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An example

Suppose we wish to make inference on some parameter θ ≡ T (F )
(e.g. θ = EF X ), based on data

Xi
i.i.d.∼ F ∈ F .

We might suppose that

F = {F : EF X 2 <∞},

or we might let
F = {Fθ : θ ∈ Θ ⊂ Rp}.

We often concern ourselves with two tasks:

I Point estimates θ̂

I Interval estimates (θ̂[α], θ̂[1− α])

where θ̂[α] denotes an α level endpoint of a confidence interval.
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In our frequentist hats, the two tasks usually start (and end) with
maximum likelihood estimation. We turn our frequentist crank,
finding

I The MLE θ̂MLE

I The observed Fisher information În.

We then use the relationship

√
n(θ̂MLE − θ) ≈d N

(
0, Î−1

n

)
to pivot around θ and generate an interval estimate

θ̂MLE ± z(α) Î−1
n√

n
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But what can go wrong?

√
n(θ̂MLE − θ) ≈d N

(
0, Î−1

n

)
is just an approximation. For small sample sizes, we have no
guarantees. Strong skewness or heavy tails in data distribution may
distort the sampling distribution of θ̂. Result:

Badly calibrated confidence intervals!
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So what can we do about that? Ad-hoc solutions:

I Find some monotone transformation g that makes g(θ̂) really
approximately normal

I Get lucky: identify the exact distribution of θ̂ or some
transformation thereof

I This can be hard!
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For example, consider

Xi
i .i .d .∼ N(µ, θ) θ̂ =

1

n − 1

∑
i

(xi − x̄)2.

Suppose θ = 1. Normal theory yields that θ̂ ∼
χ2

(n−1)

(n−1) .
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When the data are normal we also have that Var(θ̂) = 2σ4

n−1 .
Applying asymptotic approximations, an approximate 95%
confidence interval would be

θ̂ ± 1.96×

√
2θ̂2

n − 1

and an exact 95% confidence interval for θ is

(n − 1)θ̂

(
1

χ2
n−1,.975

,
1

χ2
n−1,.025

)
For n = 20, the approximate intervals have 88% coverage.
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Suppose that last two ad-hoc solutions are hard, and our interval
estimates perform badly. What else can we do?

Could we adjust for the skewness or kurtosis that mucks up our
intervals? This is the road taken by Abramovitch & Singh (1985),
Bartlett (1953), Hall (1983), to name a few. The general idea is
that the true confidence limits often exist in the form of

θ̂[α] = θ̂ + σ̂(z(α) +
A

(α)
n√
n

+
B

(α)
n

n
+ · · · ).

These methods generally boil down to estimating some function of
higher order moments to correct the interval.
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Are we in the clear yet? No. These methods can become
exceedingly cumbersome to apply in multiparameter families,
especially for more exotic transformations of parameters (e.g.
ratios of means, ratios of regression parameters, products of
parameters...).

What are we to do?

Gregory Imholte Better Bootstrap Confidence Intervals



Interval Estimation
Bootstrap methods

Bootstrap overview
BCa method

“You can pull yourself up by your
bootstraps and you don’t need
anything else” -Efron

Gregory Imholte Better Bootstrap Confidence Intervals



Interval Estimation
Bootstrap methods

Bootstrap overview
BCa method

The bootstrap is a data resampling technique that allows us to use
the empirical distribution function Fn to estimate the sampling
distribution of our estimator θ̂. Recall Fn(t) = 1

n

∑n
i=1 1[t≤xi ].

For b = 1, . . . ,B:

I Sample X
∗(b)
i

i .i .d .∼ Fn i = 1, . . . , n.

I Compute θ̂∗(b) from data (X
∗(b)
1 , . . . ,X

∗(b)
n ).

Use the bootstrap distribution of θ̂∗ to compute quantities of
interest. E.g.

(θ̂∗(Bα), θ̂
∗
(B(1−α)))

would give an approximate 100(1-2α)% confidence interval for θ.
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Bootstrap overview
BCa method

The bootstrap technique applies to a huge variety of parameters in
both parametric and nonparametric families. Since its inception
the technique has seen various refinements.

The primary contribution of this talk’s namesake is the accelerated
bootstrap confidence interval (BCa).

The method’s goal:

Automatically create confidence intervals that adjust for
underlying higher order effects.
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For simplicity, we start by assuming that θ̂ ∼ fθ estimates θ. We
make the following assumptions regarding our estimator. For our
family fθ, there exists a monotone increasing transformation g and
constants z0 and a such that

φ̂ = g(θ̂) φ = g(θ)

satisfy
φ̂ = φ+ σφ(Z − z0) Z ∼ N(0, 1)

with
σφ = 1 + aφ

I The constant z0 is the bias correction constant

I The constant a is the acceleration constant
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BCa method

Let Ĝ (s) = P{θ̂∗ < s} denote the bootstrap distribution function.
We can either estimate this via Monte Carlo or use θ̂∗ ∼ fθ̂. The
BCa interval is defined as below.

Lemma
Under the conditions in the previous slide the correct central
confidence interval of level 1 - 2α for θ is[

Ĝ−1(Φ(z [α])), Ĝ−1(Φ(z [1− α]))
]

where

z [α] = z0 +
(z0 + z(α))

1− a(z0 + z(α))
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BCa method

Note that the form of the transformation g never comes into play.
In a sense, the method automatically selects a transformation that
brings θ̂ to normality, computes an exact 95% interval, and then
transforms backwards to reach the θ scale again.

We require estimates of a and z0 to make this work:

z0 ≈ Φ−1(Ĝ (θ̂)) a ≈ 1

6
SKEWθ=θ̂(l̇θ)

I.e. the skew of the score transformation of θ̂
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BCa method

A main theorem of the paper is that this interval is second-order
correct in the sense that the endpoints of the BCa confidence
intervals are very close to the true exact endpoints,

θ̂BC [α]− θ̂EX [α] = Op(n−
3
2 ).

That is to say, the BCa method successfully captures A
(α)
n√
n

below:

θ̂[α] = θ̂ + σ̂(z(α) +
A

(α)
n√
n

+
B

(α)
n

n
+ · · · ).

In the previous sample variance example, BCa intervals have
estimated coverage essentially identical with the exact intervals.
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Looking ahead:

I This method is also second order correct in multiparameter
families, with different estimates of a and z0

I The method also works in nonparametric settings, via an
extension from multiparameter families

I Lots of math
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