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Question 2:

The evaluation of new compounds for the treatment of schizophrenia often involve longitudinal mea-
surements of disease symptoms. The Positive and Negative Syndrome Scale (PANSS) is an instrument
devised to measure changes in psychopathology of psychotic (usually schizophrenic) conditions over time. It
is now the predominant intsrument used to measure change in pharmacological trials of antipsychotic agents.

The data consist of repeated measurements on 517 subjects, with roughly 87 subjects in each of 6
treatment groups. In this analysis we will be comparing 3 treatment groups; placebo, haloperidol and
risperidone. The riperidone treatment group is formed by combining 2 of the 6 original treatment groups.
This results in a total of 344 subjects that consider here. The PANSS score was measured on subjects over
a three month period, resulting in possible total of 7 measurements at -1, 0, 1, 2, 4, 6, and 8 weeks. A larger
score indicates a poorer response.

As we shall see in part (b) there is considerable dropout amoung the subjects. Throughout the analysis
we assume that missingness in the data is monotone. That is, we assume that once a subject drops out
(i.e. they miss a scheduled visit) then they remain off study. Amoung the 344 subjects that we consider,
three of them had a subsequent visit after having missed a previous visit. To maintain the assumption of
monotonicity the data on subsequent visits was treated as missing. In addition, 2 subjects had their final

visit during week -1 (pre-randomisation) and are consequently not included in the analysis. This leaves 342
subjects.

(a) Figure 2 provides a plot of the scores for the 342 subjects in the PANSS data set. Included on the plot
are estimates of the mean trends for the three treatment groups that we consider here.
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Figure 2: PANSS scores over time (weeks), along with mean trends for each of the three treatment groups.

The empirical variance-covariance and correlation matrices are provided below. We can see from the
variance-covariance matrix that the variance of the scores seems to increase with time. This suggests
that a random slopes component to the error structure may be appropriate. From the empirical
correlation matrix we see that the correlation between observations seem to decrease the further apart
we take them. Although the correlation is decreasing, they do not appear to go to zero suggesting
that they reach an asymptote of roughly 0.4. This suggests that a combination of random intercepts
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(b)

and a serial component may be appropriate. The empirical variogram given in Figure 3 confirms this.

Empirical Variance-Covariance Matrix:

week -1 week 0 week 1 week 2 week 4 week 6 week 8

week -1 247 215 181 177 171 161 155
week 0 0 378 259 259 273 263 203
week 1 0 0 405 378 354 338 224
week 2 ] 0 0 506 454 435 278
veek 4 0 0 0 ] 570 538 422
week 6 0 0 0 0 0 612 508
week 8 0 0 0 0 0 0 561

Empirical Correlation Matrix:

week -1 week 0 week 1 veek 2 week 4 wveek 6 week 8

week -1 1 0.70 0.57 0.50 0.46 0.41 0.42
week 0 0 1 0.66 0.59 0.59 0.55 0.44
week 1 0 0 1 0.84 0.74 0.68 0.48
week 2 0 0 0 1 0.85 0.78 0.53
veek 4 [+] 0 0 0 1 0.91 0.75
week 6 0 [ 0 0 0 1 0.87
week 8 o] 0 0 0 0 0 1
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Figure 3: Variogram for the PANSS Data.

From Figure 2, there seems to be convincing evidence that the three treatment regimes are different
with respect to mean PANSS score over the course of 8 weeks. However, as we can see from the
subsequent EDA attention will need to be paid to the error structure to ensure that standard error
estimates are valid.

As Figure 2 indicates there is a considerable amount of dropout in the data. In particular, we
can clearly see that the data at week 8 is more sparse than the data at week 0. Table 1 provides
numerical summaries to describe the dropout by treatment group. In particular, for each week and
each treatment arm the number of subjects who have their last visit during that week is provided. We
see that in the placebo arm a total of 29 subjects had their last visit during the 8** week (i.e. they
completed the study). In addition we see that 21 subjects in the risperidone arm had their last visit
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Week 0 1 2 4 6 8
Number
Placebo 2 15 14 16 11 29
Haloperidol 2 11 10 18 5 41
Risperidone 1 16 13 21 14 103
Percent
Placebo 23 172 161 184 126 33.3
Haloperidol 23 126 115 20.7 5.7 471
Risperidone 06 95 77 125 83 613
Cumulative Percent
Placebo 23 195 356 54.0 66.6 100.0
Haloperidol 23 149 264 47.1 528 100.0
Risperidone 06 10.1 178 30.3 38.6 100.0

Table 1: Number/Percent/Cumulative Percent of subjects for whom the last visit was during a specified
week, by treatment group.

(c)

during week 4, and therefore dropped out during the 6t* week.

As the group sizes are not equal, Table 1 also provides the distribution (via percentages) of the dropout
for each treatment group. We can see that fewer subjects complete the study in the placebo group (33%)
than either of the other two arms (47% and 61%). We can also see from the cumulative percentages
that there is more dropout earlier on for the haloperidol group and, especially, the placebo group than
the risperidone group.

To investigate the missingness mechanism we can use a continuation ratio model. For this model we
consider the categorical outcome of dropout time. The CRM models the conditional probability of
dropout, given that the subject did not dropout before hand. The conditional probability is modelled
as a function of level (current score) and trend (change in score since previous visit), where we assume
that the effect of level and trend is independent of the current state. The output below provides a
series of logistic regressions, modelling the conditional probabilities independently, as well as the full
conditional probability. From the individual logistic regressions we can see that the assumption of
constant ‘level’ effect is not unreasonable across the times. With the exception of the impact at week
0, the assumption of constant ‘trend’ effect seems reasonable.

Time: 0
Value Std. Error t value
(Intercept) -4.844 2.621 -1.848
level 0.007 0.029 0.262
trend -0.014 0.044 -0.318

Time: 1
Value Std. Error t value
(Intercept) -6.314 1.106 -5.710
level 0.046 0.011 4.218
trend 0.052 0.016 3.343

Time: 2
Value Std. Error t value
(Intercept) -5.235 0.980 -5.343
level 0.037 0.010 3.837

trend 0.018 0.016  1.147
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Time: 4
Value Std. Error t value

(Intercept) -3.499 0.743
level 0.024 0.009
trend 0.046 0.014

Time: 6
Value Std. Error
(Intercept) -4.766 0.921
level 0.034 0.010
trend 0.046 0.019
Full Continuation Ratio Model
Value Std. Error
(Intercept) -7.886 0.666
time.f1 2.977 0.495
time.f2 3.024 0.500
time.f4 3.704 0.492
time.f6 3.320 0.511
level 0.032 0.005
trend 0.039 0.008

DA NOHO

.034

The results from the CRM indicate that there is a significant association between dropout time and
both level and trend. In particular, we find that, at each week, the odds of dropping out, given that
the subject has not dropped out so far, increase with both level and trend. We can interpret the level
coefficient as follows. If we consider two individuals whose current score (level) differ by 10 units,
holding trend constant, then the individual with the higher score will have odds of dropping out that
are approximately 38% (exp!9%%032 ~ 1.377) higher than the odds for the individual with the lower

score.

Both of the positive coefficients suggest that subjects who are doing worse, either having a higher
current score or having had an increase in score from the previous visit, tend to have higher odds of
dropping out.
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(a) Longitudinal response patterns given dropout
times; 0,1,2,4,6,8. Each plot also contains the overall

mean trend.

Figure 4: Pattern Mixture Model for dropout.

PANSS Score

(b) Mean response until dropout for each dropout
time, as well as the overall mean trend.
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(d)

An alternative to the CRM is to adopt a pattern mixture model for the dropout. Figure 4 provides
plots that examine the longitudinal response patterns for each dropout time. In particular, Figure
4(b) shows the mean PANSS score trends that are specific to individuals that dropout at each visit.
We see that for the subjects that complete the study, i.e. drop out after week 8, that the score pattern
resembles the overall score pattern. For each of the previous visits, we see the mean trend for those
that dropout on the subsequent visit. For each visit prior to the end of study we see that the score
trends are increasing indicating that subjects who drop out were doing progressively worse on previous
visit.

If we assume that the missing data in the PANSS study is MAR (Missing-at-Random), then we can
implement likelihood-based methods (as long as we are confident in the assumptions of the model). In
particular, we can use mixed effects models to model the repeated outcomes for each subject. Interest
lies in assessing differences at 8 weeks between the three treatment regimes. Assuming a linear time
effect (centered at week 8) and a three level categorical treatment we can use an interaction between
time and treatment to answer the primary question of interest. In each of the following models we
can interpret the main effects for treatment (given by tx1 for haloperidol and tx2 for risperidone) as
the impact of each treatment relative to placebo at 8 weeks. In addition, due to randomization of the
treatment regimes, all data that is pre-randomization (i.e. week -1) has been removed for these analyses.

Below we examine the impact of making various assumptions regarding the form of the error structure.
Decisions can, in part, be guided by the EDA of part (a). Each model is fitted via maximum likelihood.

Random Intercepts

Random effects:

Formula: ~ 1 | id
(Intercept) Residual
StdDev: 17.62421 12.30737

Fixed effects: score ~ time8 * tx
Value Std.Error DF t-value p-value
(Intercept) 89.15333 2.624716 1263 33.96685 <.0001
time8 -0.24754 0.285833 1263 -0.86603 0.3866
txl -9.487256 3.604728 339 -2.63189 0.0089
tx2 -18.25608 3.115421 339 -5.85991 <.0001
time8txl -1.21417 0.384459 1263 -3.15813 0.0016
time8tx2 -1.84880 0.330510 1263 -5.59377 <.0001

Random Intercepts + Random Slopes

Random effects:

Formula: ~ time8 | id

Structure: General positive-definite
StdDev  Corr

(Intercept) 25.142194 (Inter

time8 2.228351 0.739
Residual 10.745259

Fixed effects: score ~ time8 * tx

Value Std.Error DF t-value p-value

(Intercept) 93.69646 3.465718 1263 27.03522 <.0001
time8 0.39910 0.401963 1263 0.99289 0.3210

txl -11.54986 4.776369 339 -2.41813 0.0161

tx2 -21.66569 4.122133 339 -5.255694 <.0001
time8txl -1.50970 0.547602 1263 -2.75694 0.0059
time8tx2 -2.33377 0.470513 1263 -4.96004 <.0001
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|Random Intercepts + AR(m

Random effects:

Formula: ~ 1 | id
(Intercept) Residual
StdDev: 15.80355 14.82967

Correlation Structure: Exponential spatial correlation

Formula: ~ time8 | id

Parameter estimate(s):
range

1.961153

Fixed effects: score time8 * tx
Value Std.Error DF t-value p-value
(Intercept) 89.50163 2.941718 1263 30.42495 <.0001

time8 -0.27638 0.381871 1263 -0.72374 0.4694
tx1 -10.14650 4.009237 339 -2.53078 0.0118
tx2 -18.93131 3.454840 339 -5.47965 <.0001

time8tx1 -1.31771 0.517540 1263 -2.54611 0.0110
time8tx2 -2.07011 0.445345 1263 -4.64832 <.0001

[Random Intercepts + AR(1) + Measurement Error

Random effects:

Formula: ~ 1 | id
(Intercept) Residual

StdDev: 0.9878355 21.47729

Correlation Structure: Exponential spatial correlation
Formula: ~ time8 | id
Parameter estimate(s):
range nugget
11.41318 0.1329292
Fixed effects: score ~ time8 * tx
Value Std.Error DF t-value p-value
(Intercept) 90.65820 3.025782 1263 29.96191 <.0001
time8 -0.11122 0.405437 1263 -0.27431 0.7839
txl -10.96340 4.122918 339 -2.65914 0.0082
tx2 -19.08215 3.549864 339 -5.37546 <.0001
time8tx1 -1.46082 0.5562177 1263 -2.64556 0.0083
time8tx2 -2.15802 0.475421 1263 -4.53918 <.0001

Random Intercepts + Random Slopes + AR(1) + Measurement Error

Random effects:
Formula: ~ time8 | id
Structure: General positive-definite
StdDev  Corr
(Intercept) 19.976803 (Inter
time8 1.158248 1
Residual 16.234720

Correlation Structure: Exponmential spatial correlation
Formula: ~ time8 | id
Parameter estimate(s):
range nugget
5.27029 0.2199205
Fixed effects: score ~ time8 * tx
Value Std.Error DF t-value p-value
(Intercept) 92.69179 3.445997 1263 26.89840 <.0001
time8 0.17616 0.417354 1263 0.42208 0.6730
txl -11.04393 4.723844 339 -2.33791 0.0200
tx2 -20.69583 4.072425 339 -5.08194 <.0001
time8tx1 -1.45692 0.567228 1263 -2.56849 0.0103
time8tx2 -2.33094 0.487618 1263 -4.78025 <.0001
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From the output from each of the models we see that the estimation of the treatment effects for both
haloperidol and risperidone (relative to placebo) do not depend to a great extent on the choice of the
error structure. The following output provide comparisons of the above five models, in terms of their
ability to fit the data. Both of the AIC and BIC criteria indicate that the best overall fit of the data
is provided by model 5, which is the most complex of the error structures.

Model df AIC BIC logLik Test L.Ratio p-value
1. Random Intercepts + ME 8 13441.34 13484.40 -6712.668

2. Random Intercepts/Slopes + ME 10 13321.88 13375.71 -6650.941 1 vs 2 123.4535 <.0001
3. Random Intercepts + AR(1) 9 13317.16 13365.61 -6649.582 2 vs 3  2.7188 0.0992
4. Random Intercepts + AR(1) + ME 10 13292.95 13346.78 -6636.476 3 vs 4 26.2119 <.0001
5. Random Intercepts/Slopes + AR(1) + ME 12 13273.98 13338.57 -6624.988 4 vs 5 22.9756 <.0001

We can examine the residuals (population level) to assess assumptions of the model. In particular,
we can assess the linearity of the time effect within each of the treatment groups by examining the
residuals plots in Figure 5.

(f)

Time (weeks) Time (weeks)
(a) Placebo (b) Haloperidol

(c) Risperidone

Figure 5: Plots of (population-level) residuals versus time (weeks), by treatment group.
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From Figure 5 there seems to be an indication, especially for the risperidone group, that the linearity
assumption may not be adequate and that a quadratic term may be needed. Assuming the error
structure identified in part (e), we can assess this directly by adding in a quadratic term into the
model. The following provides the resulting output and likelihood ratio test (of the quadratic time
components) based on ML fits of the mixed effects model.

Random effects:
Formula: ~ time8 | id
Structure: General positive-definite
StdDev  Corr
(Intercept) 21.322210 (Inter
time8 1.499273 1
Residual 16.574307

Correlation Structure: Exponential spatial correlation
Formula: ~ time8 | id
Parameter estimate(s):
range nugget
7.730288 0.2373044
Fixed effects: score ~ (time8 + time8~2) *» tx
Value Std.Error DF t-value p-value

(Intercept) 96.14975 3.891712 1260 24.70629 <.0001
time8  1.94723 1.144486 1260 1.70140 0.0891
I(time8"2) 0.17518 0.115329 1260 1.51893 0.1290
tx1 -10.14795 65.271703 339 -1.92498 0.0551
tx2 -18.79110 4.548034 339 -4.13170 <.0001
time8tx1l -0.29647 1.524215 1260 -0.19451 0.8458
time8tx2 0.60625 1.314868 1260 0.46107 0.6448
I(time8~2)tx1  0.14260 0.155786 1260 0.91538 0.3602
I(time8~2)tx2 0.36736 0.134712 1260 2.72703 0.0065
Likelihood Ratio Test:
Model df AIC BIC logLik Test L.Ratio p-value
1. Linear 12 13273.98 13338.57 -6624.988

2. Quadratic 15 13212.92 13293.66 -6591.462 1 vs 2 67.05266 <.0001

From the results of the likelihood ratio test we see that there is evidence that the quadratic term is
needed in the model. Due to the centering of the time variable, the inclusion of the quadratic terms
do not impact the interpretations of the treatment main effects from those that are desirable for the
scientific question of interest.

The final model that we adopt incorporates time (centered at week 8) via a quadratic model and
treatment via a three level factor variable. To address the primary question of interest we can include
an interaction between time and treatment, and concentrate on estimation/inference regarding the
main effects for treatment. We adopt a fairly complex error structure for the repeated measure, which
includes both random intercepts and slopes, as well as a serial autocorrelation component and finally
measurement error.

Before interpreting the individual coefficients, we can examine the treatment effects by performing
a likelihood ratio test comparing the above model (Alternative) to one that assumes no treatment
effect (Null):

Model df AIC BIC logLik Test L.Ratio p-value
Null 9 13242.69 13291.13 -6612.344
Alternative 15 13212.92 13293.66 -6591.462 1 vs 2 41.7652 <.0001

The results of the global test of the treatment effect we see that is strong evidence to indicate a
difference between the three treatment regimes.
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From the output of the model above, we find that if we compare two individuals where one was
randomised to placebo and the other to haloperidol (tx1), then the subject on haloperidol is
estimated to have a expected PANSS score at week 8 whicli is approximately 10.15 units lower
than the subject on placebo. Also, if we compare two individuals where one was randomised to
placebo and the other to risperidone (tx2), then the subject on risperidone is estimated to have an
expected PANSS score at week 8 which is approximately 18.79 units lower than the subject on placebo.

The following table provides the estimated expected week 8 PANSS scores for each of the treatment
groups, along with approximate 95% confidence intervals.

Treatment Group Expected PANSS score  Approximate

at week 8 95% CI
Placebo 96.15 (88.52, 103.78)
Haloperidol 86.00 (79.03, 92.97)
Risperidone 77.36 (72.75, 81.97)

Any conclusions that we draw from this analysis are based on the two fairly strong assumptions.
The first is that the missingness is MAR. From parts (c¢) and (d) we saw that we can identify fairly
strong upward trends in patient PANSS scores just before dropout. This suggests that patients are
dropping out (or perhaps being taken off the study) due to a worsening in their symptoms. Since
we are able to identify such a reasonable mechanism from the data it is not unreasonable to assume
that contributions from other mechanisms may be minimal. Of course, and unfortunately, there is
no way for us to assess this explicitly. Given that we are happy with the MAR assumption, we still
have to assume that we have specified the likelihood fully and correctly. This translates into correct
specification of the mean and covariance structure. Given our specific mean structure, and although
not shown here, the results (estimates/inference) do not vary greatly with the assumptions of the
covariance structure.

S-Plus Cade

#

## Schizophrenia trial data: PANSS scores for patients in six treamtent groups.

##
##
#*
#*

Treatment codes: 1 = haloperidol 2 = placebo
3 = risperidonel0 4 = risperidonei6
5 = risperidone2 6 = risperidone6
Variables in column order:
group = treatment group
score.ml = score at time = -1
score.0 = score at time = 0
score. = score at time = 1
score. = score at time = 2
score. = score at time = 4
score. = score at time = 6
score. = gcore at time = 8

WD BN -

Clinical References: Chouinard et al. (1993)

Marder and Meibach (1994) Am J Psychiatry 1994 Jun;151(6):825-35

options( contrasts = c("contr.treatment", "contr.poly") )
source( "stacked2wide.q" )

source{ "variogram.q" )

library( nlmed )

#

panss.full <- read.table( "C:\\TA\\571_W03\\homework\\exercise7\\code\\panss_data.txt" )
names( panss.full ) <- c( "group®, "score.ml", "score.Q", "score.i", "score.2", "score.4", "score.6", "score.8" )
panss.full$id <- 1:517
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#

##%% Only consider those in the following 3 treatment groups: placebo, haloperidol, risperidone (risperidone € and 10)
*

panss.full$tx <- rep( 9, 517 )

panss.full$tx[panas.full$group == 2] <~ 0 # 0 = placebo
panss.full$tx[panss.full$group == 1] <- 1 # 1 = haloperidol
panss.full$tx [panss.full$group == 3 | panss.full$group == 6] <- 2 # 2 = risperidone

panss.full <- panss.full[panss.full$tx != 9,]
*

#### Investigate the monotonicity of the missingness; i.e. if a subject drops out they don’t come back.

#

for( i in 1:344 ){

nonmono <- F

for( j in 3:8 ){ if( is.na(panss.full(i,(j-1)]) == T &k is.na(panss.full(i,j]l) == F ) nonmono <- T }

if( nonmono == T ) print( pamnss.fullli,] )

}

*

##%# Subjects 44, 68, 220 have non-monotone missingness

*

panss.full$score.4[44) <- panss.full$score.4[68] <- panss.full$score.1[220] <- NA

*

###% Convert dataset into a long form and remove observations that have the outcome missing (i.e. post-dropout):
#

panss.long <- matrix( 0, 3447, 4 )

for( i in 1:344 ){

panss.long[(((i-1)#7) + 1:7),) <- cbind( rep(i,7), rep(pamss.full$tx[i],?), <(-1,0,1,2,4,6,8), unlist(as.vector(panss.full[i,2:8])) )
}

panss.long <- as.data.frame( panss.long )
names( panss.long ) <- c( "id", “"tx", "time", "score" )
panss <- na.omit( panss.long )
*
b2z 222 222222222223
#ikk Part (a) ###s
HRRRRERRENRARRRERY
#
plot( jitter(p $time), p $score, xlab = "Time, weeks", ylab = "PANSS Score", pch = "." )
lines( 1 (p $time [p $tx == 0], panss$score[panss$tx == 0] ), col = 1, lwd = 3, 1ty = 1)
lines( lowess( panss$time[panss$tx == 1], p $score [p $tx == 1] ), col = 4, lwd = 3, 1ty = 3 )
lines( lowess( panss$time(panss$tx == 2], panss$score[panss$tx == 2] ), col = 8, lwd = 3, 1ty = 4 )
legend( 5, 160, col = ¢(1,4,8), lwd = c(3,3,3), 1ty = c(1,3,4), c("placebo", "haloperidol”, "risperidone") )
#
#### Observations per subject
#
n.obs <- unlist( lapply( split( panss$id, panss$id ), length ) )
table( n.obs )
table( panss$time )
#
###% Empirical correlation matrix
#
fit.sat <- lm( score ~ ns(time, knots = c(1, 4)) * as.factor(tx), data = panss )
resids <- panss$score - fitted( fit.sat )
rmat <- stacked2wide( panss$id, resids, panss$time, c(-1,0,1,2,4,6,8), 5)
cmat <- matrix( 0, 7, 7 )
nmat <- matrix( 0, 7, 7 )
for( j in 1:7 ){
for( k in j:7 ){

njk <- sum( !is.na( rmat[ ,jlermat[ ,k] ) )

s8jk <- sum( rmat[ ,jl*rmat[ ,k], na.rm=T ) / njk

cent[ j, k] <- sjk

mmat[ j, k] <- njk

}
}
vvec <- diag( cmat )
cormat <- cmat / ( outer( sqrt( vvec ), sqrt( vvec ) ) )
dimnames( cmat ) <- dimnames( cormat ) <- dimnames( nmat ) <- list( paste("week ", ¢(-1,0,1,2,4,6,8), sep = ""),
paste(" week ",c(-1,0,1,2,4,6,8), sep = "") )
print( round( cmat ) )
print( round( cormat, 2 ) )
print( nmat )
#
###% Variogram
#
panss.vario <- lda.variogram( panss$id, resids, panss$time )
var.est <- var( resids )
plot( jitter(panss.vario$delta.x), panss.vario$delta.y,
pch = " ", ylim = ¢( 0, 1.2#var.est ), xlab = "Change in time", ylab = "Change in residual over time squared" )
lines( smoctk.opline( panss.varicBdelea.x, panss.variofdelsa.y, df = § ), lwd = 3 )
abline( h = var.est, 1ty = 3, lwd = 3 )
#
#
#
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L2 22222222222l 2
#4844 Part (b) ##as
HERRRRRAR RN RRNS
*

#¥### Visits completed by treatment group

*

final.visit <- unlist( lapply( split( p $time, p $id ), max ) )

tx.group <- unlist( lapply( split( panss$tx, panss$id ), max ) )

table( tx.group, final.visit )[,-1]

#

dropout.percent <- table( tx.group, final.visit )[,~1]

for( i im 1:3 ){ dropout.percent[i,] <- round( dropout.percent[i,] / sum(dropout.percent[i,]), 3) * 100 }
dropout.percent

*

dropout.cum <- dropout.percent

for( i in 1:3 ){ dropout.cum[i,] <- cumsum( dropout.cum[i,] ) }
dropout.cum

#*

*

Rz 222222222220 24

#4844 Part (c) ¥

Rz 222222 22222024

*

#### Construct data set with failure indicator; y

#*

panss.crm <- panss

names( panss.crm ) <- c( "id", "tx", "time", "level" )

panss.crm$trend <- rep( NA, 1952 )

for( i in 1:1962 ){ if( panss.crm$time[i] != -1 ) panss.crm$trend[i] <- panss.crm$levelli] - panss.crm$level[(i-1)] }
panss.crn$y <- rep( 0, length(panss.crm[,1]) )

for( i in 1:1961 ){ if(panss.crm$id[i] != panss.crm$id[(i+1)]) panss.crm$y[i] <- 1 }
*

#### Construct level-specific intercepts:

*

ncuts <- length( unique(panss.crm$time) )

panss.crm <- cbind( panss.crm, matrix( 0, length(panss.crm[,1]), ncuts ) )

names( panss.crm )[7:13] <- c( paste( "Int", unique(panss.crm$time), sep = "" ) )
for( i in 7:13 ){ panss.crm[,i] [panss.crm$time == unique(panss.crm$time) [(i-6}]] <- 1 }
#

panss.crm$time.f <- as.factor( panss.crm$time )
panss.crm <- panss.crm[panss.crm$time != -1 & panss.crm$time != 8,]
*
#
*
##%# Individual logististic regressions
#
for( i in 1:5 ){
cat( paste( "\nTime:", unique(panss.crm$time)[i], "\n" ) ) .
temp.panss.crm <- panss.crm[is.element (panss.crm$time, unique(panss.cra$time)[i]), ]
temp.crm <- glm( y ~ level + trend, family = binomial, data = temp.panss.crm )
print( round( summary(temp.crm)$coef, 3 ) )
}
#*
##4##4 Full Continuation Ratio Model
#
crm.£fit.0 <- glm( y ~ time.f + level + trend, family = binomial, data = panss.crm, na.action = na.omit )
round( summary(crm.fit.0)$coef, 3 )
crm.fit.1 <- glm( y ~ time.f + level * trend, family = binomial, data = panss.crm, na.action = na.omit )
round( summary(crm.fit.1)$coef, 3 )
#
L2222 222222222022 2
#44% Part (d) ##s#
R 22222222222 22 2
#
panss$dropout.group <- rep( final.visit, as.vector( table(panss$id) ) )
panss <- panss((panss$dropout.group != -1),]
panss$dropout.group <- as.factor( panss$dropout.group )
PANSSgrouped <- groupedData( score ~ time | id, outer = ~ dropout.group,

data = panss,

labels = list( x = "Time, weeks", y = "PANSS Score" ) )
plot( PANSSgrouped, outer = “ dropout.group, aspect = 1 )
#*

dg <- unique( panss$dropout.group )

plot( p $time, p $ e, xlab = "Time, weeks", ylab = "PANSS Score", type = "a", ylim = ¢(70,110) )
for( i in 1:length(dg) ){
value <- 1 (p $time[p $dropout.group == dgl[il], panss$score[panss$dropout.group == dg[i]l)

linea( value, lwd = 3 )

text( x = value$x[length(value$x)], y = value$y[length(value$y)] + 1, paste("wk", as.character(dg[il)) )
}

lines( lowess(p $time, p $score), lty = 3, lwd = 3 )

legend( 5.8, 110, 1ty = 3, lwd = 3, c("Overall") )
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*
par( mfrow = ¢(2,3) )
for( i in length(dg):1 ){
plot( panss$time, panss$score, xlab = "Time, weeks", ylab = "PANSS Score", type = "n" )

points( jitter(panss$time[panss$dropout.group == dg(il]), panss$score[panss$dropout.group == dgli}]l, pch = "." )
lines( 1 (p $time, p $score), lud = 3 )
lines( lowess(panss$time [panss$dropout.group == dgl[i]], panss$score[panss$dropout.group == dglil]), 1ty = 3, lud = 3 )
}
*
HHRRERRERBLH AR AR AR
#UA% Part (e) ####
b2z 2222222222 202023
#

#### Create a new variable time8 = time - 8, so that the intercept in the model refers to the week 8 measurement
*
panss$time8 <- panss$time - 8
panss$tx <- as.factor( panss$tx )
panss.lme <- panss[panss$time != -1,]
*
##4##% Random intercepts:
#
£it.0 <- lna( fixed = score ~ timeS = tx,
method = "ML",
random = reStruct( ~ 1 | id, pdClass = "pdSymm", REML = F ),
data = panss.lme )

summary( fit.0 )

*

###% Random intercepts and random slopes:

#

fit.1 <- lme( fixed = score ~ time8 = tx,
method = "ML",
random = reStruct( " time8 | id, pdClass = "pdSymm", REML = F ),
data = panss.lme )

summary( fit.1 )

#

#### Random intercept and AR(1):

#

£fit.2 <- lme( fixed = score " time8 * tx,
methoed = "ML",
random = reStruct( ~ 1 | id, pdClass = "pdSymm", REML = F )},
correlation = corExp( form = ~ time8 | id, nugget = F ),
data = panss.ime )

summary( £it.2 )

*

#### Random intercept and AR(1) and measurement error:

#

fit.3 <- lme( fixed = score ~ time8 * tx,
method = "ML",
random = reStruct( ~ 1 | id, pdClass = "pdSymm", REML = F ),
correlation = corExp( form = ~ time8 | id, nugget =T ),
data = panss.lme )

summary( fit.3 )

#

####% Random intercept/slopes and AR(1) and measurement error:
#

fit.4 <- lme( fixed = score ~ time8 * tx,

method = "ML",
random = reStruct( ~ time8 | id, pdClass = "pdSymm", REML = F ),
correlation = corExp( form = ~ time8 | id, nugget =T ),
data = panss.lme )
summary( fit.4 )
*
###4 Comparison of models:
*
summary( fit.
summary( fit.
summary( fit.
summary( fit.
summary( fit.
anova( fit.0, fit.1, fit.2, fit.3, fit.4)
*
HERRERBRRRRABRRRASE
#A% Part (f) ##sé
RERRRRRRANEN RS RR RN
*
#### Residuals from fit.4: Population-level residuals
#
pop.res <- resid( fit.4, level = 0 )
*
plot( jitter(panss.lme$time[panss.lme$tx == 0]), sub.res[panss.lme$tx == 0], pch = ".",
xlab = "Time (weeks)", ylab = "Residual" )

S WN-Oo
s N
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lines( smooth.spline( panss.lme$time[panss.lme$tx == 0], sub.res[panss.ime$tx == 0], df = 5 ), col = 8, lwd = 3 )

abline( h = 0, lwd = 3, 1ty = 3 )
*

plot( jitter(panss.lme$time[panss.lme$tx == 1]), sub.res[panss.lme$tx == 1], pch = ".",

xlab = "Time (weeks)", ylab = "Residual” )

lines( smooth.spline( panss.lme$time[panss.lme$tx == 1], sub.res[panss.lme$tx == 1], df = 5 ), col = 8, lwud = 3 )

abline( h = 0, lwd = 3, 1ty = 3 )
*

plot( jitter(panss.lme$time[panss.lme$tx == 2]), sub.res[panss.lme$tx == 2], pch = ".",

xlab = "Time (weeks)", ylab = "Residual" )

lines( smooth.spline( panss.lme$time[panss.lme$tx == 2], sub.res[panss.lme$tx == 2], df = 5 ), col = 8, lud = 3 )

abline( h = 0, 1lwd = 3, 1ty = 3 )

]

##4##% Do we need the quadratic term ?

*

fit.5 <- lme( fixed = score ~ (time8 + time8~2) =* tx,
method = "ML",

random = reStruct{ ~ time8 | id, pdClass = "pdSymm", REML = F ),

correlation = corExp( form = ~ time8 | id, nugget =T ),
data = panss.lme )
summary( fit.5 )

#

anova( fit.4, fit.5 )

#

####4 Assess the treatment effects:
*

£fit.6 <- lme( fixed = score ~ time8 + time8°2,
method = "ML",

random = reStruct( ~ time8 | id, pdClass = "pdSymm", REML = F ),

correlation = corExp( form =
data = panss.lme )

time8 | id, nugget =T ),

summary( fit.6 )

*

anova( fit.6, fit.5 )

*

###% Compute expected PANSS scores at week 8 based on fit.5 (final model)
#

LinCom <- function( fit, x = 0, alpha = 0.05 ){

coef.est <- fixef( fit )

varcov.est <- fit$varFix » (fit$dinm$N) / (£fit$dim$N - length(coef.est))
point <- x %*% coef.est

point.se <- sqrt( t(x) =% varcov.est %*} x )

lower <- point - (qnorm(i - (alpha/2)) * (point.se))

upper <- point + (qunorm(i - (alpha/2)) * (point.se))

return{ round( c(point, lower, upper), 2 ) )

}

LinCom(fit.5, x = ¢(1,0,0,0,0,0,0,0,0))
LinCom(fit.5, x = ¢(1,0,0,1,0,0,0,0,0))
LinCom(fit.5, x = ¢(1,0,0,0,1,0,0,0,0))

## Adjustment for ML estimation



