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Review

@ Gene-gene interaction networks
@ Two key questions:
@ Which gene products are directly dependent (yes/no for each pair of
genes)?
@ What is the strength and direction of this dependence (numeric for
each pair of genes)?
@ High-dimensional setting, i.e. n << p
e Multivariate normality assumption (with standardization)

X ~ N,p(0, %)

e With Q =%71, Q;; =0« X; and X; are conditionally independent
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The sparse permutation invariant covariance estimator

(SPICE)

Q) = argmin{tr(Q%) — log |Q + A|Q 7|1}
Q>0
where :
e Q=3y"1
o Y =1yr (X - X)X - X)T
e QO = Q — diagonal(2)

@ )\ is the tuning parameter
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Background and Theory

@ Other approaches to this problem have some shortcomings:

e Banding is an invalid assumption in this case
o Approaches that the shrink eigenvalues are not consistent in this setting

@ With reasonable assumptions we have:
A p+s)logp
601 - ol = 0p(y/ P8P

(s+1)logp
n

1€ — Qol| = Op( )
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Standardization and tuning parameter selection

@ Standardization
Y =WIrw

where T is the correlation matrix and W = diag(Z)%
@ Tuning parameter selection

e We do not generally know \'s value, so we must use data

e bounds for A from Friedman et al. (2007)

e Smaller A values induce less sparsity, bigger A values induce more
sparsity

o Criteria used: minimizing the negative log likelihood, minimizing
classification error,
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Covariance matrices under consideration

Banded Covariance Structures
o Qy:oj = 0.70—kl
o W wi=I(lj— k| =0)+0.4xI(j — k| =1)
402 x I(|j — k| =2) + 0.2 x I(|j — k| =3) + 0.1 x I(|j — k| = 4)
Varying sparsity
© Q3 = B+ 04/, where V bjj, i # j,

P(bj=.5) = a
P(bj=0) = 1—a

With o« = 0.1 and § chosen so that Q3 =0

@ 4 uses the same set-up as Q3 except o = 0.5
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Graphical model
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Answering question 1: which variables are conditionally

dependent?

@ Over repeated sampling, how does SPICE perform?
@ What happens as p increases? As sparsity increases?

@ Measuring whether SPICE estimates the graphical model:
True positive rate: true non-zeros estimated as non-zero
True negative rate: true zeros estimated as zero
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Simulation study results: €;: p=30 and n=100

True Edges Percent of Edges Estimated in 50 reps

N
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Simulation study results: €,: p=30 and n=100

True edges Proportion edges (50 reps)
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Simulation study results: €3, p=30 and n=100

True edges Proportion edges (50 reps)
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Simulation study results: €4, p=30 and n=100

Truth Proportion edges (50 reps)
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High Dimensional, n=100

rate

(TP: true non-zeros est. as non-zero; TN: true zeros est. as zero)
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Summary of results in answering question 1

@ Comparing €23 to 5, SPICE detects stronger conditional
dependencies more often

o Comparing Q3 to 4, SPICE discriminates better in the sparse setting
(also consider strength of conditional dependencies)

@ Noisy

@ The real world: increasing p and its impact on true positive and true
negative rates
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Answering question 2: what is the strength and direction

of the conditional dependence?

Average Kullback-Leibler Loss over 50 replications

P LW [ SPICE LW | SPICE
(o Q,

30 | 3.70 (0.27) | 1.69 (0.20) | 2.89 (0.19) | 2.53 (0.23)

100 | 27.63 (0.72) | 8.79 (0.41) | 14.07 (0.27) | 10.60 (0.43)

200 | 79.02 (0.87) | 21.82 (0.61) | 31.56 (0.43) | 22.89 (0.63)

300 | 139.41 (1.41) | 36.45 (0.90) | 49.89 (0.53) | 35.94 (0.72)
Q3 Q,

30 | 3.45(0.28) | 1.87 (0.21) | 3.27 (0.38) | 3.98 (0.29)

100 | 19.61 (1.25) | 14.83 (0.55) | 16.73 (0.78) | 17.76 (0.44)

200 | 41.25 (1.91) | 37.00 (0.78) | 35.77 (0.85) | 66.08 (0.60)
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Colon tumor classification example

p=2,000 genes and n=62 tissue samples (40 tumorous)

Determine the 50, 100 most discriminating genes based on expression
levels

@ Uses a covariance estimator in the LDA rule, for k =0, 1:

~n 1 +4. R
arg max{x" Qi — 7 i Qjui + log}

Compares the classification error rates for a testing set of 20
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Mean classification error percentage (SE) over 50 splits

estimator p=50 p=100
Ledoit-Wolf | 15.6 (7.8) | 17.2 (5.5)
SPICE (normal) | 12.1 (6.5) | 18.7 (8.4)
SPICE (error) | 14.7 (7.3) | 16.9 (8.5)
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Conclusions

@ Over many replications SPICE discriminates in the sparse settings
considered (Q1)

@ Performs better in terms of Kullback Leibler Loss than the
Ledoit-Wolf estimator in these sparse settings (Q2)

o Generalizability is uncertain; sparsity is a reasonable assumption for
many biological networks
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