Looking at the Other Side of Bonferroni

Caitlin McHugh

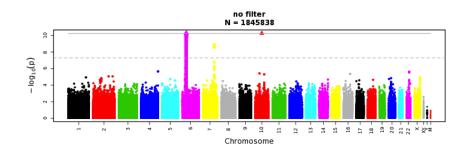
Department of Biostatistics University of Washington

24 May 2012

Multiple Testing: Control the Type I Error Rate

- When analyzing genetic data, one will commonly perform over 1 million (and growing) hypothesis tests.
- In categorical data analysis, one may want to test all pairwise combinations.
- How do we ensure we are properly controlling for the number of false rejections?

2.5 Million Hypothesis Tests



Recall: error rates

type I error
$$\mathbb{P}(\text{reject } H_0|H_0 \text{ is true}) \leq \alpha$$

family-wise error rate $FWER = \mathbb{P}(\# \text{ false pos} \ge 1)$ This is the probability of one or more false positives.

per family error rate $PFER = \mathbb{E}(\# \text{ false pos})$ This is the expected number of false positives.

false discovery rate $FDR = \mathbb{E}(\# \text{ false pos/total } \# \text{ rejected})$ This can be thought of as the average proportion of null hypotheses that are falsely rejected.

How it all fits together

	decide true	decide false	
H_0 true H_0 false	U	V	m_0
H_0 false	R	S	$m-m_0$
	m – T	T	m

- V denotes a type I error.
- ▶ The FWER is $\mathbb{P}(V \ge 1)$.
- ▶ The PFER is $\mathbb{E}(V)$.
- ▶ The FDR is $\mathbb{E}(V/T)$.

Bonferroni and Benjamini-Hochberg (BH) procedures

▶ Bonferroni correction calculates

$$\alpha^* = \alpha/m$$

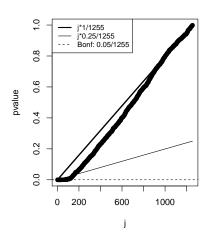
and controls the FWER or PFER.

▶ BH correction orders the *p*-values in decreasing order, and for each *i* starting at the largest value, finds the point at which

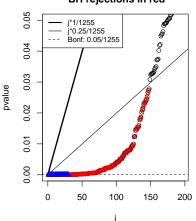
$$p_{(i)} \leq \frac{\alpha i}{m}$$

and this set of decisions controls the FDR.

A BH example



Bonf rejections in blue BH rejections in red



at α =0.25, reject H_{0j} for all $j \le 147$ using BH for 'usual' Bonferroni correction, reject 30 hypotheses

When test statistics are correlated

- ▶ Under the most extreme case, with perfect correlation, it is as if one test is performed *m* times.
- ▶ With Bonferroni correction, for any $i \in 1...m$

$$\mathbb{P}(p_i \le \alpha/m) = \mathbb{P}(p_1 \le \alpha/m)$$
$$= \alpha/m$$

which is more stringent than if we just used α in the presence of this correlation.

FWER, Bonferroni and FDR

- ▶ With FWER, 5 and 1000 false positives are equally 'bad.'
- ▶ With FDR, the 'badness' depends on the number of rejections made.
- Using Bonferroni to control the FWER is a conservative measure in terms of controlling the presence of any type I errors.
- ► Could we use Bonferroni to control the expected false positives?

Bonferroni can control the PFER

Applying the Bonferroni correction to the desired PFER threshold, γ , when performing m hypothesis tests, we get

PFER =
$$\mathbb{E}(\# \text{ false positives})$$

= $\mathbb{E}(\sum_{i \in \mathcal{T}} \mathbb{I}_{p_i \leq \gamma/m})$
= $\sum_{i \in \mathcal{T}} \mathbb{P}(p_i \leq \gamma/m)$
 $\leq m_0 \frac{\gamma}{m}$
 $\leq \gamma$

where \mathcal{T} is the set of m_0 true null hypotheses and p_i are calculated p-values.

- This is robust to dependence of test statistics.
- ▶ The last line is less dramatic when $m_0 \approx m$.

Simulation Studies: Goal

With simulated data, I (and Gordon et al) show that the Bonferroni and BH procedures are comparable, for intelligently chosen PFER and FDR thresholds.

Simulation Studies: The Data

- ➤ Simulate 1255 gene expression values, measured for 50 individuals.
- ▶ 2 measurements per individual where 125 of the 1255 genes have a different mean.
- ► Generate a *p*-value for each gene from a standard t-test; 125 of them should be significant.
- Count the number of true and false rejections when using the Bonferroni and BH procedures, at various thresholds.

Equating Error Rates

How can we make the Bonferroni and BH procedures comparable?

- ▶ Define initial thresholds γ_i ranging from 0 to 100 and thresholds $\beta_i = \frac{\gamma_i}{125 + \gamma_i}$.
- ▶ Find FDR and PFER using Bonferroni γ_i .
- Find FDR and PFER using BH^{βi}.
- Do this 500 times over and define the means as FDR_{BHβi}, FDR_{Bonfγi}, PFER_{BHβi}, PFER_{Bonfγi}.

Equating Error Rates

For 'equalized FDR' define

$$\gamma_j^* = \underset{1 \leq i \leq 280}{\operatorname{argmin}} |\hat{\operatorname{FDR}}_{BH^{\beta_j}} - \hat{\operatorname{FDR}}_{Bonf^{\gamma_i}}|$$

for $j = 1, \dots, 280$.

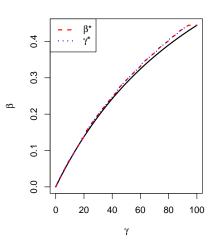
For 'equalized PFER' define

$$\beta_j^* = \underset{1 \leq i \leq 280}{\operatorname{argmin}} | \mathsf{PFER}_{Bonf^{\gamma_j}} - \mathsf{PFER}_{BH^{\beta_i}} |$$

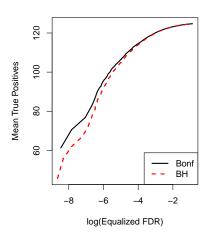
for
$$j = 1, ..., 280$$
.

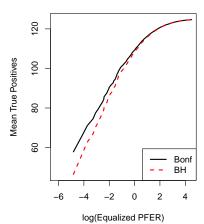
Equating Error Rates

- ▶ With FDR as equalizer, use Bonferroni $^{\gamma^*}$ and BH $^{\beta}$.
- ► For PFER as equalizer, use Bonferroni $^{\gamma}$ and BH $^{\beta^*}$.

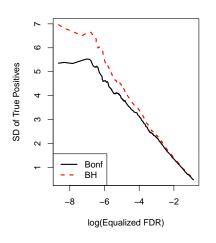


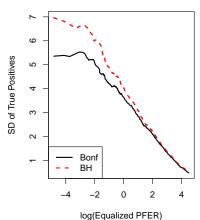
Simulation Results: Power



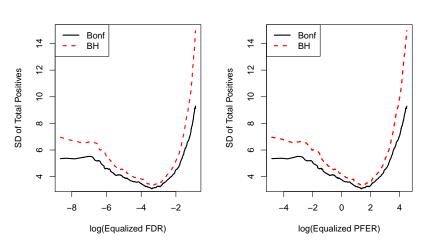


Simulation Results: Stability





Simulation Results: Stability



Simulation Thoughts

- ▶ With thresholds chosen correctly, the MTPs look quite similar.
- ► The number of outcomes rejected are highly correlated among the two procedures.
- ▶ Bonferroni is more stable when looking at the standard deviation of either the true positives or total positives.
- ▶ Bonferroni is more powerful than the BH procedure, here.

In Conclusion

- ► Choose the rate you want to control; do you have the budget to follow up a fixed number of 'hits?' Or can you only follow up those with a p^{exciting*} result?
- Choose your favorite MTP from the Bonferroni or BH procedure and rest assured your results will be in line with your expectations.
- * borrowing Ken's jargon

Final Steps

Simulate correlated data, and calculate the same metrics as presented here.