------------------------------------------------------- ***** Zero-Inflated Poisson Simulations ***** ------------------------------------------------------- SETUP: we simulated data sets of size N=150 observations and fit poisson regression to obtain a estimate for the regression coefficient. To compute standard errors of the regression estimate we considered: 1. model-based assuming Poisson is correct 2. sandwich assuming var(y) = phi * mu 3. sandwich assuming var(y) = mu + alpha * mu^2 4. empirical sandwich variance estimator In addition, we computed the negative binomial MLE based on the NB-2 parameterization. For this we considered standard errors based on: 1. model-based assuming NB-2 2. empirical sandwich variance estimator RESULTS: (a) For the Poisson regression estimator Standard error estimates: (mean of 1000 estimates) beta mbeta seT seM1 seM2 seM3 seM4 Int -0.511 -0.531 0.207 0.133 0.227 0.216 0.202 x1 2.288 2.293 0.496 0.253 0.429 0.563 0.490 x2 1.000 1.011 0.289 0.172 0.291 0.308 0.287 mbeta = mean estimate of beta seT = variance of beta-hat across 1000 simulations seM1 = mean s.e. estimate assuming Poisson seM2 = mean s.e. estimate assuming scaled variance (QL) seM3 = mean s.e. estimate assuming NB-2 variance using MoM for alpha seM4 = mean s.e. estimate using emprical variance (b) For the Negative Binomial MLE (NB-2) Standard error estimates: > print( round( out, 3 ) ) beta mbeta.nb seT.nb seNB seM4.nb Int -0.511 -0.534 0.205 0.243 0.199 x1 2.288 2.301 0.492 0.663 0.491 x2 1.000 1.008 0.286 0.376 0.286 (c) Coverage properties for the POISSON model estimates given in (a): Coverage: beta covM1 covM2 covM3 covM4 Int -0.511 0.801 0.964 0.952 0.944 x1 2.288 0.688 0.914 0.967 0.947 x2 1.000 0.750 0.950 0.963 0.943