BIOST 572 Update Talk

David Benkeser

University of Washington Department of Biostatistics

April 26, 2012

Few people understand a really good sandwich

James Beard (1903-1985) American culinary artist

$$eta = egin{array}{ccc} eta &= egin{array}{ccc} eta &= egin{array}{ccc} eta & egin{array}{cccc} eta & eta & eta & egin{array}{cccc} eta & eta & eta & eta & egin{array}{cccc} eta & eta &$$

If we knew $\phi(\cdot)$ and F, we could calculate β directly

Instead, embed in flexible Bayesian model and use data to derive posterior for $\phi(\cdot)$ and F and thus for β

Fixed vs. Random X Why does it matter?

If ϕ truly is linear, it doesn't

Otherwise fixed **X** can lead to (massive) overcoverage for sandwich errors

 \bullet Confuses errors from nonlinearity in ϕ with the random component

Bayesian approach allows distinction between fixed and random sampling

Fixed X Simulations

Bayesian Sandwich Fixed **X**

Theorem: For a discrete covariate space, $\hat{\boldsymbol{\beta}}_{fixed} = \mathbb{E}_{\pi}(\boldsymbol{\beta}_{fixed}|\mathbf{X},Y)$ takes the form

$$\hat{oldsymbol{eta}}_{\mathit{fixed}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^TY$$

and assuming at least four samples for each covariate value, the corresponding uncertainty estimate has form

$$\hat{\sigma}_{\beta} = [(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\Sigma'\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}]^{1/2}$$

where Σ' is diagonal matrix

$$\Sigma'_{ij} = \begin{cases} \frac{1}{n_k - 3} \sum_{i: X_i = \xi_k} (Y_i - \bar{y}_k)^2 & \text{if } i = j \\ 0 & \text{else} \end{cases}$$

Theorem: Assuming $Y|\mathbf{X}$ has bounded first and second moments, $\hat{\boldsymbol{\beta}} = \mathbb{E}_{\pi}(\boldsymbol{\beta}|\mathbf{X},Y)$ takes the asymptotic form

$$\hat{\boldsymbol{\beta}} - (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y \to_{as} 0$$

and assuming at least four samples for each covariate value, the corresponding uncertainty estimate has asymptotic form

$$\hat{\sigma}_{\beta} - diag[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\Sigma\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}]^{1/2} = o(n^{-1})$$

where Σ is diagonal matrix

$$\Sigma_{ij} = \begin{cases} (Y_i - X_i (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y)^2 & \text{if } i = j \\ 0 & \text{else} \end{cases}$$

Let $\xi = (\xi_1, ..., \xi_K)$ be K m-vectors of values covariates X can take

Recall our assumed likelihood

$$Y|(X = \xi_k, \phi_k, \sigma_k^2) \sim N(\phi_k, \sigma_k^2)$$

We use noninformative, improper priors for ϕ, σ^2

$$ho_{\phi,\sigma^2} \propto \prod_{k=1}^K \sigma_k^{-2}$$

Posterior $\pi(\phi_k) \sim t(\bar{y}_k, \frac{1}{n_k} s_k^2, n_k - 1)$, where

$$s_k^2 = \frac{1}{n_k - 1} \sum_{i: X_i = \xi_k}^{n_k} (Y_i - \bar{y}_k)^2$$

which can be rewritten as

$$\pi(\phi_k) = \bar{y}_k + \epsilon_k$$

i.e. deterministic component: \bar{y}_k + random component: $\epsilon_k \sim t(0, \frac{1}{n_k} s_k^2, n_k - 1)$

Let Φ be *n*-vector, with $\Phi_i = \phi(X_i)$ and define

$$ar{Y} = \mathbb{E}_{\pi}(\Phi|\mathbf{X},Y) = (ar{y}(X_1),...,ar{y}(X_n))$$

and note,

$$\begin{aligned}
\text{Var}_{\pi}(\phi_{k}|\mathbf{X}, Y) &= \text{Var}_{\pi}(\epsilon_{k}|\mathbf{X}, Y) \\
&= \frac{1}{n_{k}} s_{k}^{2} \frac{n_{k} - 1}{(n_{k} - 1) - 2} \\
&= \frac{1}{n_{k}(n_{k} - 3)} \sum_{i:Y_{i} = \epsilon_{k}}^{n_{k}} (Y_{i} - \bar{y}_{k})^{2}
\end{aligned}$$

Let $\lambda(\cdot)$ be density with mass restricted to $\xi \subset \mathbb{R}^m$ such that

$$\lambda(\cdot) = \sum_{k=1}^{K} \lambda_k \delta_{\xi_k}(\cdot)$$

In other words,

$$\Pr(X = \xi_k | \lambda(\cdot)) = \lambda_k$$

$$\sum_{k=1}^{K} \lambda_k = 1$$

In fixed setting, let $\lambda_{\textit{fixed}}$ be deterministic density of actual sampled values

$$\lambda_{fixed}(\cdot) = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}(\cdot)$$

 $\mathbb{E}_{\mathbf{x};\lambda_{\mathit{fixed}}}$ refers to integration w.r.t. known distribution (not ϕ or posterior of estimated parameters)

$$\begin{array}{ll} \boldsymbol{\beta}_{\mathit{fixed}} & \equiv & \mathit{argmin} \quad \mathbb{E}_{\mathsf{x};\lambda_{\mathit{fixed}}} \left[\left(\phi(\mathbf{x}) - \mathbf{x}^{\mathsf{T}} \boldsymbol{\beta} \right)^2 \right] \\ & = & \mathbb{E}_{\mathsf{x};\lambda_{\mathit{fixed}}} \left[\mathbf{x}^{\mathsf{T}} \mathbf{x} \right]^{-1} \mathbb{E}_{\mathsf{x};\lambda_{\mathit{fixed}}} \left[\mathbf{x}^{\mathsf{T}} \phi(\mathbf{x}) \right] \\ & = & \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}} \boldsymbol{\Phi} \end{array}$$

Thus,

$$\hat{oldsymbol{eta}}_{\mathit{fixed}} = \mathbb{E}_{\pi} \left(oldsymbol{eta}_{\mathit{fixed}} | \mathbf{X}, Y
ight) = \left(\mathbf{X}^{\mathsf{T}} \mathbf{X}
ight)^{-1} \mathbf{X}^{\mathsf{T}} Y$$

and

$$\hat{\sigma}^2_{\beta_{fixed}} = \mathsf{Cov}_{\pi}\left(\boldsymbol{\beta}_{fixed}|\mathbf{X},Y\right) = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\boldsymbol{\Sigma}'\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}$$

Now, we need a prior on $\lambda(\cdot)$

$$p_{\lambda} \propto \prod_{k=1}^{K} \lambda_k^{-1}$$

which yields posterior

$$p_{\lambda|X}(\lambda(\cdot)) \propto \prod_{k=1}^K \lambda_k^{-1+n_k}$$

 $\mathbb{E}_{\kappa;\lambda}$ thus refers to integrating w.r.t. posterior probability measure \mathbb{E}_{π} refers to integrating over posterior of λ , ϕ , ϵ

First note,

$$(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}Y = \left(\sum_{k=1}^{K} \frac{n_{k}}{n} \xi_{k}^{T} \xi\right)^{-1} \left(\sum_{k=1}^{K} \frac{n_{k}}{n} \xi^{T} \bar{y}(\xi_{k})\right)$$

$$\rightarrow_{as} \left(\sum_{k=1}^{K} \lambda_{k}^{*} \xi_{k}^{T} \xi\right)^{-1} \left(\sum_{k=1}^{K} \lambda_{k}^{*} \xi^{T} \phi^{*}(\xi_{k})\right)$$

Random X derivation

Now,

$$\hat{\boldsymbol{\beta}} = \mathbb{E}_{\pi} \left[\mathbb{E}_{x;\lambda} \left(\mathbf{x}^{T} \mathbf{x} \right)^{-1} \mathbb{E}_{x;\lambda} \left(\mathbf{x}^{T} \phi(x) \right) | \mathbf{X}, Y \right]$$

$$= \mathbb{E}_{\pi} \left[\mathbb{E}_{x;\lambda} \left(\mathbf{x}^{T} \mathbf{x} \right)^{-1} \mathbb{E}_{x;\lambda} \left(\mathbf{x}^{T} \bar{y}(x) \right) | \mathbf{X}, Y \right]$$

$$= \mathbb{E}_{\pi} \left[\left(\sum_{k=1}^{K} \lambda_{k} \xi_{k}^{T} \xi \right)^{-1} \left(\sum_{k=1}^{K} \lambda_{k} \xi^{T} \bar{y}(\xi_{k}) \right) | \mathbf{X}, Y \right]$$

$$\rightarrow_{as} \left(\sum_{k=1}^{K} \lambda_{k}^{*} \xi_{k}^{T} \xi \right)^{-1} \left(\sum_{k=1}^{K} \lambda_{k}^{*} \xi^{T} \phi^{*}(\xi_{k}) \right)$$

For posterior variance, note

$$\begin{aligned} \mathsf{Cov}_{\pi}(\boldsymbol{\beta}) &= & \mathsf{Cov}_{\pi} \left(\mathbb{E}_{\mathbf{x};\lambda} [\mathbf{x}^{T}\mathbf{x}]^{-1} \mathbb{E}_{\mathbf{x};\lambda} [\mathbf{x}^{T} \phi(\mathbf{x})] | \mathbf{X}, Y \right) \\ &= & \mathsf{Cov}_{\pi} \left(\mathbb{E}_{\mathbf{x};\lambda} [\mathbf{x}^{T}\mathbf{x}]^{-1} \mathbb{E}_{\mathbf{x};\lambda} [\mathbf{x}^{T} (\bar{y}(\mathbf{x}) + \epsilon(\mathbf{x}))] | \mathbf{X}, Y \right) \\ &= & \mathsf{Cov}_{\pi} \left(\mathbb{E}_{\mathbf{x};\lambda} [\mathbf{x}^{T}\mathbf{x}]^{-1} \mathbb{E}_{\mathbf{x};\lambda} [\mathbf{x}^{T} \bar{y}(\mathbf{x})] | \mathbf{X}, Y \right) \\ &+ & \mathsf{Cov}_{\pi} \left(\mathbb{E}_{\mathbf{x};\lambda} [\mathbf{x}^{T}\mathbf{x}]^{-1} \mathbb{E}_{\mathbf{x};\lambda} [\mathbf{x}^{T} \epsilon(\mathbf{x})] | \mathbf{X}, Y \right) \end{aligned}$$

We can calculate sandwich form for each of these terms

$$\begin{array}{cc} \mathsf{Cov}_{\pi} \left(\mathbb{E}_{x; \lambda} [\mathbf{x}^{\mathsf{T}} \mathbf{x}]^{-1} \mathbb{E}_{x; \lambda} [\mathbf{x}^{\mathsf{T}} \bar{y}(\mathbf{x})] | \mathbf{X}, Y \right) & \rightarrow_{\mathit{as}} \\ & \mathit{diag}[(\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \tilde{\Sigma} \mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1}] \end{array}$$

where $\tilde{\Sigma}$ is diagonal matrix

$$\tilde{\Sigma}_{ij} = \left\{ \begin{array}{ll} (\bar{Y}_i - X_i (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \bar{Y})^2 & \text{if i=j} \\ 0 & \text{else} \end{array} \right.$$

and

$$\begin{array}{cc} \mathsf{Cov}_{\pi} \left(\mathbb{E}_{\mathsf{x}; \lambda} [\mathbf{x}^{\mathsf{T}} \mathbf{x}]^{-1} \mathbb{E}_{\mathsf{x}; \lambda} [\mathbf{x}^{\mathsf{T}} \epsilon(\mathbf{x})] | \mathbf{X}, Y \right) & \rightarrow_{\mathsf{as}} \\ & \operatorname{\textit{diag}}[(\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \Sigma' \mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1}] \end{array}$$

Three sandwiches:

$$\Sigma'_{ii} = \frac{1}{n_k - 3} \sum_{i:X_i = \xi_k} (Y_i - \bar{y}_k)^2$$

$$\tilde{\Sigma}_{ii} = (\bar{Y}_i - X_i (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \bar{Y})^2$$

$$\Sigma_{ii} = (Y_i - X_i (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y)^2$$

Finally, we can show that

$$\sum_{i:X_i=\xi_k} \Sigma_{ii} = \sum_{i:X_i=\xi_k} \left(ilde{\Sigma}_{ii} + \Sigma'_{ii}
ight)$$

Classic sandwich (Σ) accounts for residual errors (Σ') as well as the errors due to the linear fit to non-linear ϕ $(\tilde{\Sigma})$

Conclusions and Future Work

Standard sandwich errors lead to over-coverage in fixed **X** situations

Bayesian methods allow for distinction between fixed and random sampling and inform us about what the sandwich is actually doing

Future Work

- Derivation of random X asymptotic results
- Extension to continuous covariates (simulations)

Questions?