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The Paper

CONTROL OF THE MEAN NUMBER OF FALSE DISCOVERIES,
BONFERRONI AND STABILITY OF MULTIPLE TESTING

BY ALEXANDER GORDON, GALINA GLAZKO, XING QIU
AND ANDREI YAKOVLEV!

» Gordon, et al. set out to prove that the Bonferroni testing
procedure is not conservative if we simply look at it from a
different perspective [2].
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Multiple Testing: Control the Type | Error Rate

» When analyzing genetic data, one will commonly perform
over 1 million (and growing) hypothesis tests.

» In categorical data analysis, one may want to test all
pairwise combinations.

» How do we ensure we are properly controlling for the
number of false rejections?
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2.5 Million Hypothesis Tests
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The Family-Wise Error Rate (FWER)

» For a test, we choose a significance level, «.
» We define the family-wise error rate as

FWER = P(# false rej > 1)

» This is the probability of one or more false rejections of the
null hypothesis, the probability that there is at least one
type | error.
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The Per Family Error Rate (PFER)

» We define the per family error rate as

PFER = E(# false rej)

» This is the expected number of false rejections of the null
hypothesis.

» Can be thought of as the expected number of type | errors,
or the expected number of false positives.

» FWER<PFER.

» The probability of one or more false rejections is less than
or equal to the expected number of false rejections.
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Bonferroni Correction

» Say we perform m hypothesis tests.

» To adjust our overall significance level, «, simply divide by
the number of tests performed, m, so our significance level
becomes a/m.

a* =a/m
» When the p-values are highly correlated, this adjustment is

conservative, when thinking about the FWER (the
probability of at least one false positive).

» Note, however, this adjustment is not conservative when
thinking about the PFER (the expected number of false
positives).

» This controls the probability of one or more false rejections.
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Bonferroni does control the PFER!

» Bonferroni correction controls the E(# false rej)=PFER as
well as the P(# false rej > 1)=FWER [3].

» When controlling the FWER, we have an extremely small
threshold (think 0.05/1,000,000).

» When considering the PFER, the threshold is somewhere
between 0 and m, the number of tests we are performing.

» Call Bonf® the classical Bonferroni procedure, and denote

Bonf" the Bonferroni procedure that controls the PFER,
0<y<m
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What is Bonf?'?

» Bonf" controls the expected number of false positives at
level .

» PFER< (mgy/m)~, where my is the number of true null
hypotheses in the m hypotheses considered.

» We calculate
PFER = E(# false rej)
= EQQ_ lp<r/my)
ieT
E(Y P(pi < ~/m))
ieT
(mo/m)y
~y

IN A

where T is the set of indices of the true null hypotheses
and p; are the observed p-values.
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Is Bonf7 really that cool?

» If the p-values are uniformly distributed on [0,1], Bonf”
controls the PFER at level (my/m)~, since
PFER=(my/m)~.

» Since FWER<PFER, Bonf" controls the FWER at level
(mo/m)~ also.

» This controls the probability of one or more false rejections.

» What if we controlled the expected proportion of false
rejections, known as the false discovery rate (FDR)?
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Benjamini-Hochberg (BH) Correction

» To adjust our overall significance level, o, simply divide by
the number of tests performed, and multiply by the ranking
of the p-value, so our significance level becomes «i/m for
P(i)-

» From the ordered p-values, we start at the largest and
work down until we find i such that pjy < ¢, call this
particular i value k.

» We then reject all H;), i < k.

» This controls the expected proportion of false rejections,
the FDR [1].
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A simple example

v

Assume we produce p-values for 5 different tests:
0.0004 0.0015 0.0095 0.0254 0.0450

a=0.05

Using Bonferroni correction, o* = a/5 = 0.05/5 = 0.01.

Using the BH correction, a(;y = 0.05//5 = 0.01/, so the
largest p-value that satisfies the constraint p; < 0.01/is
ps) = 0.0450 < 0.01/ = 0.05.

v

v

v
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A simple example

v

Assume we produce p-values for 5 different tests:
0.0004 0.0015 0.0095 0.0254 0.0450

No multiple-testing correction: all significant.

v

v

Using Bonferroni correction: 3 smallest p-values are
significant.

Using the BH correction: all significant.

v
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Conclusions

Via simulation, | will show that the Bonf” procedure is just as
powerful as the BH procedure, when ~ is chosen appropriately.
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