
Bio/Stat 571
Exercise #4 Winter 2010
Due: February 3, 2010 P. Heagerty

Reading: • Diggle, Heagerty, Liang & Zeger, Chapters 2, & 3
◦ Verbeke & Molenberghs, Chapters 1, 2, & 3

Overdispersion and Relative Efficiency

1. In this exercise we will consider the relative efficiency of count data regression estimators that
adopt either the Poisson (scale) variance model, or weighted estimators that adopt the negative bino-
mial variance model. The key issue that we focus on is whether using the correct variance model leads
to substantially more efficient regression estimators? First we will evaluate analytical forms for the
regression estimators and then verify our calculations using simulation.

A Poisson regression estimator solves the estimating equation:

0 = U0(β) =
n∑

i=1

(
XT

i µi

)
(1/µi)(Yi − µi)

while an estimator that adopts the negative-binomial variance solves:

0 = U2(β) =
n∑

i=1

(
XT

i µi

)
{1/[µi · (1 + α · µi)]}(Yi − µi)

Let β̂
(0)

denote the standard Poisson estimator (solution to U0) and let β̂
(2)

denote the solution to
the negative-binomial variance weighted estimator (solution to U2). Let n = 200 denote the number of
observations and

µi = exp( 1.0 + 1.5 ·X1,i + 1.0 ·X2,i )

X1,i = (i− n/2)/n

X2,i = 1(i > 100)

(a) First, assume that the negative-binomial variance is the correct form. For α = 0.25, 0.50, 1.0 com-

pare the relative efficiency of β̂
(0)

to β̂
(2)

by deriving and computing the variance for each of these
regression estimators in this situation. Comment on apparent patterns.

(b) For α = 1.0 compute the relative efficiency for different values of β. Specifically, let β1 = 0, 0.5, 1.0.
Comment on apparent patterns.
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(c) Second, assume that the correct model is now the scale model where var(yi) = φ · µi. For

φ = 2.0, 3.0, 4.0 compare the relative efficiency of β̂
(0)

to β̂
(2)

by deriving and computing the vari-
ance for each of these regression estimators in this situation. Comment on apparent patterns.

(d) Use simulations to verify the calculations in (a) for α = 1 and in (c) for φ = 4.0. To gener-
ate the data use unobserved heterogeneity with scaled gamma random effects (ie. E(Yi | νi) = µi · νi.
(see lecture notes pp. 171–175)

(e)[optional] Finally, in our computations in 1(a) we treated α as if it were fixed and known. In

practice we actually estimate α. Comment on the impact of the estimation of α on the variance of β̂
(2)

(either mathematically or via simulation).

Continuous Correlated Data

2. In this exercise we will generate correlated continuous data with different forms for the correla-
tion (covariance) structure. Let the number of observations per subject be ni = 10, evaluated at times
tij = j for j = 1, 2, . . . , 10. Use the mean model:

E(Yij | Xi) = β0 + β1 · tij (1)

For each of the scenarios below generate response vectors, Y i = (Yi1, Yi2, . . . , Yi10) with the specified
covariance structure. Generate data for m = 25 subjects for each scenario. Use the parameter value
β = (70, 10) for each scenario.

(a) Random Intercepts: To introduce correlation we assume that each subject has their own intercept.
The complete model is given by equation (1) and:

Yij = β0 + β1 · tij + b0,i + εij

b0,i ∼ N (0, τ2)

εij ∼ N (0, σ2)

where b0,i and εij are mutually independent.

◦ Give the general form for the covariance matrix Σ = cov(Y i).

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ = 20.0, τ = 5.0.

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ =
√

(425/2), τ =
√

(425/2).

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ = 5.0, τ = 20.0.
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(b) Random Intercepts and Slopes: To introduce correlation we assume that each subject has their
own intercept and their own slope. The complete model is given by equation (1) and:

Yij = β0 + β1 · tij + b0,i + b1,itij + εij

bi ∼ N (0,D)

εij ∼ N (0, σ2)

where bi = (b0,i, bi,1) and εij are mutually independent. Let σ = 1.

◦ Give the general form for the covariance matrix Σ = cov(Y i).

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ = 1.0,D =

[
100.0 0

0 2

]
.

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ = 1.0,D =

[
100 −2
−2 2

]
.

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ = 1.0,D =

[
50 0
0 4

]
.

(c) Serial Correlation: To introduce correlation we assume that each subject has their own “process”
that is serially correlated. The complete model is given by equation (1) and:

Yij = β0 + β1 · tij + Wi(tij) + εij

W i ∼ N (0,G)

var[Wi(tij)] = τ2 diagonal elements of G

cov[Wi(tij),Wi(tik)] = τ2ρ|tij−tik| off-diagonal elements of G

where W i and εij are mutually independent.

◦ Give the general form for the covariance matrix Σ = cov(Y i).

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ = 10.0, τ = 20.0, ρ = 0.7.

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ = 10.0, τ = 20.0, ρ = 0.9.

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ = 5, τ = 20.0, ρ = 0.9.

(d) Non-normal random effects: A standard assumption in linear mixed models is the normality of
random effects. In this section we will generate non-normal random effects and plot the data. Is the
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non-normality apparent in the data?

We return to the assumption that each subject has their own intercept. The complete model is now
given by:

Yij = β0 + β1 · tij + b0,i + εij

b0,i ∼ Fb

εij ∼ N (0, σ2)

where b0,i and εij are mutually independent.

◦ If the random effects distribution has mean 0 and variance τ2 then give the general form for the
covariance matrix Σ = cov(Y i).

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ = 5.0, τ = 10.0, and exponential random
effects (centered to have mean 0: b0,i = τ · (zi − 1), where zi ∼ exponential).

◦ Generate Y i and plot (lines) versus ti for m = 25 using σ = 5.0, τ = 10.0, and χ2(4) random effects
(centered and scaled to have mean 0 and standard deviation τ : b0,i = τ ·(zi−4)/

√
8, where zi ∼ χ2(4)).

◦ If you had 10 observations on each of 100 subjects then can you suggest a method for evaluat-
ing assumptions regarding the distribution of random intercepts and random slopes? What might you
do to see if the standard assumption of normality appears satisfied?
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