BIOSTAT 572: Intro Talk

Elisa Sheng

Biostatistics Department, University of Washington

April 10, 2012

The Paper

Title: The Mystery of Missing Heritability: Genetic Interactions Create Phantom Heritability

Authors: Or Zuk^a, Eliana Hechter^a, Shamil Sunyaev^{a,b}, Eric Lander^a

Affiliations: ^aBroad Institute of MIT and Harvard; ^bGenetics Division, Brigham and Women's Hospital, Harvard Medical School

Publication: Proceedings of the National Academy of Sciences, 2012

Background

Big Picture: the genetic revolution in healthcare - use genotype to predict an individual's risk for disease/traits

GWASs: Over 1200 discovered genetic variants, and growing

The Mystery: These variants appear to only explain a small portion of the variation in the disease/trait

Explanations:

- 1. haven't found enough genetic variants yet
- 2. the portion has been underestimated

Notation and Terminology

Phenotype, $P = \Psi(G, E)$, is a function of **genotype** (G) and **environment** (E)

Heritability, $H^2 = V_G/V_P$, is the proportion of phenotypic variation explained by genetic variants

- **broad sense** (H^2) : V_G represents phenotypic variation due to *any* genetic contribution
- narrow sense (h²): V_G represents phenotypic variation due to "additive" contributions of genes
- explained: $\pi_{explained} = \frac{h_{known}^2}{h_{-n}^2}$
- missing: $1 \pi_{explained}$

Narrow Sense Heritability

Why use narrow sense heritability?

- Not practical to determine H^2_{known}
- Easy to compute h_{known}^2 using allele frequency (f) and effect size (β):

$$h_{known}^2 = \sum_i f_i (1 - f_i) \beta_i^2$$

• h^2 is a commonly used measure

Phantom Heritability

 h_{all}^2 is the narrow sense heritability that incorporates all of the genetic variants (known and unknown) associated with the phenotype

 h_{pop}^2 a quantity based on phenotypic correlations in the population, which is not a narrow sense heritability

Typically h_{all}^2 is assumed to equal h_{pop}^2 , however these two quantities are rarely equal (due to genetic interactions).

phantom heritability:
$$\pi_{phantom} = 1 - \frac{h_{all}^2}{h_{poon}^2}$$

 $\pi_{phantom} > 0 \implies$ inflated missing heritability

Methods of Estimating h_{all}^2

Naive Methods (assume $h_{all}^2 = h_{pop}^2$):

- the ACE model
- the ADE model
- parent-offspring regression

Better methods (that still have issues):

- Visscher et al., 2006 (confounded by genetic interactions)
- Yang et al., 2010 (inconsistent estimator)

The Brave New Method

Extends the approaches of Visscher et al. and Yang et al.

Has some nice properties:

- It is not confounded by genetic interactions
- It is a consistent estimator
- It provides a way of detecting genetic interactions (by comparison to naive estimates)

Requires that one can detect recent common ancestors between individuals in the population (segments of shared identity-by-decent above a specified threshold)

The Brave New Method

The Theorem:
$$h_{all}^2 = (1 - \kappa_0) \rho'(\kappa_0)$$

- κ_{i,j} is the proportion of genome shared (in large IBD segments) by individuals i and j
- κ_0 is the average proportion of large-segment IBD sharing in the population
- For a trait, Z = Ψ(G, E), let ρ(κ) is the average phenotypic correlation between individuals who share κ of their genomes in large IBD blocks

Summary of Topics

- Explain why commonly used estimators of explained heritability result in phantom heritability
- Develop framework for a plausible model that will illustrate the above
- Apply the model on examples (Crohn's disease and schizophrenia) and illustrate phantom heritability
- Argue the need for an estimator of h²_{all} that does not depend on underlying genetic architecture
- Introduce their estimator of h_{all}^2
- Simulate data using the previously developed framework and apply their method