
Biostat/Stat 571
Exercise #6 Winter 2010
Due: February 24, 2010 P. Heagerty

Reading: • Verbeke & Molenberghs, Chapters 5 & 6

**** GIVEN THE SHORT WEEK – PLEASE CHOOSE ONE OF THESE QUESTIONS FOR THE
EXERCISE THIS WEEK *****

Pre-post Designs

1. A clinical investigation randomizes individuals to receive either active treatment (TX=1) or to control
(TX=0) after first recording a baseline measurement, Yi0. Subsequent follow-up records an outcome at
(at least one) follow-up time for each participant, Yi1. The goal of the study is to assess whether these
is an impact on Y due to treatment. There are a number of potential analyses that can be proposed
for this study design. Let TX denote the treatment assignment and let post be an indicator for the
follow-up time. Assume that we have m subjects in each group. Assume that σ2 = var(Yi0) = var(Yi1)
(although for certain MLE estimators we will consider the relaxation to σ2

0 = var(Yi0), σ2
1 = var(Yi1)).

(a) Consider the regression model:

E(Yij | Xi) = β0 + β1 · TXi + β2 · postij + γ · TXi · postij .

Please provide an interpretation of the parameter γ appropriate for a general scientific audience.

(b) Consider a repeated measures model for Y i = (Yi0, Yi1), that assumes var(Yij) = σ2
j and cov(Yi0, Yi1) =

σ0σ1ρ, and assumes multivariate normality. Show that the MLE for γ is given by the difference of the
differences: γ̂(1) equals the mean of Yi1 − Yi0 for the treatment minus the mean of Yi1 − Yi0 for the
control group.

(c) Calculate the variance of γ̂(1) under the assumption that σ2
0 = σ2

1.

(d) Another model uses the fact that groups were randomized to constrain the means at baseline,
E(Yi0 | TXi = 0) = E(Yi0 | TXi = 1). This model can be written as

E(Yij | Xi) = β0 + β2 · postij + γ · TXi · postij .

Derive the MLE for γ in the constrained model (with covariance assumptions as in 1(b) above). Denote
this estimator as γ̂(2). HINT: factor the likelihood f(Y i) = f(Yi0)f(Yi1 | Yi0).

(e) Calculate the variance of γ̂(2) under the assumption that σ2
0 = σ2

1, and assuming σ0, σ1, ρ are
fixed.

(f) The estimators γ̂(k) are special cases of the general estimator

γ̂(α) = Yi1(TX = 1) − αYi0(TX = 1) − Yi1(TX = 0) − αYi0(TX = 0)
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Another common proposed estimator is γ̂(0) which simply compares the means at the follow-up time
and ignores the baseline. Calculate the expectation of γ̂(α) for any fixed α assuming the model in (d)
holds. What is the variance of γ̂(α)? When is γ̂(1) more precise than γ̂(0)? What is the optimal choice
of α?

(g) Given the information from (a)-(f) suggest an appropriate analysis of “change” when there are
multiple follow-up measurements.

Data Analysis

2. MACS Data – CD4 and Viral Load: In the last exercise we considered data from the Multicen-
ter Aids Cohort Study (MACS). Scientific interest is in whether the rate of decline in CD4 is associated
with the baseline viral load measurement. In this exercise we will use regression methods to answer
this question.

(a) Use appropriate estimation methods to fit the model:

E(Yij | Xi) = β0 + β1 · monthij + β2 · Xi + β3 · monthij · Xi

where Xi is the baseline viral load measurement (or a suitable transformation). Interpret your results.
First give an interpretation of the parameters in this regression model. Second, comment on whether
there is a significant association between the baseline viral load measurement and the rate of decline
in CD4 based on your estimates for this model.

(b) The model in (a) makes some strong assumptions about how the rate of decline (slope for month)
differs with the baseline viral load measurement. As a way of checking this model consider using viral
load after categorizing this variable (for example create a factor based on the quartiles of viral load).
Your regression model will take the form:

E(Yij | Xi) = β0 + β1 · monthij +
C∑

k=2

β2,k · Xi(k) +
C∑

k=2

β3,k · monthij · Xi(k)

where Xi(k) is a dummy variable that indicates the category for viral load (with C total categories).
Interpret your results. First give an interpretation of the parameters in this regression model. Second,
comment on whether there is a significant association between the baseline viral load measurement and
the rate of decline in CD4 based on your estimates for this model.

(c) Each of the models considered above can be viewed as examples of a “varying coefficient” model:

E(Yij | Xi) = γ0(Xi) + γ1(Xi) · monthij

Note that in this model the slope for time (month) depends on the value of the covariate Xi. In model
(a) we have assumed that γ1(Xi) = (β1 + β3 · Xi) while in model (b) we use a discrete function where
γ1(Xi) = [β1 +

∑C
k=2 β3,k · Xi(k)]. Can we exploit the advantages of models (a) and (b): in model (a)

we use viral load in its continuous form, but make strong functional assumptions; while in model (b)
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we use a categorical version of viral load but make no functional assumptions as to how the rate of
decline differs for the different viral load categories.

If we let γ0(Xi) and γ1(Xi) take richer functional forms than the linear form used in model (a) then
we can provide a flexible description of how the rate of decline differs for different values of baseline
viral load. For example, we may allow a quadratic function for the coefficients:

γ0(Xi) = γ0,0 + γ0,1 · Xi + γ0,2 · X2
i

γ1(Xi) = γ1,0 + γ1,1 · Xi + γ1,2 · X2
i

This model assumes that the rate of decline in CD4 will vary with viral load according to a quadratic
curve as given by the function γ1(Xi).

This model can be fit using standard correlated data regression methods as it corresponds to a standard
linear mean model:

E(Yij | Xi) = γ0(Xi) +

γ1(Xi) · monthij

= γ0,0 + γ0,1 · Xi + γ0,2 · X2
i +(

γ1,0 + γ1,1 · Xi + γ1,2 · X2
i

)
· monthij

This shows that the model can be written in terms of the “basis” elements for the functions γ0(Xi)
and γ1(Xi), including product terms with month.

Use a varying coefficient model for the rate of decline in CD4 that characterizes how the rate of
decline depends on the value of the baseline viral load. I recommend that you use natural splines
for the coefficient functions and simply choose 2 knots – but you are welcome to choose a different
parametric spline method if you desire.

Plot the estimated coefficient function γ1(Xi) with point-wise 95% confidence bands, and interpret
specific values. Does this plot suggest that the model given in (a) is adequate?

(d) [optional] Consider use of a cubic spline for γ1(Xi) – plot your estimated function with 95%
pointwise confidence intervals and compare results to (a)–(c).

(e) [optional] Compare the inference for model (a) based on WLS or LMM using different weight/covariance
matrices. Are results/conclusions sensitive to the choice of weight matrix?
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