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Background Recap BCa method

We wish to make a confidence interval for some parameter
θ ≡ T (F ) (e.g. θ = EF X ), based on data

Xi
i.i.d.∼ F ∈ F .

I Exact intervals

I Normal approximation (θ̂ ± 1.96× se(θ̂))

I Approximations based on series expansions

I Bootstrap confidence intervals

Exact interals and series expansions are hard, solutions differ from
problem to problem. Normal approximation can be poor.
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Background Recap BCa method

For simplicity, we start by assuming that θ̂ ∼ fθ estimates θ ∈ Θ .
We make the following assumptions regarding our estimator. For
our family {fθ : θ ∈ Θ}, there exists a monotone increasing
transformation h and constants z0 and a such that

φ̂ = h(θ̂) φ = h(θ)

satisfy
φ̂ = φ+ σφ(Z − z0) Z ∼ N(0, 1)

with
σφ = 1 + aφ

I The constant z0 is the bias correction constant

I The constant a is the acceleration constant
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Background Recap BCa method

Let Ĝ (s) = Pθ̂{θ̂
∗ < s} denote the bootstrap distribution function.

We can either estimate this via Monte Carlo (i.e., resample data x∗

with replacement and compute θ̂∗ over and over), or use θ̂∗ ∼ fθ̂.

Lemma
Under the conditions in the previous slide the correct central
confidence interval of level 1 - 2α for θ is[

Ĝ−1(Φ(z [α])), Ĝ−1(Φ(z [1− α]))
]

where

z [α] = z0 +
(z0 + z(α))

1− a(z0 + z(α))
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Background Recap BCa method

Sketch of proof:

P

(
z(α) − z0 ≤

φ̂− φ
1 + aφ

≤ z(1−α) − z0

)
= 1− 2α (1)

Apply the monotone decreasing involution r(x) = φ̂−x
1+ax to the

inside to get

P

(
φ̂+ z(α) + z0

1− a(z(α) + z0)
≤ φ ≤ φ̂+ z(1−α) + z0

1− a(z(1−α) + z0)

)
= 1− 2α (2)

So we know the endpoints of an exact central interval on the φ
scale.
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Background Recap BCa method

The transformation h is monotone increasing, so the bootstrap cdf
of φ̂ is Pφ̂(φ̂∗ < h(s)) = Ĥ(h(s)) = Ĝ (s) = Pθ̂(θ̂∗ < s), and

Ĥ(x) = Φ

(
x − φ̂
σφ̂

+ z0

)
Ĥ−1(α) =

[
Φ−1(α)− z0

]
σφ̂ + φ̂

and it turns out that

Ĥ−1(Φ(z [α])) =
φ̂+ z(α) + z0

1− a(z(α) + z0)
.

This gives us that[
Ĥ−1(Φ(z [α])), Ĥ−1(Φ(z [1− α]))

]
matches the interval on the previous slide.
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Background Recap BCa method

Finally, we note the relationship between bootstrap cdfs:

α = Ĥ(h(s))

h−1
(

Ĥ−1(α)
)

= s = Ĝ−1(α)

This implies that the following events are equivalent:

h(θ) = φ ∈
[
Ĥ−1(Φ(z [α])), Ĥ−1(Φ(z [1− α]))

]
θ ∈

[
Ĝ−1(Φ(z [α])), Ĝ−1(Φ(z [1− α]))

]
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Background Recap BCa method

Note that the form of the transformation h never comes into play.
In a sense, the method automatically selects a transformation that
brings θ̂ to normality, computes an exact 95% interval, and then
transforms backwards to reach the θ scale again.

We require estimates of a and z0 to make this work:

We estimate the quantity z0 as follows. Recalling that
φ̂ = φ+ σφ(Z − z0),

Pθ(θ̂ < θ) = Pφ(φ̂ < φ) = P(Z < z0) = Φ(z0),

so that z0 ≈ Φ−1(Ĝ (θ̂)).
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Background Recap BCa method

To estimate a, we leverage some interesting properties of the score
transformation. For any smooth one-to-one function m, if
φ = m(θ) then

∂

∂φ
log f (X ,m−1(φ)) =

∂

∂m−1(φ)
log f (X ,m−1(φ))

∂m−1(φ)

∂φ

=
∂

∂θ
log f (X , θ)

1

m′(θ)
.

For another smooth one-to-one function g , transforming Y = g(X )

∂

∂φ
log f (g−1(Y ), h−1(φ))

∣∣∣∣dX

dY

∣∣∣∣ =
∂

∂θ
log f (X , θ)

1

h′(θ)

The Jacobian doesn’t depend on parameters, and g−1(Y ) = X .
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For l̇φ(φ̂) and l̇θ(θ̂), the previous results say that

l̇φ(φ̂) = l̇θ(θ̂)/h′(θ)

The skew of a random variable X is defined as µ3(X )/µ2(X )3/2, so

SKEW (l̇φ) = SKEW (l̇θ).

Efron shows that SKEW (l̇θ)/6 ≈ a by appealing to properties of l̇φ
being a transformation of a standard normal. Thus we have all the
components we need to form the BCA interval in Lemma 1:
a, z0, Ĝ .
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Background Recap BCa method

For now, a diversion: consider a single interval endpoint θ̂[α] that
is intended to have one-sided coverage α:

Prob(θ ≤ θ̂[α]) ≈ α.

A procedure is first-order or second-order accurate if, respectively

Prob(θ ≤ θ̂[α]) = α + O(n−1/2),

Prob(θ ≤ θ̂[α]) = α + O(n−1).

A procedure is first-order or second-order correct if, respectively

θ̂[α] = θ̂EX [α] + Op(n−1),

θ̂[α] = θ̂EX [α] + Op(n−3/2).

Generally, nth order correctness implies nth order accuracy.
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Background Recap BCa method

Main result: the BCA interval is second-order correct. The proof
involves a lot of “straightforward” expansions of quantile functions,
estimators, and distribution functions. Still working on that.

We also extend the BCA method to multiparameter families
G = {gη : η ∈ Λ ⊂ Rk}, to estimate θ = t(η) for some one to one
function t : Λ→ R. The notation ∇t denotes the gradient of t
with respect to η.

The idea is to use a one-dimensional subfamily of G that will
“stand-in” for the whole family, but which one?. Assume that our
estimator is the MLE t(η̂).
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When estimating θ with an unbiased estimator θ̂, the CR bound is
∇tT I−1(η)∇t. For an arbitary non-zero vector d ∈ Rk , consider
the one-parameter subfamily Gd = {gη̂+τd : τ ∈ R}.

I Iτ (τ) = dT I (η̂ + dτ)d

I dθ
dτ = dT∇t(η̂ + dτ)

I Consider the CR bound at τ = 0, dT∇t(η̂)∇T t(η̂)d
dT I (η̂)d

, as a

function of d .

I From linear algebra, this is maximized by choosing
δ̂ ≡ I−1(η)∇t(η̂), with maximum value ∇tT I−1(η)∇t! In
other words, estimation in this family is no easier than in the
full family.
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The subfamily Gδ̂ is called least favorable, and is due to Stein
(1956). On this one-parameter family, we can operate with
machinery previously derived. We also extend the method to a
non-parametric case!

We typically imagine bootstrap samples as resampling the data
with replacement, but another way to think about it is to consider
the sample space χ̂ = (x1, x2, . . . , xn) fixed, and consider only
distributions F supported on χ̂.

These distributions consist of all possible ways of shuffling around
the mass on the points of χ̂, hence F is an n-category multinomial
family, and is also an exponential family. This implies all the
multivariate results can be extended to the non-parametric case.
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Moving forward:

I Work out proof of main theorem (2nd order correctness).

I Fill in some details of non-parametric and multi-parameter
derivations of formulas

I Evaluate method on some “hard” problems (e.g. ratios of
means)

I Make some pictures!
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