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The Paper



Motivational Example

I Data: Observational longitudinal study of obesity from birth
to adulthood.

I Overall Goal: Build age-, gender-, height-specific growth
charts (under 3 years) to diagnose growth abnormalities.

I Specific Aim: Estimate the reference range for age-,
gender-, height-specific weight.

I A simple version: Estimate the reference range for age-,
gender-specific BMI.

I Statistical Problem: Estimate covariate specific quantiles in
a reference group.

I Other Applications: Regression using placement
value/receiver operating characteristic (ROC) regression.



Data Display

Figure: Estimated 1st, 5th, 10th, 25th,50th, 75th, 90th, 95th and 99th
percentiles of BMI as a function of age



Previous Solutions: Bin and Smooth Estimation

I Bin and Smooth Quantiles (BSQ): Empirical quantiles for
each narrow interval X ± λ, then smoothed it (with splines).
(Hamill et al., 1977)

I Bin and Smooth Parameters: Model f (Y |X ) by θ(X ),
estimate θ(X ) for each narrow interval of X ± λ, then
smoothed it.
Cole (1990) let θ(X ) = {µ(X ), σ(X )} and assume Y |X
follows normal distribution with mean µ(X ) and standard
deviation σ(X ).

Yα = µ(X ) + σ(X )zα,

zα is the αth quantile for standard normal distribution.
I Limitations: (1) Require large sample size; (2) Curse of

dimensionality.



Previous Solutions: Parametric Models

I Idea: Specify a fully parametric model for Y |X indexed by
parameter θ, then estimate θ via likelihood.

I LMS (Cole and Green 1992): Assume Y can be
transformed to the standard normal random variable Z as
follow:

Z =
{Y/M(X ;θ)}L(X ;θ) − 1

L(X ;θ)S(X ;θ)
,

M(X ;θ) is median response, L(X ;θ) is Box-Cox power
transformation term and S(X ;θ) approximate variance.

Yα(X ;θ) = M(X ;θ){1 + zαL(X ;θ)S(X ;θ)}1/L(X ;θ)

I Limitation: (1) The distribution assumption (transformed
normal distribution); (2) Sensitivity of the transformation
part L(X ) to outliers.



Previous Solutions: Nonparametric Models

I Idea: Directly estimate Yα(X ) without assuming certain
distribution for Y .

I Quantile Regression (QR): Koenker and Bassett (1978)
proposed an M-estimation to obtain Ŷα(X ) that minimize∑

i

α{Yi − Yα(X )}+ + (1− α){Yi − Yα(X )}−,

x+ = max(0, x) and x− = max(0,−x).
I Limitation: Ŷα(X ) may not be monotone in α.



New method: Semiparametric Models (SM)

I Allow the shape depend on X and do not specify specific
distribution for Y . Model µ(X ) and σ(X ) parametrically to
gain efficiency.

I General model

Yi = µ(Xi ;θ) + σ(Xi ;θ)ε(Xi),

µ(Xi ;θ) is the location parameter, σ(Xi ;θ) is the scale
parametre, i.e.

√
Var(Yi |Xi), and ε(Xi) is from baseline

distribution with mean zero, unit varaince. Denote baseline
distribution function by F0(z,X ) = P(ε(X ) ≤ z|X ), we have

Yα(X ;θ,F0) = µ(Xi ;θ) + σ(Xi ;θ)Zα(X ),

Zα(X ) is the αth quantile of ε(X ), i.e.

F0(Zα(X ),X ) = α.



Quasi-likelihood

Using independent working correlation and use normal
distribution as working model for Y |X , we obtain
quasi-likelihood score equation as below:

0 =
∂µ(X ;β)

∂β

Y − µ(X ;β)

Var(Y |X )

0 =
∂σ2(X ;γ)

∂γ

(Y − µ(X ;β))2 − σ2(X ;γ)

Var [(Y − µ(X ;β))2|X ]

=
∂σ2(X ;γ)

∂γ

(Y − µ(X ;β))2 − σ2(X ;γ)

2Var(Y |X )2



Model details

I We can use splines to model µ(X ) and σ(X ). Let
θ = {β1, · · · , βp, γ1, · · · , γq}, R(X ) = {R1(X ), · · · ,Rp(X )}
and S(X ) = {S1(X ), · · · ,Sq(X )} are pre-specified
regression spline basis functions.

µ(X ) =

p∑
k=1

βkRk (X ), log{σ(X )} =

q∑
k=1

γkSk (X )

The scores becomes

0 =
∑

i

R(Xi)
T Yi − µ(Xi ;β)

σ2(Xi ;γ)

0 =
∑

i

S(Xi)
T (Yi − µ(Xi ;β))2 − σ2(Xi ;γ)

σ2(Xi ;γ)



Estimate Baseline Function

I Obtain the estimated residuals

êi(Xi) =
Yi − µ(Xi ; β̂)

σ(Xi ; γ̂)
,

I Special case: F0 does not depend on X .

F̂0(z,X ) = n−1
n∑

i=1

I(êi ≤ z).

I Step function⇒ continuous function.

F̂0(z,X ) = n−1
n∑

i=1

Kλ2(z, êi),

where Kλ2(z, êi) = Φ{(z − êi)/λ2}. F̂0(z,X ) is
monotonically increasing in z.



Estimate Baseline Function

I General case: F0 does depend on X .

F̂0(z,X ) =

∑n
i=1 wλ1(X ,Xi)I(êi ≤ z)∑n

i=1 wλ1(X ,Xi)
,

where wλ1(X ,Xi) = φ((X − Xi)/λ1).
I Continuous version:

F̂0(z,X ;λ1, λ2) =

∑n
i=1 wλ1(X ,Xi)Kλ2(z, êi)∑n

i=1 wλ1(X ,Xi)
,

I For λ1 and λ2, we can use either fixed value or allow them
to be functions of X .

I Estimate αth quantile by µ(x , β̂) + σ(x , γ̂)F̂−1
0 (α,X ).



Nonparametric kernel estimator (NKE) based on Yi

I A nonparametric way will be use

F̂ (z,X ) =

∑n
i=1 wλ1(X ,Xi)I(Yi ≤ z)∑n

i=1 wλ1(X ,Xi)
,

then estimate αth quantile by F̂−1(α,X )

I To estimate F̂ (z,X ), assuming a uniform distribution for X ,

Bias =
1
4

F̈ (z,X )λ2
1σ

2
W

Var = (nλ1)−1F (z,X )

∫
W (u)2du

I Optimal weight is λ∗1 =

(
n−1F (z,X)

∫
W (u)2du

F̈ (z,X)2σ4
W

)1/5

.

I Minimum mean square error (MSE) is in order of n−2/5.



Multiple covariates

I Estimating equation part: Use two set of spline basis
R(X1), R(X2) and S(X1), S(X2). Use their tensor product
to generate the new basis R(X ) = R(X1)⊗ R(X2),
S(X ) = [S(X1),S(X2)].

I Baseline estimator: Not approximate indicator function by
continuous one. For kernel W (X ), can use any multivariate
kernel, for example the tensor product of two univariate
kernel W1(X1)×W2(X2). In application, they use
W (X ) = W1(X1).



Simulation: Methods Comparing

Assume univariate covariate X follows the standard uniform
distribution.

I Methods: BSQ=Bin smoothed quantile, QR=Quantile
regression, NKE=Nonparametric kernel smooth estimator,
LMS=LMS parametric method, SM=Semiparametric
method

I Model 1:

µ(X ) = 50 + 10X , log(σ(X )) = 1 + 2X ,

and ε(X ) follows the standard normal distributions.
I Model 2: (Y − 50)|X follows the mixture distribution

0.1Exp(0.9 + X ) + 0.9(−Exp(0.1 + X )).
I All sample size is n = 5000 and bias, variance and MSE

calculated from 1000 simulations.



Simulation Result: Model 1



Simulation Result: Model 2



Data Analysis

Can follow the procedures below
I Step 1: Fit the nonparametric quantile regression to see

whether certain quantile Yα(X ) and/or distribution F (z,X )
change over X .

I Step 2: If step 1 no, use the nonparametric kernel smooth
estimator.

I Step 3: If step 1 yes, fit a semiparametric quantile
regression model and then check whether the residual
distribution F0(z,X ) change over X .

I Step 4: If step 3 no, fit a semiparametric quantile
regression model assuming same baseline.

I Step 5: If step 3 yes, choose between the semiparametric
quantile regression with kernel smooth and the
nonparametric kernel smooth estimator.



Example
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Figure: Fitted 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th
percentiles from nonparametric quantile regression



Example

Figure: Fitted 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th
percentiles from nonparametric quantile regression for residuals



Example

Figure: Fitted 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th
percentiles from four methods


	Introduction

