of fixed dimension k with mean µ. Let
X̄ = 1

n

∑n
i=1 Xi denote the vector of component-wise means. Let

A : Rd → R be a smooth function satisfying A(µ) = 0. We are
interested in functions such as

A(X̄ ) =
g(X̄ )− g(µ)

h(µ)
or A(X̄ ) =

g(X̄ )− g(µ)

h(X̄ )

where our parameter of interest is θ = g(µ) and h(µ)2 is the
asymptotic variance of

√
nθ̂. Note that this model covers

maximum likelihood estimation in exponential families as well as
any number of nonparametric quantities.
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Calculating â can be a chore. We let

âi =
∂

∂x (i)
A(x)

∣∣∣∣
x=X̄

µ̂ijk =
1

n

n∑
l=1

(Xl − X̄ )(i)(Xl − X̄ )(j)(Xl − X̄ )(k).

Then

â = n−1/2 1

6
σ̂−3

d∑
i=1

d∑
j=1

d∑
k=1

âi âj âk µ̂ijk .
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To estimate a in a non-parametric framework, consider parameters
θ defined as functions of arbitrary vectors of populations moments
µ, θ = t(µ). We define the empirical influence function

Ui = lim
∆→0

t
[
(1−∆)X̄ + Xi∆

]
− t(X̄ )

∆
.

We then have

â =
1

6

∑n
i=1 U3

i(∑n
i=1 U2

i

)(3/2)
.
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As a quick example, we let x1, . . . , xn ∼ i .i .d . Gamma(.5, rate = 4)
for n = 10. The sampling distribution looks like
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We can also examine one-sided interval coverage: P(θ ≤ θ̂[α]).

0.0 0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.1
0

−0
.0

5
0.

00

α

C
ov

er
ag

e 
−

 A
lp

ha

Boot−T Interval

0.0 0.2 0.4 0.6 0.8 1.0
−0

.1
5

−0
.1

0
−0

.0
5

0.
00

α

C
ov

er
ag

e 
−

 A
lp

ha

Percentile Interval

0.0 0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.1
0

−0
.0

5
0.

00

α

C
ov

er
ag

e 
−

 A
lp

ha

BC Interval

0.0 0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.1
0

−0
.0

5
0.

00

α

C
ov

er
ag

e 
−

 A
lp

ha

BCa non Interval

0.0 0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.1
0

−0
.0

5
0.

00

α

C
ov

er
ag

e 
−

 A
lp

ha

BCa par Interval

0.0 0.2 0.4 0.6 0.8 1.0
−0

.1
5

−0
.1

0
−0

.0
5

0.
00

α

C
ov

er
ag

e 
−

 A
lp

ha

Standard Interval

Gregory Imholte Better Bootstrap Confidence Intervals



Background Recap
Second Order Correctness

Computing a
Example

At the 95% level, these intervals have width and nominal coverage
as below:

Actual Coverage Mean Interval Length

Boot-T Interval 0.94 0.45
Percentile Interval 0.83 0.18

BC Interval 0.83 0.19
BCa non Interval 0.86 0.20
BCa par Interval 0.91 0.31

Standard Interval 0.83 0.19

Table: 4
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I The percentile, BC , and BCa methods can be seen as
extending each other

I We can understand their performance via the Edgeworth
expansion

I The BCa interval is not as ”automatic” as Efron might want
you to believe

I The bootstrap-t interval may be preferable in the presence of
a stable estimate of variance
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