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The Bonferroni multiple testing procedure is commonly perceived as be-
ing overly conservative in large-scale simultaneous testing situations such as
those that arise in microarray data analysis. The objective of the present study
is to show that this popular belief is due to overly stringent requirements that
are typically imposed on the procedure rather than to its conservative nature.
To get over its notorious conservatism, we advocate using the Bonferroni se-
lection rule as a procedure that controls the per family error rate (PFER). The
present paper reports the first study of stability properties of the Bonferroni
and Benjamini–Hochberg procedures. The Bonferroni procedure shows a su-
perior stability in terms of the variance of both the number of true discoveries
and the total number of discoveries, a property that is especially important in
the presence of correlations between individual p-values. Its stability and the
ability to provide strong control of the PFER make the Bonferroni procedure
an attractive choice in microarray studies.

1. Introduction. A recent explosion of statistical publications dealing with
multiple significance tests has been triggered by the needs of new high throughput
technologies in biology such as gene expression microarrays [Dudoit, Shaffer and
Boldrick (2003)]. This voluminous literature has been focused on various alter-
natives to the family-wise error rate (FWER) controlling procedures such as the
classical Bonferroni method, the latter having been considered as too conservative
for practical purposes.

The Bonferroni method was improved by Holm (1979) who proposed a step-
down multiple testing procedure (MTP) that has more power but still controls the
FWER at the same level. Furthermore, the Holm procedure is known to have strong
optimality properties [Lehmann and Romano (2005a), Chapter 9]. Another attempt
to gain more power by utilizing the dependence between test-statistics is due to
Westfall and Young (1993) who designed a step-down resampling algorithm that
provides strong control of the FWER and is consistent (i.e., the FWER approaches
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I Gordon, et al. set out to prove that the Bonferroni testing
procedure is not conservative if we simply look at it from a
different perspective [2].
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Multiple Testing: Control the Type I Error Rate

I When analyzing genetic data, one will commonly perform
over 1 million (and growing) hypothesis tests.

I In categorical data analysis, one may want to test all
pairwise combinations.

I How do we ensure we are properly controlling for the
number of false rejections?
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2.5 Million Hypothesis Tests
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The Family-Wise Error Rate (FWER)

I For a test, we choose a significance level, α.
I We define the family-wise error rate as

FWER = P(# false rej ≥ 1)

I This is the probability of one or more false rejections of the
null hypothesis, the probability that there is at least one
type I error.
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The Per Family Error Rate (PFER)

I We define the per family error rate as

PFER = E(# false rej)

I This is the expected number of false rejections of the null
hypothesis.

I Can be thought of as the expected number of type I errors,
or the expected number of false positives.

I FWER≤PFER.
I The probability of one or more false rejections is less than

or equal to the expected number of false rejections.
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Bonferroni Correction

I Say we perform m hypothesis tests.
I To adjust our overall significance level, α, simply divide by

the number of tests performed, m, so our significance level
becomes α/m.

α∗ = α/m

I When the p-values are highly correlated, this adjustment is
conservative, when thinking about the FWER (the
probability of at least one false positive).

I Note, however, this adjustment is not conservative when
thinking about the PFER (the expected number of false
positives).

I This controls the probability of one or more false rejections.
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Bonferroni does control the PFER!

I Bonferroni correction controls the E(# false rej)=PFER as
well as the P(# false rej ≥ 1)=FWER [3].

I When controlling the FWER, we have an extremely small
threshold (think 0.05/1,000,000).

I When considering the PFER, the threshold is somewhere
between 0 and m, the number of tests we are performing.

I Call Bonfα the classical Bonferroni procedure, and denote
Bonf γ the Bonferroni procedure that controls the PFER,
0 ≤ γ ≤ m.
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What is Bonf γ?
I Bonf γ controls the expected number of false positives at

level γ.
I PFER≤ (m0/m)γ, where m0 is the number of true null

hypotheses in the m hypotheses considered.
I We calculate

PFER = E(# false rej)

= E(
∑
i∈T

I{pi≤γ/m})

= E(
∑
i∈T

P(pi ≤ γ/m))

≤ (m0/m)γ

≤ γ

where T is the set of indices of the true null hypotheses
and pi are the observed p-values.
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Is Bonf γ really that cool?

I If the p-values are uniformly distributed on [0,1], Bonf γ

controls the PFER at level (m0/m)γ, since
PFER=(m0/m)γ.

I Since FWER≤PFER, Bonf γ controls the FWER at level
(m0/m)γ also.

I This controls the probability of one or more false rejections.

I What if we controlled the expected proportion of false
rejections, known as the false discovery rate (FDR)?
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Benjamini-Hochberg (BH) Correction

I To adjust our overall significance level, α, simply divide by
the number of tests performed, and multiply by the ranking
of the p-value, so our significance level becomes αi/m for
p(i).

I From the ordered p-values, we start at the largest and
work down until we find i such that p(i) ≤ αi

m , call this
particular i value k.

I We then reject all H(i), i ≤ k .
I This controls the expected proportion of false rejections,

the FDR [1].
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A simple example

I Assume we produce p-values for 5 different tests:

0.0004 0.0015 0.0095 0.0254 0.0450

I α = 0.05
I Using Bonferroni correction, α∗ = α/5 = 0.05/5 = 0.01.
I Using the BH correction, α(i) = 0.05i/5 = 0.01i , so the

largest p-value that satisfies the constraint p(i) ≤ 0.01i is
p(5) = 0.0450 ≤ 0.01i = 0.05.
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A simple example

I Assume we produce p-values for 5 different tests:

0.0004 0.0015 0.0095 0.0254 0.0450

I No multiple-testing correction: all significant.
I Using Bonferroni correction: 3 smallest p-values are

significant.
I Using the BH correction: all significant.
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Conclusions

Via simulation, I will show that the Bonf γ procedure is just as
powerful as the BH procedure, when γ is chosen appropriately.
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