Motivational Example

» Data: Observational longitudinal study of obesity from birth
to adulthood.

» Overall Goal: Build age-, gender-, height-specific growth
charts (under 3 year) to diagnose growth abnomalities.

» Specific Aim: Estimate the reference range for age-,
gender-, height-specific weight.

» A simple version: Estimate the reference range for age-,
gender-specific BMI.

» Statistical Problem: Estimate covariate specific quantiles in
a reference group.



New method: Semiparametric Models

» Allow the shape depend on X and do not specify specific
distribution for Y. Model p(X) and o(X) parametricly to
gain efficiency.

» General model

Yi = u(Xi; 0) + o(Xi; 0)e( X)),
w(X;; 0) is location parameter, o(X;; 8) is scale parametre,
i.e. v/(Var(Yi|X;)) and £(X;) is from baseline distribution
with mean zero, unit varaince. Denote baseline distribution
function by Fy(z, X) = P(¢(X) < z|X), we have
YYX;0,Fy) = u(Xi; 0)+ o(Xj; 0)Z2%(X),
Z%(X) is the ath quantile of (X)), i.e.

Fo(Z%(X), X) = a.



Model details

» We can use splines to model p(X) and o(X). Let
0: {617"' 76[37’717"' 7’YCI}'

p
wX) = > BrRk(X)

g
log{c(X)} = > wSk(X)

R(X) = {R1(X), -, Ruo(X)} and
S(X) = {S1(X),---, Sq(X)} are pre-specified regression
spline basis functions.



Quasi-likelihood and GEE 2

Consider general moment restricted models as below:
E[f(Y,X,0)|X] =
All RAL estimator for & must be solution from
E[A(X;0)f(Y,X,0)] =0.

The most efficient selection will be

of(Y, X, 0)

A(X;0) = E[——

| X]Var[f(Y, X,0)|X]".



Quasi-likelihood and GEE 2

A special case, location and scale model, 8 = (3,~):

F(Y,X,0) =Y — u(X; 8)
(Y, X,0) = (Y — u(X; B))% — a*(X; 7).

We have E[aﬁ(’;’,x’o)\X] = E[%?X’O)\X] = 0, so estimating

functions should be

@%XB;B) Var(Y|X)~'[Y — u(X: B)]

oy Varl(Y —u(X; BZIXI(Y — w(X; B))? — o®(X; )]



Quasi-likelihood and GEE 2

Using independent working correlation and use normal
distribution as working model for Y| X, we obtain
quasi-likelihood score equation.

Var[(Y — u(X: 8))21X] = 2Var(Y|X)?

_ ou(Xi; B) Yi — u(Xi; B)
0 = z,: B o?(Xi; )

3 95®(Xi:v) (Vi — w(Xii B))? — o®(Xii )
Oy 204(X;; )

i



Quasi-likelihood and GEE 2

For our model specification, we have

ou(X;; B) :
T = R(X)"

002(X: ) |
o5 = 2S(X)TA*(X;: )

Yi Xi
0 = XA T’iéﬁf”

_ — p(Xi; B))? — o?(Xi: )
0= ZS o2(Xi; )



Estimate Baseline Function

» Obtain consistent estimates of 1(X) and o(X) as above
» Obtain the estimated residual

&i(Xi) (X 0)

)

then estimate the baseline function Fy(z, X) from &;(X;).



Estimate Baseline Function

» Speical case: Fy does not depend on X.
. n
Fo(z. X)=n"">"1(& < 2).
i=1
» Step function = continuous function.
R n
Fo(z,X)=n1> K, (2, &),
i=1

where K,(z, &) = K{(z — &)/ 2} and K(-) is any
continuous distribution function.

lim K{(z ~ &)/} = (& < 2) + K(0)I(& = 2).

~n

Fo(z, X) is monotonicly increasing in z.



Estimate Baseline Function
» Speical case: Fy does not depend on X.
Dot W (X, Xi)I(& < 2)
27:1 W, (X, Xi) 7

where wy, (X, X;) = W((X — X;)/ 1) and W(-) can be any
kernel function satisfy

Fo(z,X) =

» Continuous version:

Yoitt Wy (X, XKy, (2, &)

F, XA, A
0(Z, X; M, X2) = ST (X X) :




Bandwith and Kernel Function

» We will use following kernels (for simplicity, not most
efficient):

Wi (X, X)) = o((X = Xi)/ M)
Kr(2,8) = o((z—8&)/Xr2)

» For \{ and Ao, we can use either fixed value or allow they
depend on X.



Comparing to kernel estimator from Y;

» A nonparametric way will be use

A S (XY < 2)
F(z,X) = ==t
B0 == Xy

» For certain z, X and A\, assuming we have a uniform
distribution for X, the bias will be

J W(u/M)IF(z, X + u) — F(z,X)]du
[ W(u/X)du

[ W(u/M)IF(z, X)u + 3F(z, X)u?]du
J W(u/A)du

’

= TE@ XNk

» So whether semiparametric method gain depend on
comparison of F(z, X) and Fo(z, X) or [ F(z,X)2dFx and
[ Fo(z, X)?dFx.

%




Optimal band width

» For certain z, X and A4, the variance is approximate
(n\)"'F(z,X) / W(u
» The mean square error (MSE) will be

%/:_(Z,X)Z/\ oty + (nh) " F(z, X) /W

o (nFEX) [ WPy 1o
T F(z,X)204

The estimator is n?/® consistent for both F and F.
Semiparametric method and nonparametric one has same
convergence rate!



Multiple covariates

» Estimating equation part: Use two set of spline basis
R(X1), R(Xz2) and S(X1), S(Xz2). Use their tensor product
to generate the new basis R(X) = R(X1) ® R(X2),

S(X) = [S(X1), S(X2)].

» Baseline estimator: Not approximate indicator function by
continuous one. For kernel W(X), can use any multivariate
kernel, for example the tensor product of two univariate
kernel Wi(X7) x Wa(Xz2). In application, they use
W(X) = Wi (X1).



Example

BMI
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Figure: Fitted mean (top) and standard deviation (bottom) function



Example

Residual

Figure: Residual quantile regression for fitted 1st, 5th, 10th, 25th,
50th, 75th, 90th, 95th and 99th quantiles



Example

Normal Q-Q Plot

Sample Quantiles
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Figure: Residual Q-Q plot



Example

Baseline not depend on X

25
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Figure: Fitted 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th
quantiles with (top) or without (bottom) allow baseline depend on X



Simulation:

Methods Comparing

» We will compare following methods in univariate covariate
setting:

1.

6.

Bin and smooth quantile

2. Nonparametric quantile regression
3.
4
5

Locally weighted method (empirical one)

. Parametric method (LMS model)
. Semiparametric method assuming same baseline

(empirical one)
Semiparametric method allowing baseline depend on X
(empirical one)

» For methods using bandwidth, we will choose several
bandwidths (0.05,0.1,0.2).



Simulation: Methods Comparing

» For simplicity, we use a linear term for all parametric parts.

» True model is generated with semiparametric model with
n = 5000, where

u(X) = 50+10X
log(c(X)) = 3+2X,

X follow standard uniform distribution and the e(X) from
following distributions

1. Standard normal N(0, 1).

2. Standardized log normal distribution.

3. Mixture normal N(—0.5,1), N(0.5,1).



Simulation: Methods Comparing

» We are interested in estimating following things from
M = 1000 simulations
1. Bias, variance and MSE of the estimator for specific
quantiles (90%, 95%, 99%) and specific covariate values
(0.05, 0.25, 0.5, 0.75, 0.95)
2. Integrated mean square error of the estimator for specific
quantiles
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