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Multiple Testing: Control the Type I Error Rate

I When analyzing genetic data, one will commonly perform over
1 million (and growing) hypothesis tests.

I In categorical data analysis, one may want to test all pairwise
combinations.

I How do we ensure we are properly controlling for the number
of false rejections?
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2.5 Million Hypothesis Tests
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Recall: error rates

type I error P(reject H0|H0 is true) ≤ α

family-wise error rate FWER = P(# false pos ≥ 1)
This is the probability of one or more false positives.

per family error rate PFER = E(# false pos)
This is the expected number of false positives.

false discovery rate FDR = E(# false pos/total # rejected)
This can be thought of as the average proportion of

null hypotheses that are falsely rejected.

Caitlin McHugh Looking at the Other Side of Bonferroni



How it all fits together

decide true decide false

H0 true U V m0

H0 false R S m −m0

m − T T m

I V denotes a type I error.

I The FWER is P(V ≥ 1).

I The PFER is E(V ).

I The FDR is E(V /T ).
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FWER vs. PFER

I Define A to be the acceptance interval for some summary
statistic Vg that gives the desired α risk for one hypothesis
test.

I Then, define a rule for all 1 ≤ g ≤ m such that

if Vg ∈ A, can’t reject H0

if Vg /∈ A, reject H0
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FWER vs. PFER

I For some test where we know the null hypothesis is true, the
probability that our summary measure Vg will fall in the
acceptance interval A is

P(Vg ∈ A|g ∈ T ) =

∫
A
f0(v)dv

= 1− α

for all g , where f0 is the null pdf, and T is the set of indices
of the true null hypotheses.

I We choose A to be the smallest interval that satisfies the
above equation.
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FWER vs. PFER

I We can specify the type I error probability for any g to be

α = P(Vg /∈ A|g ∈ T )

I Then, we can also see that

FWER = P(Vg /∈ A for at least one g ∈ T )

≤
∑
g∈T

P(Vg /∈ A|g ∈ T )

= m0P(Vg /∈ A|g ∈ T )

= m0α

I FWER/m0 ≤ α.

I The unadjusted significance level can be defined by the
desired family wise error rate divided by the total number of
tests for which the null hypothesis is true.
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FWER vs. PFER

I If we define A as shown on the previous slide such that
FWER≤ m0α then

I FWER ≤ α, so our definition is consistent with the desired
objective.
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FWER vs. PFER

I Finally, we get that

PFER = E(V )

= αm0

≥ FWER

PFER/m0 = α

where V is the number of false positives, α is the overall
significance level and m0 is the number of true null
hypotheses.

I The expected number of false positives, the PFER, is equal to
the type I error rate divided by the true number of null
hypotheses.
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Bonferroni and Benjamini-Hochberg (BH) procedures

I Bonferroni correction calculates

α∗ = α/m

and controls the type I error rate.

I BH correction orders the p-values in decreasing order, and for
each i starting at the largest value, finds the point at which

p(i) ≤
αi

m

and controls the FDR.
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How does dependence change the FWER?

I Dependence makes the actual type I error less than desired.
I As m and/or ρ increases, this becomes worse.

Plot courtesy of Ken Rice
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Simulation Studies

I Simulate 1255 gene expression values, measured for 50
individuals.

I 2 measurements per individual where 125 of the 1255 genes
have a different mean.

I Generate a p-value for each gene from a standard t-test; 125
of them should be significant.

I Count the number of rejections when using the both the
Bonferroni and BH procedures.
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Next Steps

With these results, I aim to show when choosing the error rate
thresholds appropriately, the Bonferroni and BH procedures are
comparable. This will be reproducing the results from the
paper [1].
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