
Motivational Example

I Data: Observational longitudinal study of obesity from birth
to adulthood.

I Overall Goal: Build age-, gender-, height-specific growth
charts (under 3 year) to diagnose growth abnomalities.

I Specific Aim: Estimate the reference range for age-,
gender-, height-specific weight.

I A simple version: Estimate the reference range for age-,
gender-specific BMI.

I Statistical Problem: Estimate covariate specific quantiles in
a reference group.



New method: Semiparametric Models

I Allow the shape depend on X and do not specify specific
distribution for Y . Model µ(X ) and σ(X ) parametricly to
gain efficiency.

I General model

Yi = µ(Xi ;θ) + σ(Xi ;θ)ε(Xi),

µ(Xi ;θ) is location parameter, σ(Xi ;θ) is scale parametre,
i.e.

√
(Var(Yi |Xi)) and ε(Xi) is from baseline distribution

with mean zero, unit varaince. Denote baseline distribution
function by F0(z,X ) = P(ε(X ) ≤ z|X ), we have

Yα(X ;θ,F0) = µ(Xi ;θ) + σ(Xi ;θ)Zα(X ),

Zα(X ) is the αth quantile of ε(X ), i.e.

F0(Zα(X ),X ) = α.



Model details

I We can use splines to model µ(X ) and σ(X ). Let
θ = {β1, · · · , βp, γ1, · · · , γq}.

µ(X ) =

p∑
k=1

βkRk (X )

log{σ(X )} =

q∑
k=1

γkSk (X )

R(X ) = {R1(X ), · · · ,Rp(X )} and
S(X ) = {S1(X ), · · · ,Sq(X )} are pre-specified regression
spline basis functions.



Quasi-likelihood and GEE 2

Consider general moment restricted models as below:

E [f (Y ,X ,θ)|X ] = 0.

All RAL estimator for θ must be solution from

E [A(X ;θ)f (Y ,X ,θ)] = 0.

The most efficient selection will be

A(X ;θ) = E [
∂f (Y ,X ,θ)

∂θ
|X ]Var [f (Y ,X ,θ)|X ]−1.



Quasi-likelihood and GEE 2

A special case, location and scale model, θ = (β,γ):

f1(Y ,X ,θ) = Y − µ(X ;β)

f2(Y ,X ,θ) = (Y − µ(X ;β))2 − σ2(X ;γ).

We have E [∂f1(Y ,X ,θ)
γ |X ] = E [∂f2(Y ,X ,θ)

β
|X ] = 0, so estimating

functions should be

∂µ(X ;β)

∂β
Var(Y |X )−1[Y − µ(X ;β)]

∂σ2(X ;γ)

∂γ
Var [(Y − µ(X ;β))2|X ]−1[(Y − µ(X ;β))2 − σ2(X ;γ)]



Quasi-likelihood and GEE 2

Using independent working correlation and use normal
distribution as working model for Y |X , we obtain
quasi-likelihood score equation.

Var [(Y − µ(X ;β))2|X ] = 2Var(Y |X )2

0 =
∑

i

∂µ(Xi ;β)

∂β

Yi − µ(Xi ;β)

σ2(Xi ;γ)

0 =
∑

i

∂σ2(Xi ;γ)

∂γ

(Yi − µ(Xi ;β))2 − σ2(Xi ;γ)

2σ4(Xi ;γ)



Quasi-likelihood and GEE 2

For our model specification, we have

∂µ(Xi ;β)

∂β
= R(Xi)

T

∂σ2(Xi ;β)

∂β
= 2S(Xi)

Tσ2(Xi ;β)

0 =
∑

i

R(Xi)
T Yi − µ(Xi ;β)

σ2(Xi ;γ)

0 =
∑

i

S(Xi)
T (Yi − µ(Xi ;β))2 − σ2(Xi ;γ)

σ2(Xi ;γ)



Estimate Baseline Function

I Obtain consistent estimates of µ(X ) and σ(X ) as above
I Obtain the estimated residual

êi(Xi) =
Yi − µ(Xi ; θ̂)

σ(Xi ; θ̂)
,

then estimate the baseline function F0(z,X ) from êi(Xi).



Estimate Baseline Function

I Speical case: F0 does not depend on X .

F̂0(z,X ) = n−1
n∑

i=1

I(êi ≤ z).

I Step function⇒ continuous function.

F̂0(z,X ) = n−1
n∑

i=1

Kλ2(z, êi),

where Kλ2(z, êi) = K{(z − êi)/λ2} and K (·) is any
continuous distribution function.

lim
λ2→0

K{(z − êi)/λ2} = I(êi < z) + K (0)I(êi = z).

F̂0(z,X ) is monotonicly increasing in z.



Estimate Baseline Function

I Speical case: F0 does not depend on X .

F̂0(z,X ) =

∑n
i=1 wλ1(X ,Xi)I(êi ≤ z)∑n

i=1 wλ1(X ,Xi)
,

where wλ1(X ,Xi) = W ((X − Xi)/λ1) and W (·) can be any
kernel function satisfy

W (x) ≥ 0∫
W (x)dx = 1

σ2
W =

∫
x2W (x)dx <∞

I Continuous version:

F̂0(z,X ;λ1, λ2) =

∑n
i=1 wλ1(X ,Xi)Kλ2(z, êi)∑n

i=1 wλ1(X ,Xi)
,



Bandwith and Kernel Function

I We will use following kernels (for simplicity, not most
efficient):

wλ1(X ,Xi) = φ((X − Xi)/λ1)

Kλ2(z, êi) = Φ((z − êi)/λ2)

I For λ1 and λ2, we can use either fixed value or allow they
depend on X .



Comparing to kernel estimator from Yi

I A nonparametric way will be use

F̂ (z,X ) =

∑n
i=1 wλ1(X ,Xi)I(Yi ≤ z)∑n

i=1 wλ1(X ,Xi)
,

I For certain z, X and λ1, assuming we have a uniform
distribution for X , the bias will be∫

W (u/λ1)[F (z,X + u)− F (z,X )]du∫
W (u/λ1)du

≈
∫

W (u/λ1)[Ḟ (z,X )u + 1
2 F̈ (z,X )u2]du∫

W (u/λ1)du

=
1
4

F̈ (z,X )λ2
1σ

2
W

I So whether semiparametric method gain depend on
comparison of F̈ (z,X ) and F̈0(z,X ) or

∫
F̈ (z,X )2dFX and∫

F̈0(z,X )2dFX .



Optimal band width

I For certain z, X and λ1, the variance is approximate

(nλ1)−1F (z,X )

∫
W (u)2du.

I The mean square error (MSE) will be

1
4

F̈ (z,X )2λ4
1σ

4
W + (nλ1)−1F (z,X )

∫
W (u)2du

λ∗1 =

(
n−1F (z,X )

∫
W (u)2du

F̈ (z,X )2σ4
W

)1/5

The estimator is n2/5 consistent for both F̂ and F̂0.
Semiparametric method and nonparametric one has same
convergence rate!



Multiple covariates

I Estimating equation part: Use two set of spline basis
R(X1), R(X2) and S(X1), S(X2). Use their tensor product
to generate the new basis R(X ) = R(X1)⊗ R(X2),
S(X ) = [S(X1),S(X2)].

I Baseline estimator: Not approximate indicator function by
continuous one. For kernel W (X ), can use any multivariate
kernel, for example the tensor product of two univariate
kernel W1(X1)×W2(X2). In application, they use
W (X ) = W1(X1).
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Figure: Fitted mean (top) and standard deviation (bottom) function



Example

0 5 10 15 20 25 30 35

-4
-2

0
2

4
6

Age

R
es
id
ua
l

Figure: Residual quantile regression for fitted 1st, 5th, 10th, 25th,
50th, 75th, 90th, 95th and 99th quantiles
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Figure: Residual Q-Q plot
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Figure: Fitted 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th
quantiles with (top) or without (bottom) allow baseline depend on X



Simulation: Methods Comparing

I We will compare following methods in univariate covariate
setting:

1. Bin and smooth quantile
2. Nonparametric quantile regression
3. Locally weighted method (empirical one)
4. Parametric method (LMS model)
5. Semiparametric method assuming same baseline

(empirical one)
6. Semiparametric method allowing baseline depend on X

(empirical one)
I For methods using bandwidth, we will choose several

bandwidths (0.05,0.1,0.2).



Simulation: Methods Comparing

I For simplicity, we use a linear term for all parametric parts.
I True model is generated with semiparametric model with

n = 5000, where

µ(X ) = 50 + 10X
log(σ(X )) = 3 + 2X ,

X follow standard uniform distribution and the e(X ) from
following distributions

1. Standard normal N(0,1).
2. Standardized log normal distribution.
3. Mixture normal N(−0.5,1), N(0.5,1).



Simulation: Methods Comparing

I We are interested in estimating following things from
M = 1000 simulations

1. Bias, variance and MSE of the estimator for specific
quantiles (90%, 95%, 99%) and specific covariate values
(0.05, 0.25, 0.5, 0.75, 0.95)

2. Integrated mean square error of the estimator for specific
quantiles
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