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Question 1

Part a

In the mean model
E[Yij ] = β0 + β1 · TXi + β2 · postij + γ · TXi · postij ,

the parameter γ is interpreted as the additional treatment effect, measured at follow-up, over the initial treatment
effect at baseline.

Part b

The model suggests that we have the following set-up for the means of the 2 treatment groups at baseline and
follow-up:

baseline follow-up

TX = 0 β0 β0 + β2

TX = 1 β0 + β1 β0 + β1 + β2 + γ.

For each individual, we observe 2 observations Yi = (Y0i, Y1i). Thus, we can use a repeated measures model for
Yi that assumes multivariate normality as follows:

Yi =
(

Y0i

Y1i

)
∼ N

(
µ0i

µ1i
,

(
σ2

0 σ0σ1ρ
σ0σ1ρ σ2

1

))
,

where µ0 = β0 + β1TXi and µ1 = (β0 + β2) + (β1 + γ)TXi. Alternatively, since we are assuming joint normality,
we can see that each of the cells in the above table is marginally normally distributed:

Yi0,TX=0 ∼ N(µ00, σ
2
0) ≡ N(β0, σ

2
0)

Yi0,TX=1 ∼ N(µ01, σ
2
0) ≡ N(β0 + β1, σ

2
0)

Yi1,TX=0 ∼ N(µ10, σ
2
1) ≡ N(β0 + β2, σ

2
1)

Yi1,TX=1 ∼ N(µ11, σ
2
1) ≡ N(β0 + β1 + β2 + γ, σ2

1).
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The maximum likelihood estimators for µ00, µ01, µ10, and µ11 are the appropriate sample means. To get the MLE
for γ, notice that:

γ = [(β0 + β1 + β2 + γ)− (β0 + β1)]− [(β0 + β2)− β0]
= (µ11 − µ01)− (µ10 − µ00).

Consequently, the MLE for γ is given by:

γ̂(1) = (µ̂11 − µ̂01)− (µ̂10 − µ̂00)
= (Yi1,TX=1 − Yi0,TX=1)− (Yi1,TX=0 − Yi0,TX=0)
= Yi1,TX=1 − Yi0,TX=1 − Yi1,TX=0 − Yi0,TX=0.

Part c

Under the assumption that σ2
0 = σ2

1 = σ2, the variance of γ̂(1) is given by:

V(γ̂(1)) = V
(
Yi1,TX=1 − Yi0,TX=1 − Yi1,TX=0 − Yi0,TX=0

)
= V

(
Yi1,TX=1 − Yi0,TX=1

)
+ V

(
Yi1,TX=0 − Yi0,TX=0

)
=

1
m

V(Yi1,TX=1 − Yi0,TX=1) +
1
m

V(Yi1,TX=0 − Yi0,TX=0)

=
2
m

(σ2 + σ2 − 2ρσ2)

=
4σ2(1− ρ)

m
,

since study participants are independent of each other.

Part d

Consider the bivariate likelihood for Yi that is given in part (b). We can factor the likelihood into two components:
the marginal distribution of Y0i and the conditional distribution Y1i|0i. This is given by:

f(Yi) = f(Y0i)f(Y1i|0i),

where

Y0i ∼ N(β0, σ
2
0)

Y1i|0i ∼ N

(
β0 + β2 + γTXi + ρ

σ1

σ0
(Y0i − β0), σ2

1(1− ρ2)
)

.

To estimate γ, we see that the contribution to the full likelihood by the marginal distribution of Y0i will factor
out, and so can be ignored. Assuming ρ is known, we can reparametrise the above conditional distribution of
Y1i|0i as follows:

Y1i|0i ∼ N(ξ + γTXi + φY0i, τ
2).

To get the maximum likelihood estimate for γ, notice that the above estimate is essentially a simple linear
regression problem. So, the MLE will be the same as the OLS estimate. We can set up two equations, based on
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the following, and solve them simulataneously for ξ and γ:

TX = 0 :
m∑

i=1

(Yi1,TX=0 − (ξ + φYi0,TX=0))2 (1)

TX = 1 :
m∑

i=1

(Yi1,TX=1 − (ξ + γ + φYi0,TX=1))2. (2)

For (1), we can see that the OLS estimate for ξ will be

ξ̂ = Yi1,TX=0 − φYi0,TX=0.

Given this, from (2), we can see that the estimator for γ will be:

γ̂(2) = Yi1,TX=1 − φYi0,TX=1 − ξ̂

= Yi1,TX=1 − φYi0,TX=1 − Yi1,TX=0 − φYi0,TX=0

= Yi1,TX=1 − φYi0,TX=1 − Yi1,TX=0 − φYi0,TX=0.

Part e

Under the assumption that σ2
0 = σ2

1 = σ2, we have that φ = ρ. Hence, the variance of γ̂(2) is given by:

V(γ̂(2)) = V(Yi1,TX=1 − φYi0,TX=1 − Yi1,TX=0 − φYi0,TX=0)
= V(Yi1,TX=1 − ρYi0,TX=1) + V(Yi1,TX=0 − ρYi0,TX=0)

=
1
m

V(Yi1,TX=1 − ρYi0,TX=1) +
1
m

V(Yi1,TX=0 − ρYi0,TX=0)

=
2
m

(σ2 + ρ2σ2 − 2ρ2σ2)

=
2σ2(1− ρ2)

m
,

since study participants are independent of each other.

Part f

If we assume that the model in part (d) holds, then we see that γ̂(α) is unbiased for γ for any value of α:

E(γ̂(α)) = E(Yi1,TX=1)− αE(Yi0,TX=1)− E(Yi1,TX=0) + αE(Yi0,TX=0)
= (β0 + β2 + γ)− α(β0 + β2)− β0 + αβ0

= γ.

Using the same arguments as parts (c) and (e), the variance of γ̂(α) (assuming σ2
0 = σ2

1 = σ2) is given by:

V(γ̂(α)) =
2σ2(α2 − 2αρ + 1)

m
.
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The estimator γ̂(0) = Yi1,TX=1−Yi1,TX=0 arises from a model that only uses that follow-up data in the estimation
of γ. The variance of γ̂(0) is

V(γ̂(0)) =
2σ2

m
.

We see that γ̂(1) will be more precise than γ̂(0) when

4σ2(1− ρ)
m

<
2σ2

m
.

That is, when ρ > 1
2 . So, the estimate from the model that includes the baseline outcome information is more

precise when the within person correlation is greater than 1
2 . To find the optimal α, we want to minimize V (γ̂(α))

with respect to α. We see that

∂

∂α
α2 − 2αρ + 1 = 2α − 2ρ =set 0

implies that we have a minimum at α = ρ.

Part g

From parts (a)-(f), it seems evident that when we have repeated measurements on individuals, then an optimal
analysis will incorporate information regarding the within-subject variability in the outcome measure. A flexible
(semi-parametric) approach that we could adopt would be to use the General Linear Model for Correlated Data
(GLMCD) using a weighting scheme that is the inverse of the variance-covariance matrix for the vector of subject-
specific observations.

Question 2

In the previous exercise we considered data from the Multicenter Aids Cohort Study (MACS). Scientific interest
is in whether the rate of decline in CD4 count is associated with baseline viral load measurement. The available
data, after removing observations with missing baseline viral load or CD4 counts consists of 1457 observations on
226 subjects. Each subject has at least 3 measurements recorded.

Part a

The data consist of repeated measures on 226 subjects, and consequently, it is desirable to ensure that we account
for within-subject variability in any regression analysis. In the last exercise, we looked at the correlation structure
of the repeated measures and on the basis of an empirical correlation matrix and a variogram, it was concluded
that either an exchangeable or autoregressive correlation structure may be sufficient. Here, we will adopt the
autoregressive correlation structure.

Also in Exercise 5, we noted that the distribution of baseline viral load is heavily skewed. In particular, there
are a few very high baseline viral loads which will likely be highly influential in the estimation of the regression
coefficients. Consequently, baseline viral load was log transformed. In addition, in order to aid interpretation
of certain coefficients, the log transformed baseline viral load was centered at its median value. The median log
viral load is 10.10940, which corresponds to a viral load of approximately 30,000 copies per milliliter.
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We fit the following model with an autoregressive correlation structure, random intercepts and measurement
error:

E[Yij |monthij , Xi] = β0 + β1 ·monthij + β2 ·Xi + β3 ·monthij ·Xi,

where Xi represents the ith subjects’ centered log baseline viral load. From this model, we have the following
output:

Linear mixed-effects model fit by maximum likelihood
Data: macs

AIC BIC logLik
22803.07 22846.51 -11393.53

Random effects:
Formula: ~1 | id

(Intercept) Residual
StdDev: 142.0596 251.1175

Correlation Structure: Exponential spatial correlation
Formula: ~month | id
Parameter estimate(s):

range nugget
41.0730002 0.3074062
Fixed effects: cd4 ~ month * log.vload0

Value Std.Error DF t-value p-value
(Intercept) 757.4284 18.163643 1457 41.70025 0.0000
month -7.0923 0.453009 1457 -15.65588 0.0000
log.vload0 -33.9797 9.935336 224 -3.42008 0.0007
month:log.vload0 -0.4697 0.248757 1457 -1.88815 0.0592

From this model, there are four parameters which we can interpret as follows:

• β0: Expected CD4 count at baseline (ie. seroconversion) for an individual from a population where baseline
viral load equals 10.30822 (ie. the median log viral load among the 226 subjects).

• β1: Change in the expected CD4 count associated with an increase in time of one month, for an individual
from a population where baseline viral load is 10.10940. We could also interpret this as the rate of change
in the expected CD4 count, over the period of a month, for an individual from a population where baseline
log viral load is 10.10940. In this case, we find that subjects where baseline viral load is equal to the median
for the sample have CD4 counts that deteriorate over time, at a rate of roughly 7 CD4 cells per mm3 per
month.

• β2: Difference in the expected CD4 count at baseline comparing two populations whose baseline log viral
load differs by one unit (on the natural log scale). An additive unit increase on the log scale is equivalent
to an e-fold (2.7-fold) multiplicative increase on the original scale.

• β3: The difference in the rate of change of CD4 count over the period of one month associated with an
e-fold increase in baseline viral load. Equivalently, if we compare two populations whose baseline viral load
differs by a multiplicative factor of e, then we expect the population with the higher baseline viral load to
have a rate of change, over the period of one month, that differs by β3. In this case, the rate of change
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will decrease by approximately 0.5 units suggesting that subjects with higher baseline viral load have worse
progression (in terms of CD4 counts) than subjects with lower baseline viral loads.

From the output, we see that the p-value associated with the interaction term is 0.0592. Comparing this to the
usual critical value of 0.05, we find that there is insufficient evidence to indicate that there is an association
between baseline (log) viral load and the rate of decline in CD4.

Part b

The above model makes the strong assumption of linearity about the impact of log baseline viral load. We can
attempt to allow the dependency of CD4 count on log baseline viral load to be more flexible by including a series
of factors which represent quartiles of the log baseline viral load distribution. Towards this end, the range of
(centered) log baseline viral load have been split into 4 equal ranges. Table 1 provides the ranges as well as
the number of subjects (out of 226) that fall into each range. Since the log-transformation is a monotone one,
we can also translate (approximately) the ranges on the log scale onto the original scale. Again, using a linear

Table 1: Log viral load categories, based on splitting the range of the centered log(viral load) for 226 subjects.

Category 1 2 3 4
Range (log) (-4.41, -2.37] (-2.37, -0.34] (-0.34, 1.70] (1.70, 3.73]
Range (original) (300, 2300] (2300, 17550] (17550, 134000] (134000, 1027000]
Number of subjects 32 66 92 36

mixed model with an autoregressive correlation structure, random intercepts and measurement error, we fit the
following mean model:

E(Yij |monthij , Xi) = β0 + β1 · monthi +
4∑

k=2

β2,k ·Xi(k) +
4∑

k=2

β3,k · monthi ·Xi(k),

where Xi(k) is a binary indicator that the centered log baseline viral load for the ith subject is in category k,
where k = 2, 3, 4. Consequently, category 1 serves as the reference (comparison) group. The resulting output is
provided below:

Linear mixed-effects model fit by maximum likelihood
Data: macs

AIC BIC logLik
22809.09 22874.24 -11392.54

Random effects:
Formula: ~1 | id

(Intercept) Residual
StdDev: 139.1644 252.1283

Correlation Structure: Exponential spatial correlation
Formula: ~month | id
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Parameter estimate(s):
range nugget

42.0998788 0.3063569
Fixed effects: cd4 ~ month * log.vload0.cat

Value Std.Error DF t-value p-value
(Intercept) 916.4385 48.31625 1455 18.967501 0.0000
month -5.0257 1.19554 1455 -4.203694 0.0000
log.vload0.cat1 -166.7018 58.73222 222 -2.838336 0.0050
log.vload0.cat2 -189.0272 56.06619 222 -3.371501 0.0009
log.vload0.cat3 -185.4405 66.23679 222 -2.799661 0.0056
month:log.vload0.cat1 -1.8773 1.46049 1455 -1.285404 0.1989
month:log.vload0.cat2 -2.3785 1.38790 1455 -1.713771 0.0868
month:log.vload0.cat3 -3.1067 1.65603 1455 -1.875984 0.0609

In this model, there are 8 parameters, although the interpretations of β2,k and β3,k can be generalized for
k = 2, 3, 4. As indicated above, the reference group for this model is now log viral load category 1.

• β0: Expected CD4 count at baseline (ie. seroconversion) for an individual from a population where baseline
log viral load is given by category 1 (ie. between 300 and 2300 virus copies per ml).

• β1: Change in the expected CD4 count associated with an increase in time of one month for an individual
from a population where baseline log viral load is given by category 1. We could also interpret this as the
rate of change in the expected CD4 count over the period of a month for an individual from a population
where baseline log viral load is given by category 1. In this case, we find that subjects where baseline viral
load is in category 1 have CD4 counts that deteriorate over time at a rate of roughly 5.0 CD4 cells per mm3

per month.

• β2,k: Difference in the expected CD4 count at baseline comparing two populations whose baseline log viral
load are given by category k and category 1, for k = 2, 3, 4.

• β3,k: The difference in the rate of change of CD4 count over the period of one month, comparing two
populations whose baseline log viral load are given by category k and category 1, for k = 2, 3, 4. For
example, the rate of change in the expected CD4 count is estimated to be 2.4 units lower for individuals
whose baseline log viral load is given by category 3 than for individuals whose baseline log viral load is
given by category 1.

The p-value associated with testing the null hypothesis that H0 : β3,2 = β3,3 = β3,4 is 0.257. Consequently,
there is insufficient evidence (at the 0.05 level) to reject the null hypothesis and, therefore, insufficient evidence
to suggest that there is an association between baseline (log) viral load and the rate of decline of CD4.

Part c

Finally, we can allow the viral load components (both main effects and interaction terms) to take on richer
functional forms, by allowing a more flexible class of models. In particular, we fit the following general mean
model:

E(Yij |Xi) = γ0(Xi) + γ1(Xi) · monthij .

Here, instead of assuming linearity (part (a)) or categorising (part (b)), we incorporate natural splines into the
model via the γ0(·) and γ1(·) functions. The basis for the natural splines are based on 2 knots at -0.731 and 0.757,
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which represent the 33 and 67 percentiles of the centered log-transformed baseline viral load distributions. These
correspond approximately to 11800 and 52400 copies of the virus per ml. The following is the output from the
resulting fit:

Linear mixed-effects model fit by maximum likelihood
Data: macs

AIC BIC logLik
22805.08 22870.24 -11390.54

Random effects:
Formula: ~1 | id

(Intercept) Residual
StdDev: 136.0649 252.1396

Correlation Structure: Exponential spatial correlation
Formula: ~month | id
Parameter estimate(s):

range nugget
41.8132786 0.3050983
Fixed effects: cd4 ~ month * ns(log.vload0, knots = c(-0.731, 0.757))

Value Std.Error DF t-value p-value
(Intercept) 979.9785 76.90811 1455 12.742200 0.0000
month -3.8415 1.93321 1455 -1.987129 0.0471
ns(log.vload0, knots = c(-0.731, 0.757))1 -235.3953 76.10289 222 -3.093119 0.0022
ns(log.vload0, knots = c(-0.731, 0.757))2 -427.1893 186.72804 222 -2.287762 0.0231
ns(log.vload0, knots = c(-0.731, 0.757))3 -122.0797 99.07148 222 -1.232239 0.2192
month:ns(log.vload0, knots = c(-0.731, 0.757))1 -1.2681 1.89869 1455 -0.667881 0.5043
month:ns(log.vload0, knots = c(-0.731, 0.757))2 -8.2314 4.69153 1455 -1.754521 0.0796
month:ns(log.vload0, knots = c(-0.731, 0.757))3 -4.0719 2.49339 1455 -1.633083 0.1027

Figure 1(b) provides a plot of the estimated function γ1(Xi) versus the centered log baseline viral load (Xi) along
with approximate 95% confidence intervals. The model given in part (a) specified γ1(Xi) as a linear function of
Xi: γ1(Xi) = β1 +β3Xi. Although figure 1(b) suggests that there may be a steeper downward trend for very high
baseline viral loads, we see that the pointwise confidence intervals are also very wide in this range. This reflects
the lack of subjects in the dataset with very high viral loads. Given figure 1(b), it does not seem unreasonable
that the model given in part (a) is appropriate. Figure 1(a) provides the corresponding plot of γ1(Xi) for the
linear model in part (a).

Part d

Now, we incorporate cubic splines into the model. The basis for the cubic splines are based on 2 knots at -
0.731 and 0.757, which represent the 33 and 67 percentiles of the centered log-transformed baseline viral load
distributions. These correspond approximately to 11800 and 52400 copies of the virus per ml. The following is
the output from the resulting fit:

Linear mixed-effects model fit by maximum likelihood
Data: macs

8



−4 −2 0 2 4

−
15

−
10

−
5

0

log Baseline Viral Load − centered at the median

ga
m

m
a.

1

−4 −2 0 2 4

−
15

−
10

−
5

0

log Baseline Viral Load − centered at the median

ga
m

m
a.

1

(a) Linear mean model (part (a)) (b) Natural Splines mean model (part (c))

Figure 1: Estimated γ1(Xi) function based on the specified mean model.

AIC BIC logLik
22808.16 22895.03 -11388.08

Random effects:
Formula: ~1 | id

(Intercept) Residual
StdDev: 144.3522 246.4502

Correlation Structure: Exponential spatial correlation
Formula: ~month | id
Parameter estimate(s):

range nugget
39.179053 0.320427
Fixed effects: cd4 ~ month * bs(log.vload0, knots = c(-0.731, 0.757))

Value Std.Error DF t-value p-value
(Intercept) 992.8634 102.82696 1453 9.655672 0.0000
month -6.6019 2.54972 1453 -2.589283 0.0097
bs(log.vload0, knots = c(-0.731, 0.757))1 -95.6093 205.58448 220 -0.465061 0.6423
bs(log.vload0, knots = c(-0.731, 0.757))2 -243.3302 128.93242 220 -1.887269 0.0604
bs(log.vload0, knots = c(-0.731, 0.757))3 -256.6787 152.38239 220 -1.684438 0.0935
bs(log.vload0, knots = c(-0.731, 0.757))4 -406.3492 172.98171 220 -2.349087 0.0197
bs(log.vload0, knots = c(-0.731, 0.757))5 -76.0078 216.77563 220 -0.350629 0.7262
month:bs(log.vload0, knots = c(-0.731, 0.757))1 5.6649 5.09815 1453 1.111160 0.2667
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month:bs(log.vload0, knots = c(-0.731, 0.757))2 -2.5081 3.21320 1453 -0.780558 0.4352
month:bs(log.vload0, knots = c(-0.731, 0.757))3 -0.2466 3.76543 1453 -0.065481 0.9478
month:bs(log.vload0, knots = c(-0.731, 0.757))4 1.3511 4.35045 1453 0.310561 0.7562
month:bs(log.vload0, knots = c(-0.731, 0.757))5 -8.3616 5.43518 1453 -1.538416 0.1242

Figure 2 provides a plot of the estimated function γ1(Xi) versus the centered log baseline viral load (Xi) along
with approximate 95% confidence intervals. We notice that this curve is wigglier than the curve presented in part
(c). As for part (c), this figure suggests that there may be a steeper downward trend for very high baseline viral
loads, but we see that the pointwise confidence intervals are also very wide in this range. Again, this reflects the
lack of subjects in the dataset with very high viral loads. From this figure, the model given in part (a) no longer
seems appropriate.
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Figure 2: Estimated γ1(Xi) function based on the specified mean model.

Part e

There are a multitude of other models that can be fit. Here, we fit two additional models: one with only random
intercepts, and one with random intercepts and slopes. Below is the output from fitting those two models:

Linear mixed-effects model fit by maximum likelihood
Data: macs

AIC BIC logLik
22942.41 22974.98 -11465.20

Random effects:
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Formula: ~1 | id
(Intercept) Residual

StdDev: 213.3492 186.4047

Fixed effects: cd4 ~ month * log.vload0
Value Std.Error DF t-value p-value

(Intercept) 746.3470 16.443838 1457 45.38764 0.0000
month -6.9269 0.316321 1457 -21.89836 0.0000
log.vload0 -35.7910 8.988696 224 -3.98178 0.0001
month:log.vload0 -0.3798 0.173747 1457 -2.18616 0.0290

Linear mixed-effects model fit by maximum likelihood
Data: macs

AIC BIC logLik
22816.65 22860.08 -11400.32

Random effects:
Formula: ~1 + month | id
Structure: General positive-definite

StdDev Corr
(Intercept) 239.303086 (Intr)
month 5.515425 -0.445
Residual 165.600953

Fixed effects: cd4 ~ month * log.vload0
Value Std.Error DF t-value p-value

(Intercept) 746.2187 17.604520 1457 42.38790 0.0000
month -6.9497 0.474419 1457 -14.64877 0.0000
log.vload0 -34.9735 9.623243 224 -3.63428 0.0003
month:log.vload0 -0.4349 0.260099 1457 -1.67224 0.0947

In general, we notice that our parameter estimates are not all that sensitive to the specification of the variance.
We notice that the point estimates for the interaction term (the term of scientific interest) are slightly smaller
in the models fit above compared to the model fit in part (a). We also notice that our inference would change
depending on which model we choose to fit (inference from the model with random intercepts alone indicates
a significant result at the 0.05 level). Thus, we can clearly see that our assumptions regarding the correlation
structure does have an influence on inference.

R Code

## Question 2

library(nlme)
library(splines)

macs<-read.table("MACS-cd4-vload0.data", header=FALSE)
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macs<-macs[,c(1,2,4,6)]
names(macs)<-c("id", "month", "cd4", "vload0")

# Remove those subjects for whom the baseline viral load measurement and/or cd4 count is missing
# Remove subjects with less than 3 cd4 measurements; 13 subjects
n.obs <- unlist( lapply( split( macs$id, macs$id), length ) ) # number of observations per person
drop <- n.obs[ n.obs < 3 ]
drop.id <- as.numeric (names(drop) )
macs$id[is.element(macs$id, drop.id)] <- NA
macs <- na.omit( macs )
macs$log.vload0 <- log( macs$vload0 ) - median( log( macs$vload0 ) )

# Part a
mod1<-lme(cd4~month*log.vload0, method="ML", random=reStruct(~1|id, pdClass="pdSymm", REML=F),
correlation = corExp(form=~month|id, nugget=TRUE), data=macs)
summary(mod1)

# Part b
cutoffs<-min(macs$log.vload0) + c(1:3 / 4) * (max(macs$log.vload0)-min(macs$log.vload0))
macs$log.vload0.cat<-rep(0, 1685)
for(i in 1:3) {
macs$log.vload0.cat[macs$log.vload0 > as.numeric(cutoffs[i])] <- i
}
macs$log.vload0.cat <- as.factor( macs$log.vload0.cat )
apply( (table( macs$id, macs$log.vload0.cat ) !=0 ), 2, sum ) # number of subjects per log(VL) quartile

mod2<-lme(cd4~month*log.vload0.cat, method="ML", random=reStruct(~1|id, pdClass="pdSymm", REML=F),
correlation = corExp(form=~month|id, nugget=TRUE), data=macs)
summary(mod2)
mod2b<-lme(cd4~month+log.vload0.cat, method="ML", random=reStruct(~1|id, pdClass="pdSymm", REML=F),
correlation = corExp(form=~month|id, nugget=TRUE), data=macs)
summary(mod2b)
anova(mod2, mod2b)

# Part c
knots.log.vload0<-as.vector(quantile(macs$log.vload0, prob=c(1/3, 2/3)))
mod3<-lme(cd4~month*ns(log.vload0, knots=c(-0.731, 0.757)), method="ML", random=
reStruct(~1|id, pdClass="pdSymm", REML=F), correlation = corExp(form=~month|id, nugget=TRUE),
data=macs)
summary(mod3)

gamma.1.coef.a<-fixef(mod1)[c(2,4)] # linear gamma_1
varcov.a<-mod1$varFix[c(2,4),c(2,4)]
design.mat.a<-cbind(1, macs$log.vload0)
gamma.1.a<-design.mat.a%*%gamma.1.coef.a
gamma.1.var.a<-design.mat.a%*%varcov.a%*%t(design.mat.a)
gamma.1.se.a<-sqrt(diag(gamma.1.var.a))
gamma.1.upper.a<-gamma.1.a+(qnorm(0.975)*gamma.1.se.a)
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gamma.1.lower.a<-gamma.1.a-(qnorm(0.975)*gamma.1.se.a)

gamma.1.coef.c<-fixef(mod3)[c(2,6,7,8)] # natural spline gamma_1
varcov.c<-mod3$varFix[c(2,6,7,8),c(2,6,7,8)]
design.mat.c<-cbind(1, ns(macs$log.vload0, knots=c(-0.731, 0.757)))
gamma.1.c<-design.mat.c%*%gamma.1.coef.c
gamma.1.var.c<-design.mat.c%*%varcov.c%*%t(design.mat.c)
gamma.1.se.c<-sqrt(diag(gamma.1.var.c))
gamma.1.upper.c<-gamma.1.c+(qnorm(0.975)*gamma.1.se.c)
gamma.1.lower.c<-gamma.1.c-(qnorm(0.975)*gamma.1.se.c)

ooo<-order(macs$log.vload0)
plot(macs$log.vload0[ooo], gamma.1.a[ooo], xlab="log Baseline Viral Load - centered at the
median", ylab="gamma.1", ylim=range(c(gamma.1.lower.c, gamma.1.upper.c, gamma.1.lower.a,
gamma.1.upper.a) ), type=’l’)
lines(macs$log.vload0[ooo], gamma.1.upper.a[ooo], lty=3)
lines(macs$log.vload0[ooo], gamma.1.lower.a[ooo], lty=3)

plot(macs$log.vload0[ooo], gamma.1.c[ooo], xlab="log Baseline Viral Load - centered at the
median", ylab="gamma.1", ylim=range(c(gamma.1.lower.c, gamma.1.upper.c) ), type=’l’)
lines(macs$log.vload0[ooo], gamma.1.upper.c[ooo], lty=3)
lines(macs$log.vload0[ooo], gamma.1.lower.c[ooo], lty=3)

# Part d
macs$log.vload0.sq<-macs$log.vload0^2
macs$log.vload0.cu<-macs$log.vload0^3
macs$log.vload0.k1.cu<-(macs$log.vload0-knots.log.vload0[1])^3
macs$log.vload0.k2.cu<-(macs$log.vload0-knots.log.vload0[2])^3

mod4<-lme(cd4~month*bs(log.vload0, knots=c(-0.731, 0.757)), method="ML", random=
reStruct(~1|id, pdClass="pdSymm", REML=F), correlation = corExp(form=~month|id, nugget=TRUE),
data=macs)
summary(mod4)

gamma.1.coef.d<-fixef(mod4)[c(2,8,9,10,11,12)] # cubic spline gamma_1
varcov.d<-mod4$varFix[c(2,8,9,10,11,12),c(2,8,9,10,11,12)]
design.mat.d<-cbind(1, bs(macs$log.vload0, knots=c(-0.731, 0.757)))
gamma.1.d<-design.mat.d%*%gamma.1.coef.d
gamma.1.var.d<-design.mat.d%*%varcov.d%*%t(design.mat.d)
gamma.1.se.d<-sqrt(diag(gamma.1.var.d))
gamma.1.upper.d<-gamma.1.d+(qnorm(0.975)*gamma.1.se.d)
gamma.1.lower.d<-gamma.1.d-(qnorm(0.975)*gamma.1.se.d)

plot(macs$log.vload0[ooo], gamma.1.d[ooo], xlab="log Baseline Viral Load - centered at the
median", ylab="gamma.1", ylim=range(c(gamma.1.lower.d, gamma.1.upper.d) ), type=’l’)
lines(macs$log.vload0[ooo], gamma.1.upper.d[ooo], lty=3)
lines(macs$log.vload0[ooo], gamma.1.lower.d[ooo], lty=3)
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# Part e
# random intercepts only
mod5a<-lme(cd4~month*log.vload0, method="ML", random=reStruct(~1|id, pdClass="pdSymm", REML=F),
data=macs)
summary(mod5a)

# random intercepts and slopes
mod5b<-lme(cd4~month*log.vload0, method="ML", random=reStruct(~1+month|id, pdClass="pdSymm",
REML=F), data=macs)
summary(mod5b)
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