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The Paper



Motivational Example

I Data: Observational longitudinal study of obesity from birth
to adulthood.

I Overall Goal: Build age-, gender-, height-specific growth
charts (under 3 year) to diagnose growth abnomalities.

I Specific Aim: Estimate the reference range for age-,
gender-, height-specific weight.

I A simple version: Estimate the reference range for age-,
gender-specific BMI.

I Statistical Problem: Estimate covariate specific quantiles in
a reference group.



Application beyond growth curve

I Regression using standardized covariates (placement
value).

I ROC regression



Data Display

Figure: Estimated percentiles of BMI as a function of age (shown 1st,
5th, 10th, 25th,50th, 75th, 90th, 95th and 99th percentileds)



Quantiles Definitions

I For α ∈ [0,1], the αth quantile of Y , Yα, can be define as
the value such that

P(Y ≤ Yα) = α.

I The covariate specific quantile of Y is the quantile for
Y |X = x , denote as Yα(x) such that

P(Y ≤ Yα(x)|X = x) = α.

I Rigorous definition: Yα(x) satisfies

inf
Yα(x)

{P(Y ≤ Yα(x)|X = x)} ≥ α,



Previous Solutions: Bin and Smooth Estimation

I Bin and Smooth Quantiles: Empirical quantiles for each
narrow interval of X , then smoothed it. (Hamill et al., 1977)

I Bin and Smooth Parameters: Model f (Y |X ) by θ(X ),
estimate θ(X ) for each narrow inteval of X , then smoothed
it.
Cole (1990) let θ(X ) = {µ(X ), σ(X )} and assume Y |X
follows normal distribution with mean µ(X ) and standard
deviation σ(X ).

Yα = µ(X ) + σ(X )zα,

zα is the αth quantile for standard normal distribution.
I Limitation: (1) Require large sample size; (2) Curse of

dimensionality.



Previous Solutions: Parametric Models

I Idea: Specify a fully parametric model for Y |X index by
parameter θ. Estimate θ via likelihood.

I LMS (Cole and Green 1992): Assume Y can be
transformed to standard normal random variable Z as
follow:

Z =
{Y/M(X ;θ)}L(X ;θ) − 1

L(X ;θ)S(X ;θ)
,

M(X ;θ) is median response, L(X ;θ) is Box-Cox power
transformation term and S(X ;θ) approximate varaince.

Yα(X ;θ) = M(X ;θ){1 + zαL(X ;θ)S(X ;θ)}1/L(X ;θ)

I Limitation: (1) The distribution assumption (transformed
normal distribution); (2) Sensitivity of the transformation
part L(X ) to outlier.



Previous Solutions: Nonparametric Models

I Idea: Directly estimate Yα(X ) without assume certain
distribution for Y .

I Koenker and Bassett (1978) propose an M-estimation to
obtain Ŷα(X ) that minimize∑

i

α{Yi − Yα(X )}+ + (1− α){Yi − Yα(X )}−,

x+ = max(0, x) and x− = max(0,−x).
I Limitation: Ŷα(X ) may not be monotone in α.
I Modification: He propose location-scale model for Y

Y = µ(X ) + σ(X )ε,

µ(X ) is median and σ(X ) is median absolute deviation.



New method: Semiparametric Models

I Allow the shape depend on X and do not specify specific
distribution for Y . Model µ(X ) and σ(X ) parametricly to
gain efficiency.

I General model

Yi = µ(Xi ;θ) + σ(Xi ;θ)ε(Xi),

µ(Xi ;θ) is location parameter, σ(Xi ;θ) is scale parametre,
i.e.

√
(Var(Yi |Xi)) and ε(Xi) is from baseline distribution

with mean zero, unit varaince. Denote baseline distribution
function by F0(z,X ) = P(ε(X ) ≤ z|X ), we have

Yα(X ;θ,F0) = µ(Xi ;θ) + σ(Xi ;θ)Zα(X ),

Zα(X ) is the αth quantile of ε(X ), i.e.

F0(Zα(X ),X ) = α.



Model details

I We can use splines to model µ(X ) and σ(X ). Let
θ = {β1, · · · , βp, γ1, · · · , γq}.

µ(X ) =

p∑
k=1

βkRk (X )

log{σ(X )} =

q∑
k=1

γkSk (X )

R(X ) = {R1(X ), · · · ,Rp(X )} and
S(X ) = {S1(X ), · · · ,Sq(X )} are pre-specified regression
spline basis functions.



Estimation: General Idea

I Estimate parameters in location and scale part with quasi
likelilyhood (or GEE2 in general).∑

i

W1(Xi ,θ)(Yi − µ(Xi ,θ)) = 0∑
i

W2(Xi ,θ){(Yi − µ(Xi ,θ))
2 − σ2(Xi ,θ)} = 0

I Obtain the residual

êi(Xi) =
Yi − µ(Xi ; θ̂)

σ(Xi ; θ̂)
,

then estimate the baseline function F0(z,X ) by locally
weighted kernel density estimation (Or use other smooth
technique).



Next step

I We will show details about the estimation procedure.
I Under the assumption of semiparametric model, we willl

run simulation to show
(1) Parametric model (LMS method) will be biased when
distribution assumption fail.
(2) Semiparametric model did not lose much efficiency
when parametric model is correct.
(3) Nonparametric model is less efficient than
Semiparametric model.

I We will re-analyze the US children growth data to obtain
standardized BMI for age and gender, standardized weight
for height, age and gender.
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