
Bio/Stat 571
Exercise #3 Winter 2010
Due: January 27, 2010 P. Heagerty

Reading: • Cameron & Trivedi, Chapter 2 (skip 2.5.2-2.5.4)
• Liang & McCullagh (1993) Biometrics article
◦ McCullagh & Nelder, sections 4.5, 6.2 (overdispersion)
◦ Lindsey, Chapter 5, “Overdispersion”
◦ Carroll, Ruppert & Stefanski, Appendix A

1. The file Bees-data.txt contains information about the “working activity” of bees as a function of
time of day. One of the important characteristics of working activities is the number of bees leaving
the hive for outside activity. The data record the number of bees that left the hive per hour, and the
hour under study. The data contian the bee count (Number) over 11 hours in the day (Time), and over
several successive non-rainy days.

(a) Use poisson regression with different functions of Time and evaluate their fit to the data using
plots of the fitted mean, and appropriate residual plots. In particular evaluate the following mean
models

model 1 linear in Time
model 2 quadratic in Time
model 3 cubic in Time
model 4 linear splines in Time with knots at 9, 11, 13, 15
model 5 cubic splines in Time with knots at 9, 11, 13, 15
model 6 natural splines in Time with knots at 9, 11, 13, 15
model 7 saturated model using factor(Time)

Based on these plots which model(s) appear appropriate in order to characterize the average number
of bees leaving the hive as a function of hour of day?

(b) Using an appropriate mean model based on your work in 1(a) create residual plots that can
summarize evidence for overdispersion. In particular, do these data suggest either a scale form, or
a negative binomial form for overdispersion?

(c) Using a negative binomial model fit models 1-7 above and compute the AIC value. Based on
these summaries suggest a plausible parsimonious model and plot the fitted mean as a function of time
with pointwise 95% confidence intervals.

(d) Compare the fitted mean function (and confidence interval) obtained using appropriate quasi-
likelihood methods to the results obtained in 1(c).

(optional) Using appropriate methods construct pointwise 90% prediction intervals for the number
of bees leaving the hive as a function of time. State the assumptions that you are making in order to
obtain these prediction intervals.
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2. In this exercise we will consider a mechanism for overdispersed Poisson data and evaluate the re-
sulting impact on standard errors for regression estimators. In particular, we will consider a model for
count data when there may be a large number of zero counts. Such models are particularly useful for
studies of health care utilization where many subjects have no in-patient (or out-patient) visits while
other subjects have 1 or more visits (during a fixed follow-up period). For an agricultural application
Hall (2000) Biometrics describes a scenario where the impact of chemical treatment is assessed for
plants. In some leaves insect reproduction is completely suppressed, while for other leaves the number
of insect offspring may be reduced but not completely suppressed. Resulting leaf counts of insect off-
spring would contain a mixture of zero counts and possibly Poisson counts.

Consider the following hierarchical, or mixture model:

νi ∼ binomial(1, pi)

Yi | νi ∼ Poisson( λiνi )

Note: page 32 of Cameron & Trivedi is particularly helpful for the questions that follow.

(a) Derive the mean and variance of Yi and express the variance as a function of the mean µi = E(Yi)
and the parameter pi.

(b) Suppose that we are interested in the mean of Yi as a function of covariates Xi. Assume that
both λi and pi may depend on the value of covariates. Since the outcome is a count, it would be
possible (and natural) to use Poisson regression methods to link covariates to the mean response. For
Poisson regression with log link the score equations are U(β) = XT (Y − µ) = 0. Using the results
of White (1982), what is the variance of the regression estimator, β̂, that solves these equations if the
variance of Yi is actually given by your expression in (a)? Note: the matrix A is simply the information
matrix assuming the model is correctly specified (ie. if var(Yi) = µi : the Poisson variance function).

(c) What is the variance of the estimator that solves U(β) = 0 if the true variance of Yi is given
as var(Yi) = φµi?

(d) What is the variance of the estimator that solves U(β) = 0 if the true variance of Yi is given
as var(Yi) = µi + αµ2

i , one parameterization of the negative-binomial variance?

(e) What assumptions regarding µi and pi as functions of Xi would lead to (c), and similarly what
assumptions would lead to (d)?

(f) Simulate overdispersed data where Xi,1 = i/n, Xi,2 = 0 if i <= n/2 and Xi,2 = 1 if i > n/2,
and:

log λi = γ0 + γ1Xi,1 + γ2Xi,2

log pi = δ0 + δ1Xi,1
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where γ0 = 0, γ1 = 2, γ2 = 1, and δ0 = log(0.60), δ1 = log(0.80/0.60). Use a sample size of N = 150.
Construct residual plot(s) that can be used to guide whether the negative-binomial variance form,
var(Yi) = µi + α · µ2

i , or the scale overdispersion model, var(Yi) = φ · µi, is suggested by the residuals.
Create a plot that can be used to determine if var(Yi) = µi + αi · µ2

i where αi is a function of Xi.

(g) Program your variance estimates given in (c) and (d). For your simulated data set compare the
resulting standard error estimates to those obtained from the Poisson assumption. Note: you will need
estimates of φ and α – use simple moment estimators based on the Pearson residuals.

(h) Program the empirical standard error estimator for this count regression model (ie. log link Pois-
son regression). For your simulated data set compare the empirical standard error estimates to those
obtained in (g).

(i) Simulate 1000 data sets and obtain β̂ and the (4) common standard error estimates (ie. assuming
Poisson, assuming var(Yi) = φµi, assuming var(Yi) = µi + αµ2

i , and empirical). Compare the standard
errors estimates, evaluating whether they appear to be approximately unbiased, and whether they yield
nominal coverage for 95% confidence intervals.

(j) Also, on your 1000 simulated data sets, use a negative binomial model to estimate β and the
standard error of β̂ (ie. use glm.nb). Is the model based standard error provided using the negative
binomial model approximately unbiased, and does it yield appropriate coverage? Is there evidence that
the negative binomial estimator is more efficient than the poisson regression estimator?

(optional) Propose a method for separately estimating the effect of covariates on pi and λi.
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