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Abstract: The paper proposes a method for constructing a sparse estima-
tor for the inverse covariance (concentration) matrix in high-dimensional
settings. The estimator uses a penalized normal likelihood approach and
forces sparsity by using a lasso-type penalty. We establish a rate of con-
vergence in the Frobenius norm as both data dimension p and sample size
n are allowed to grow, and show that the rate depends explicitly on how
sparse the true concentration matrix is. We also show that a correlation-
based version of the method exhibits better rates in the operator norm. We
also derive a fast iterative algorithm for computing the estimator, which
relies on the popular Cholesky decomposition of the inverse but produces
a permutation-invariant estimator. The method is compared to other es-
timators on simulated data and on a real data example of tumor tissue
classification using gene expression data.

AMS 2000 subject classifications: Primary 62H20; secondary 62H12.
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Review

Gene-gene interaction networks

Two key questions:

1 Which gene products are directly dependent (yes/no for each pair of
genes)?

2 What is the strength and direction of this dependence (numeric for
each pair of genes)?

High-dimensional setting, i.e. n << p

Multivariate normality assumption (with standardization)

~X ∼ Np(0,Σ)

With Ω = Σ−1, Ωi ,j = 0⇔ Xi and Xj are conditionally independent
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The sparse permutation invariant covariance estimator
(SPICE)

Ω̂λ = arg min
Ω�0
{tr(ΩΣ̂)− log |Ω|+ λ|Ω−|1}

where :

Ω = Σ−1

Σ̂ = 1
nΣn

i=1(Xi − X̄ )(Xi − X̄ )T

Ω− = Ω− diagonal(Ω)

λ is the tuning parameter
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Background and Theory

Other approaches to this problem have some shortcomings:

Banding is an invalid assumption in this case
Approaches that the shrink eigenvalues are not consistent in this setting

With reasonable assumptions we have:

‖Ω̂λ − Ω0‖F = OP(

√
(p + s) log p

n
)

‖Ωλ − Ω0‖ = OP(

√
(s + 1) log p

n
)
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Standardization and tuning parameter selection

Standardization
Σ = WΓW

where Γ is the correlation matrix and W = diag(Σ)
1
2

Tuning parameter selection

We do not generally know λ’s value, so we must use data
bounds for λ from Friedman et al. (2007)
Smaller λ values induce less sparsity, bigger λ values induce more
sparsity
Criteria used: minimizing the negative log likelihood, minimizing
classification error,
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Covariance matrices under consideration

Banded Covariance Structures

Ω1 : σjk = 0.7|j−k|

Ω2 : ωjk = I (|j − k | = 0) + 0.4× I (|j − k| = 1)
+0.2× I (|j − k| = 2) + 0.2× I (|j − k| = 3) + 0.1× I (|j − k| = 4)

Varying sparsity

Ω3 = B + δI , where ∀ bij , i 6= j ,

P(bij = .5) = α

P(bij = 0) = 1− α

With α = 0.1 and δ chosen so that Ω3 � 0

Ω4: uses the same set-up as Ω3 except α = 0.5
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Graphical model

Ω3 Ω4
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Answering question 1: which variables are conditionally
dependent?

Over repeated sampling, how does SPICE perform?

What happens as p increases? As sparsity increases?

Measuring whether SPICE estimates the graphical model:
True positive rate: true non-zeros estimated as non-zero
True negative rate: true zeros estimated as zero
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Simulation study results: Ω1: p=30 and n=100
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Simulation study results: Ω2: p=30 and n=100

True edges Proportion edges (50 reps)
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Simulation study results: Ω3, p=30 and n=100

True edges Proportion edges (50 reps)
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Simulation study results: Ω4, p=30 and n=100

Truth Proportion edges (50 reps)
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High Dimensional, n=100

(TP: true non-zeros est. as non-zero; TN: true zeros est. as zero)
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Summary of results in answering question 1

Comparing Ω1 to Ω2, SPICE detects stronger conditional
dependencies more often

Comparing Ω3 to Ω4, SPICE discriminates better in the sparse setting
(also consider strength of conditional dependencies)

Noisy

The real world: increasing p and its impact on true positive and true
negative rates
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Answering question 2: what is the strength and direction
of the conditional dependence?

Average Kullback-Leibler Loss over 50 replications

p LW SPICE LW SPICE

Ω1 Ω2

30 3.70 (0.27) 1.69 (0.20) 2.89 (0.19) 2.53 (0.23)
100 27.63 (0.72) 8.79 (0.41) 14.07 (0.27) 10.60 (0.43)
200 79.02 (0.87) 21.82 (0.61) 31.56 (0.43) 22.89 (0.63)
300 139.41 (1.41) 36.45 (0.90) 49.89 (0.53) 35.94 (0.72)

Ω3 Ω4

30 3.45 (0.28) 1.87 (0.21) 3.27 (0.38) 3.98 (0.29)
100 19.61 (1.25) 14.83 (0.55) 16.73 (0.78) 17.76 (0.44)
200 41.25 (1.91) 37.00 (0.78) 35.77 (0.85) 66.08 (0.60)
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Colon tumor classification example

p=2,000 genes and n=62 tissue samples (40 tumorous)

Determine the 50, 100 most discriminating genes based on expression
levels

Uses a covariance estimator in the LDA rule, for k = 0, 1:

arg max
k
{xT Ω̂µ̂k −

1

2
µ̂Tk Ω̂µ̂k + log π̂k}

Compares the classification error rates for a testing set of 20
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Mean classification error percentage (SE) over 50 splits

estimator p=50 p=100

Ledoit-Wolf 15.6 (7.8) 17.2 (5.5)
SPICE (normal) 12.1 (6.5) 18.7 (8.4)
SPICE (error) 14.7 (7.3) 16.9 (8.5)
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Conclusions

Over many replications SPICE discriminates in the sparse settings
considered (Q1)

Performs better in terms of Kullback Leibler Loss than the
Ledoit-Wolf estimator in these sparse settings (Q2)

Generalizability is uncertain; sparsity is a reasonable assumption for
many biological networks
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