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Multiple Testing: Control the Type | Error Rate

» When analyzing genetic data, one will commonly perform over
1 million (and growing) hypothesis tests.

> In categorical data analysis, one may want to test all pairwise
combinations.

» How do we ensure we are properly controlling for the number
of false rejections?
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2.5 Million Hypothesis Tests
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Recall: error rates

type | error  P(reject Hp|Hp is true) < «

family-wise error rate  FWER = IP(# false pos > 1)
This is the probability of one or more false positives.

per family error rate PFER = E(# false pos)
This is the expected number of false positives.

false discovery rate FDR = E(# false pos/total # rejected)

This can be thought of as the average proportion of
null hypotheses that are falsely rejected.
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How it all fits together

decide true decide false
Hp true U % mg
Hp false R S m— mg
m—T T m

v

V denotes a type | error.
The FWER is P(V > 1).
The PFER is E(V).

The FDRis E(V/T).
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Bonferroni and Benjamini-Hochberg (BH) procedures

» Bonferroni correction calculates
of=a/m

and controls the FWER or PFER.
» BH correction orders the p-values in decreasing order, and for

each / starting at the largest value, finds the point at which

ol
Py < ™

and this set of decisions controls the FDR.
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A BH example

Bonf rejections in blue
BH rejections in red
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at a=0.25, reject Hg; for all j < 147 using BH
for ‘usual’ Bonferroni correction, reject 30 hypotheses
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When test statistics are correlated

» Under the most extreme case, with perfect correlation, it is as
if one test is performed m times.

» With Bonferroni correction, for any i € 1... m

P(pi <a/m) = P(pr < a/m)

= a/m

which is more stringent than if we just used « in the presence
of this correlation.
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FWER, Bonferroni and FDR

» With FWER, 5 and 1000 false positives are equally ‘bad.’

» With FDR, the ‘badness’ depends on the number of rejections
made.

» Using Bonferroni to control the FWER is a conservative
measure in terms of controlling the presence of any type |
errors.

» Could we use Bonferroni to control the expected false
positives?
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Bonferroni can control the PFER

Applying the Bonferroni correction to the desired PFER threshold,
~, when performing m hypothesis tests, we get

PFER = [E(# false positives)
= E(ZHP;SV/'")

ieT
= ZP(PiS’Y/m)
ieT
< mol
m
< v

where T is the set of mg true null hypotheses and p; are calculated
p-values.

» This is robust to dependence of test statistics.

» The last line is less dramatic when mg ~ m.
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Simulation Studies: Goal

» With simulated data, | (and Gordon et al) show that the
Bonferroni and BH procedures are comparable, for
intelligently chosen PFER and FDR thresholds.
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Simulation Studies: The Data

» Simulate 1255 gene expression values, measured for 50
individuals.

> 2 measurements per individual where 125 of the 1255 genes
have a different mean.

> Generate a p-value for each gene from a standard t-test; 125
of them should be significant.

» Count the number of true and false rejections when using the
Bonferroni and BH procedures, at various thresholds.
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Equating Error Rates

How can we make the Bonferroni and BH procedures comparable?

» Define initial thresholds ~; ranging from 0 to 100 and
thresholds §; = 125%’

» Find FDR and PFER using Bonferroni?i.
» Find FDR and PFER using BH%.

» Do this 500 times over and define the means as
FDRgys:» FDRBonrvi, PFER g5, PFERBonfi -
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Equating Error Rates

» For ‘equalized FDR' define

fyf = argmin]F[A)R — FﬁRBom”i’

B.
1<7<280 BH™

forj=1,...,280.
> For ‘equalized PFER’ define

B = argmin IPFER gon¢ — PFER g,

forj=1,...,280.
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Equating Error Rates

pa

» With FDR as equalizer, °
use Bonferroni”” and BH”. S

» For PFER as equalizer, use
Bonferroni” and BH?". 2
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Simulation Results: Power
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Simulation Results: Stability
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Simulation Results: Stability
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Simulation Thoughts

v

With thresholds chosen correctly, the MTPs look quite similar.

v

The number of outcomes rejected are highly correlated among
the two procedures.

v

Bonferroni is more stable when looking at the standard
deviation of either the true positives or total positives.

v

Bonferroni is more powerful than the BH procedure, here.
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In Conclusion

» Choose the rate you want to control; do you have the budget
to follow up a fixed number of ‘hits?" Or can you only follow
up those with a p&ctng* resylt?

» Choose your favorite MTP from the Bonferroni or BH
procedure and rest assured your results will be in line with
your expectations.

* borrowing Ken's jargon
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Final Steps

» Simulate correlated data, and calculate the same metrics as
presented here.
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