Looking at the Other Side of Bonferroni

Caitlin McHugh

Department of Biostatistics University of Washington

10 April 2012

Caitlin McHugh Looking at the Other Side of Bonferroni

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

The Paper

CONTROL OF THE MEAN NUMBER OF FALSE DISCOVERIES, BONFERRONI AND STABILITY OF MULTIPLE TESTING

BY ALEXANDER GORDON, GALINA GLAZKO, XING QIU AND ANDREI YAKOVLEV¹

 Gordon, et al. set out to prove that the Bonferroni testing procedure is not conservative if we simply look at it from a different perspective [2].

Multiple Testing: Control the Type I Error Rate

- When analyzing genetic data, one will commonly perform over 1 million (and growing) hypothesis tests.
- In categorical data analysis, one may want to test all pairwise combinations.
- How do we ensure we are properly controlling for the number of false rejections?

2.5 Million Hypothesis Tests

Caitlin McHugh Looking at the Other Side of Bonferroni

문에 세 문어

æ

The Family-Wise Error Rate (FWER)

- For a test, we choose a significance level, α .
- We define the family-wise error rate as

 $FWER = \mathbb{P}(\# false rej \ge 1)$

This is the probability of one or more false rejections of the null hypothesis, the probability that there is at least one type I error.

(雪) (ヨ) (ヨ)

The Per Family Error Rate (PFER)

We define the per family error rate as

 $\mathsf{PFER} = \mathbb{E}(\texttt{\# false rej})$

- This is the expected number of false rejections of the null hypothesis.
- Can be thought of as the expected number of type I errors, or the expected number of false positives.
- ► FWER≤PFER.
 - The probability of one or more false rejections is less than or equal to the expected number of false rejections.

ヘロト 人間 とくほ とくほ とう

Bonferroni Correction

- Say we perform *m* hypothesis tests.
- To adjust our overall significance level, α, simply divide by the number of tests performed, m, so our significance level becomes α/m.

$$\alpha^* = \alpha/\textit{m}$$

- When the p-values are highly correlated, this adjustment is conservative, when thinking about the FWER (the probability of at least one false positive).
 - Note, however, this adjustment is not conservative when thinking about the PFER (the expected number of false positives).
- This controls the probability of one or more false rejections.

・ロト ・ 理 ト ・ ヨ ト ・

Bonferroni does control the PFER!

- Bonferroni correction controls the 𝔅(# false rej)=PFER as well as the 𝔅(# false rej ≥ 1)=FWER [3].
- When controlling the FWER, we have an extremely small threshold (think 0.05/1,000,000).
- When considering the PFER, the threshold is somewhere between 0 and m, the number of tests we are performing.
- Call Bonf^α the classical Bonferroni procedure, and denote Bonf^γ the Bonferroni procedure that controls the PFER, 0 ≤ γ ≤ m.

▲圖 > ▲ 臣 > ▲ 臣 > 二 臣

What is *Bonf* $^{\gamma}$?

- Bonf^γ controls the expected number of false positives at level γ.
- ► PFER≤ (m₀/m)γ, where m₀ is the number of true null hypotheses in the m hypotheses considered.
- We calculate

$$\begin{aligned} \mathsf{PFER} &= & \mathbb{E}(\texttt{\# false rej}) \\ &= & \mathbb{E}(\sum_{i \in \mathcal{T}} I_{\{p_i \leq \gamma/m\}}) \\ &= & \mathbb{E}(\sum_{i \in \mathcal{T}} \mathbb{P}(p_i \leq \gamma/m)) \\ &\leq & (m_0/m)\gamma \\ &\leq & \gamma \end{aligned}$$

where T is the set of indices of the true null hypotheses and p_i are the observed p-values.

Is *Bonf* $^{\gamma}$ really that cool?

- If the p-values are uniformly distributed on [0,1], Bonf^γ controls the PFER at level (m₀/m)γ, since PFER=(m₀/m)γ.
- Since FWER \leq PFER, *Bonf* $^{\gamma}$ controls the FWER at level $(m_0/m)\gamma$ also.
- This controls the probability of one or more false rejections.
 - What if we controlled the expected proportion of false rejections, known as the false discovery rate (FDR)?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Benjamini-Hochberg (BH) Correction

- To adjust our overall significance level, α, simply divide by the number of tests performed, and multiply by the ranking of the p-value, so our significance level becomes α*i*/*m* for *p*(*i*).
- From the ordered p-values, we start at the largest and work down until we find i such that p_(i) ≤ ^{αi}/_m, call this particular i value k.
- We then reject all $H_{(i)}$, $i \leq k$.
- This controls the expected proportion of false rejections, the FDR [1].

・ 同 ト ・ ヨ ト ・ ヨ ト

A simple example

Assume we produce p-values for 5 different tests:

0.0004 0.0015 0.0095 0.0254 0.0450

- Using Bonferroni correction, $\alpha^* = \alpha/5 = 0.05/5 = 0.01$.
- ► Using the BH correction, α_(i) = 0.05i/5 = 0.01i, so the largest p-value that satisfies the constraint p_(i) ≤ 0.01i is p₍₅₎ = 0.0450 ≤ 0.01i = 0.05.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

A simple example

Assume we produce p-values for 5 different tests:
0.0004 0.0015 0.0095 0.0254 0.0450

- ► No multiple-testing correction: all significant.
- Using Bonferroni correction: 3 smallest p-values are significant.
- Using the BH correction: all significant.

(E) < E)</p>

Conclusions

Via simulation, I *will* show that the *Bonf*^{γ} procedure is just as powerful as the BH procedure, when γ is chosen appropriately.

→ 프 → - 프

References

Yoav Benjamini and Yosef Hochberg.
Controlling the false discovery rate: a practical and powerful approach to multiple testing.
J. R. Statist. Soc., B(1):289–300, 1995.

Alexander Gordon, Galina Glazko, Xing Qiu, and Andrei Yakovlev.

Control of the mean number of false discoveries, Bonferroni and stability of multiple testing.

The Annals of Applied Statistics, 1(1):179–190, 2007.

Mei-Ling Ting Lee.

Analysis of Microarray gene expression data. Kluer Academic, Boston, Massachusetts, 2004.

・ 同 ト ・ ヨ ト ・ ヨ ト …