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Motivational Example

» Data: Observational longitudinal study of obesity from birth
to adulthood.

» Overall Goal: Build age-, gender-, height-specific growth
charts (under 3 years) to diagnose growth abnormalities.

» Specific Aim: Estimate the reference range for age-,
gender-, height-specific weight.

» A simple version: Estimate the reference range for age-,
gender-specific BMI.

» Statistical Problem: Estimate covariate specific quantiles in
a reference group.

» Other Applications: Regression using placement
value/receiver operating characteristic (ROC) regression.
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Figure: Estimated 1st, 5th, 10th, 25th,50th, 75th, 90th, 95th and 99th
percentiles of BMI as a function of age



Previous Solutions: Bin and Smooth Estimation

» Bin and Smooth Quantiles (BSQ): Empirical quantiles for
each narrow interval X 4+ \, then smoothed it (with splines).
(Hamill et al., 1977)

» Bin and Smooth Parameters: Model f(Y|X) by 6(X),
estimate 6(X) for each narrow interval of X £ A, then
smoothed it.

Cole (1990) let 8(X) = {u(X),o(X)} and assume Y|X
follows normal distribution with mean x(X) and standard
deviation o(X).

YO = u(X) + o(X)2%,

z“ is the ath quantile for standard normal distribution.

» Limitations: (1) Require large sample size; (2) Curse of
dimensionality.



Previous Solutions: Parametric Models

» Idea: Specify a fully parametric model for Y| X indexed by
parameter 8, then estimate 0 via likelihood.

» LMS (Cole and Green 1992): Assume Y can be
transformed to the standard normal random variable Z as
follow:

_{Y/M(X;6)y4XO) — 1

B L(X;0)S(X;6)

M(X; 6) is median response, L(X; 0) is Box-Cox power

transformation term and S(X; 8) approximate variance.

4

Y(X; 8) = M(X; 0){1 + z°L(X; 6)S(X; 6)}/LX0)

» Limitation: (1) The distribution assumption (transformed
normal distribution); (2) Sensitivity of the transformation
part L(X) to outliers.



Previous Solutions: Nonparametric Models

» Idea: Directly estimate Y*(X) without assuming certain
distribution for Y.

> Quantile Regression (QR): Koenker and Bassett (1978)
proposed an M-estimation to obtain Y (X) that minimize

S af¥i— Y20} + (1 = a){¥i = Y2(X)}-.

]

x4 = max(0, x) and x_ = max(0, —x).
» Limitation: Y(X) may not be monotone in c.



New method: Semiparametric Models (SM)

» Allow the shape depend on X and do not specify specific
distribution for Y. Model p(X) and o(X) parametrically to
gain efficiency.

» General model

Yi = u(Xi; 0) + o(X;; 0)(X)),

wu(Xj; 0) is the location parameter, o(Xj; 0) is the scale
parametre, i.e. \/Var(Y;|X;), and £(X;) is from baseline
distribution with mean zero, unit varaince. Denote baseline
distribution function by Fy(z, X) = P(e(X) < z|X), we have

YYX;0,Fy) = u(Xi; 0)+ o(Xj; 0)Z2%(X),
Z%(X) is the ath quantile of ¢(X), i.e.

Fo(Z%(X), X) = a.



Quasi-likelihood

Using independent working correlation and use normal
distribution as working model for Y| X, we obtain
quasi-likelihood score equation as below:

ou(X; B) Y — u(X; B)
B Var(Y|X)

92 (X;7) (Y — u(X; B)) — o(X;7)
oy Var[(Y — u(X; 8))?|X]
d?(X;v) (Y — u(X; B))? — 02(X;7)

oy 2Var(Y|X)2

0 =




Model details

» We can use splines to model x(X) and o(X). Let
0 — {517' te 75[37'717"' a’Yq}: R(X) - {R1(X)7 o 7RP(X)}
and S(X) = {S1(X),---, Sq(X)} are pre-specified
regression spline basis functions.

o

q

Z BrRk(X),log{e(X)} = > wSk(X)
k=1

The scores becomes

Yi — u(X;; B)
0 = ZR(XT (x, )

B (X B)? — (X )
0 = 2.8 2(Xi7)




Estimate Baseline Function

» Obtain the estimated residuals

oo Yi— u(Xi B)
el()(l)_ 0-()(/,'3’) 9

» Special case: Fy does not depend on X.
R n
Fo(z, X)=n"1>"1I(& < 2).
i=1
» Step function = continuous function.
. n
Fo(z. X)=n""> " Ky, (2,8),
i=1

where K, (z, &) = ®{(z — &)/)\2}. Fo(z, X) is
monotonically increasing in z.



Estimate Baseline Function

» General case: Fy does depend on X.

S wa (X, X)) I(& < 2)
21:1 Wi (X7X) 7

where wy, (X, Xj) = o((X — Xi)/\1).
» Continuous version:

Fo(z,X) =

B (2. X: 0 ag) — bt W (X XK (2,8)
21:1 W), (X7 X)
» For Ay and )\, we can use either fixed value or allow them
to be functions of X.
» Estimate ath quantile by u(x, 3) + o(x,4)Fy ' (a, X).



Nonparametric kernel estimator (NKE) based on Y;

» A nonparametric way will be use
>t Wy (X, X)I(Y; < 2)
21:1 Wi, (Xv X) ’

then estimate ath quantile by F~'(a, X)
» To estimate F(z, X), assuming a uniform distribution for X,

F(z,X) =

Var = (n\)'F(z,X) / W(u)2du

nF(z,X) [ W(u)2du> /5

» Optimal weight is A\ = ( Fz.X)o%,

» Minimum mean square error (MSE) is in order of n—2/3.



Multiple covariates

» Estimating equation part: Use two set of spline basis
R(X1), R(Xz2) and S(X1), S(Xz2). Use their tensor product
to generate the new basis R(X) = R(X1) ® R(X2),

S(X) = [S(X1), S(X2)].

» Baseline estimator: Not approximate indicator function by
continuous one. For kernel W(X), can use any multivariate
kernel, for example the tensor product of two univariate
kernel Wi(X7) x Wa(Xz2). In application, they use
W(X) = Wi (X1).



Simulation: Methods Comparing

Assume univariate covariate X follows the standard uniform
distribution.

» Methods: BSQ=Bin smoothed quantile, QR=Quantile
regression, NKE=Nonparametric kernel smooth estimator,
LMS=LMS parametric method, SM=Semiparametric
method

» Model 1:
w(X) = 50+ 10X, log(c(X)) =1+ 2X,

and ¢(X) follows the standard normal distributions.
» Model 2: (Y — 50)|X follows the mixture distribution
0.1Exp(0.9 + X) + 0.9(—Exp(0.1 + X)).

» All sample size is n = 5000 and bias, variance and MSE
calculated from 1000 simulations.



Simulation Result: Model 1
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Simulation Result: Model 2
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Data Analysis

Can follow the procedures below

>

Step 1: Fit the nonparametric quantile regression to see
whether certain quantile Y*(X) and/or distribution F(z, X)
change over X.

Step 2: If step 1 no, use the nonparametric kernel smooth
estimator.

Step 3: If step 1 yes, fit a semiparametric quantile
regression model and then check whether the residual
distribution Fy(z, X) change over X.

Step 4: If step 3 no, fit a semiparametric quantile
regression model assuming same baseline.

Step 5: If step 3 yes, choose between the semiparametric
quantile regression with kernel smooth and the
nonparametric kernel smooth estimator.



Example
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Figure: Fitted 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th
percentiles from nonparametric quantile regression



Example

Residual

Age

Figure: Fitted 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th
percentiles from nonparametric quantile regression for residuals



Example
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Figure: Fitted 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th
percentiles from four methods
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