
Biostat/Stat 571
Exercise #8 Winter 2010
Due: March 10, 2010 P. Heagerty

Reading: ◦ Diggle, Heagerty, Liang & Zeger, Chapters 8 & 9

GEE Efficiency

1. One motivation for the adoption of a “working correlation” structure with GEE is to obtain more
efficient estimates, β̂.

Consider the logistic regression model:

logit(µij) = β0 + β1X1,ij + β2X2,i

where X1 is a covariate that varies within a cluster and X2 is a covariate that varies between clusters.

Assume that X1,ij = (j − 3)/3 for all clusters (ie. a “time” variable). Assume that X2,i = 0 for
half the clusters and X2,i = 1 for half the clusters (ie. a “treatment” variable).

(a) Assume that the data are balanced with ni = 6 observations per cluster. Calculate the asymptotic
relative efficiency of the exchangeable GEE estimator relative to to the independence GEE estimator
when the data truly have an exchangeable correlation structure. Numerically calculate the ARE for β̂
(each element) for a range of correlations (but keep them legal!) if β = (−2.5, 1.0, 1.0).

(b) Now assume that the data are comprised of subjects that complete only visits 1, 2, and 3 (50%)
and subjects that complete all six visits (50%). Calculate the ARE β̂ (each element) as in part (a) for
a range of correlations if β = (−2.5, 1.0, 1.0).

(c) Assume that the data are balanced with ni = 6 observations per cluster. Calculate the asymptotic
relative efficiency of the AR-1 GEE estimator relative to to the independence GEE estimator when the
data truly have an AR-1 correlation structure. Numerically calculate the ARE for β̂ (each element)
for a range of positive correlations if β = (−2.5, 1.0, 1.0).

(d) Now assume that the data are comprised of subjects that complete only visits 1, 2, and 3 (50%)
and subjects that complete all six visits (50%). Calculate the ARE β̂ (each element) as in part (c) for
a range of positive correlations if β = (−2.5, 1.0, 1.0).

Data Analysis

2. The Madras Longitudinal Study collected monthly symptom data on schizophrenia patients af-
ter their initial hospitalization. One scientific question is whether subjects with a younger age-at-onset
tend to recover more/less quickly, and/or whether female subjects recover more/less quickly. Recovery
is measured by a reduction in the presentation of symptoms. For this analysis we will consider the
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outcome thought disorders which is a binary indicator of whether the patient was observed to present
this “positive symptom” during the month.

(a) Summarize the prevalence of symptoms over time for groups of patients defined by age-at-onset
and gender.

(b) Summarize the serial dependence in the response series using a matrix of pairwise correlations,
and a matrix of pairwise odds ratios. For this summary you need not adjust for age-at-onset or gender.
Interpret the patterns in these dependence summaries.

(c) Use appropriate regression methods to determine if these data suggest different rates of recov-
ery (ie. change in prevalence over time) for younger age-at-onset or female patients.

Conditional and Marginal Means

3. Consider the GLMM for count data given by:

Yij | Xi, bi,0 ∼ Poisson

log E[Yij | Xi, bi,0] = β0 + β1Xij + bi,0

bi,0 ∼ N (0, σ2)

(a) Using information about the normal moment generating function derive the expression for µij =
E[Yij | Xi] as a function of β and σ2.

(b) Give a precise interpretation of the parameter β1.

(c) If the marginal model, log E[Yij | Xi] = β∗
0 + β∗

1Xij were fit to data generated via this hierar-
chical model would the estimators of β∗

0 and/or β∗
1 be consistent for β0 and/or β1, their analogue in

the conditional model? Justify.

(d) Now consider the model that contains random intercepts and random slopes:

Yij | Xi, bi,0, bi,1 ∼ Poisson

log E[Yij | Xi, b0,i, bi,1] = β0 + β1Xij + bi,0 + bi,1Xij

bi,0 ∼ N (0, σ2
0)

bi,1 ∼ N (0, σ2
1)

where bi,0 and bi,1 are assumed independent.

Give a precise interpretation of the conditional parameter β1 and give an interpretation of σ0 and
σ1.
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(e) Derive the marginal mean µij = E[Yij | Xi].

4. (optional) One numerical integration method used to obtain likelihood estimates for GLMMs is
known as Gauss-Hermite integration. Gauss-Hermite integration uses “quadrature” to numerically
evaluate an integral. The evaluation is based on choosing a number of points to be used (K) and then
approximating the integral with a weighted sum:

∫
x
g(x)

1√
2π

exp(−1
2
x2)dx ≈

K∑
i=1

g(xi) · wi

On the class web page for Exercise #8 there is R/S+ code to obtain the quadrature points (xi) and
the weights (wi) for either K = 5, K = 10, or K = 20 nodes. Use this routine to calculate the marginal
logistic regression parameter that is induced by

logitE[Yij | Xi, bi,0] = β0 + β1Xij + bi,0

bi,0 ∼ N (0, σ2)

for a model with a single binary covariate Xij = 0/1 and β = c(−2.0, 1.0). Use K = 20, and
σ = 0.5, 1.0, 1.5.
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