Biostat/Stat 571 Exercise #3

Answer Key

Problem 1:

One important characteristic of “working activity” for bees is the number of bees that leave the hive
per hour. The file bees.data contain bee count (Number) over 11 hours in the day (Time), and over several
successive non-rainy days.

To characterise the number of bees leaving as a function of time, one might be tempted to assume that
the observed counts come from some underlying Poisson process, where the rate is a function of the time
of day. Fitting a Poisson regression would the be appropriate. It is important to consider that the data
may exhibit extra variation, relative to a Poisson distribution (i.e. overdispersion). Here we are going to
investigate the extent of overdispersion in the Number counts.

(a) Before we investigate the extent of overdispersion in the data it is important to ensure that we have
adequately modelled the mean as a function of time. To do this we can entertain a series of mean
models, which increase in their flexibility but at the same time increase in the number of parameters.
We consider 7 possible mean models:

model 1  linear in Time

model 2 quadratic in Time

model 3 cubic in Time

model 4 linear splines in Time with knots at 9, 11, 13, 15
model 4 cubic splines in Time with knots at 9, 11, 13, 15
model 4 natural splines in Time with knots at 9, 11, 13, 15
model 7 saturated model using factor(Time)

Figure 1 shows fitted means for mean models 1-6. In addition, for each plot the fitted means for
the saturated model is included. In terms of fitting the data the saturated model provides the best
that we can hope for (given the data). It also includes the largest number of parameters. We can
therefore compare the fitted means from models 1-6 in the hope of finding a relatively parsimonious
model that adequately describes the trends. We can see that the closest correspondence comes with
models 5 and 6, with models 2-4 not being too bad. Figure 2 provides the Pearson residuals from
models 1-6. Using a lowess smoother we can assess any trends in the residuals. Here we see simi-
lar trends to Figure 1, where models 2-6 seems to be doing relatively well and model 1 does very poorly.

Taking what we can see from Figures 1 and 2 it seems that the “best” choice for a mean model might
be either model 5 or model 6.
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Figure 1: Solid lines: of the fitted means versus Time for each of models 1-6. Dashed lines: fitted means for
the saturated mean model (model 7).
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Figure 2: Pearson residuals versus fitted values. A lowess smoother has been applied to each plot to investi-
gate mean model misspecification.
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(b) Figure 3 provides a plot of the squared Pearson residuals versus the fitted means. Under the Poisson
assumption, we would expect these quantities to have expectation equal to 1. A lowess smoother
applied to the data provides evidence that this is not the case, indicating that the data are indeed
overdispersed. It isn’t clear whether a scaled variance (which would result in a flat line greater than
1) or a negative binomial variance (which would result in an increasing straight line) are appropriate
here. Given the sparse data for low fitted values, I would be less inclined to trust the dips on the left-
hand sides of the plots. Overall I am inclined to beleive that a scale form for the variance is more likely.

Squared Pearson Residuals vs Fitted Values (restricted y-axis)
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Figure 3: Residual plots to examine the extend of overdispersion (relative to a Poisson distribution) in the
bee count data.

(c) Initially, we can consider fitting a negative binomial model to the overdispersed bee data, using each
of the 7 mean models indicated above. These were performed in S-Plus using the glm.nb function,
with the loglikelihood being reported as part of the output. Note that these results differ from the
AIC values produced by the AIC function in S-plus.

Given this specification of the AIC, larger values indicate “better” models. We can see from Table 1
that the two models with the highest AIC values are models 5 and 6. Given that model 6 has fewer
parameters (7 versus 9), for only a slight decrease (relatively) in the AIC value, I am going to use
model 6 as a plausible parsimonious model. Figure 4(a) provides the fitted means, as well as pointwise
95% confidence intervals, as functions of time.
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Mean Model 2 x LogLike

# of parameters AIC

model 1 43578.8
model 2 43922.2
model 3 43953.4
model 4 43964.1
model 5 43986.2
model 6 43979.9
model 7 43988.0

43572.8
43914.2
43943.4
43950.1
43968.2
43965.9
43964.0

=1 O =] Ot = W
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Table 1: Computed AIC values : 2 x LogLike - 2 x # of parameters

(d) Figure 4(b) examines the results from the fit of a quasilikelihood model using the same mean model
(model 6) as in 1(c). In particular, the variance is chosen to be the scale variance form. That is, it
assumes that the mean-variance relationship is of the following form : V(u) = ¢u. From the S-Plus
fit of the model the scale parameter ¢ is estimated to be 10.11354.

Number

Fitted Values and 95% CI. Neg. Binomial

(a) Negative Binomial

Number

“0
L

Fitted Values and 95% C|: Quasilikelihood

(b) Quasilikelihood

Figure 4: Results from two fits, each using mean model 6 (natural splines).
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S-Plus Code

RHHHH

##### Read the data

#HHHH

#

bees <- read.table( "C:\\TA\\E71_W03\\data\\bee_data.txt", header=T )

#

#aspy

#4484 Part (a) : fit a number of models to evaluate the mean form

HHH#H

#

modell <- glm( Number " Time, family = poisson, data = bees )

model2 <- glm( Number ~ Time + Time"2, family = poisson, data = bees )

medel3 <- glm( Number ~ Time + Time"2 + Time"3, family = poisson, data = bees )

modeld <- glm( Number ~ bs( Time, knots = ¢(9,11,13,15), degree=1 ), family = poisson, data = bees )

model5 <- glm( Number ~ bs( Time, knots = c(9,11,13,15) ), family = poisson, data = bees )

medelf <- glm( Number ~ ns( Time, knots = c(9,11,13,15) ), family = poisson, data = bees )

model? <- glm( Number ~ factor(Time), family = poisson, data = bees )

#

uT <- unique(bees$Time)

uT <- uT[order (uT)]

ufl <- predict( modell, newdata = list(Time = uT), type = "response")

uf2 <- predict( model2, newdata = list(Time = uT), type = "response")

uf3 <- predict( model3, newdata = list(Time = uT), type = "response")

ufd4 <- predict( model4, newdata = list(Time = uT), type = "response")

ufb <- predict( model5, newdata = list(Time = uT), type = "response”)

uff <- predict( model€, newdata = list(Time = uT), type = "response")

uf? <- predict( model7, newdata = list(Time = uT), type = "response")

#

par{ mfrow = ¢(2,3) )

plot( uT, ufl, xlab = "Time (hour)", ylab = "Number", main = "Model 1", ylim = c(0,40}, type = "1" }; lines( uT, uf7, 1ty = 3 )

plot( uT, uf2, xlab = "Time (hour)", ylab = "Number", main = "Model 2", ylim = ¢(0,40), type = "1" ); lines( uT, uf7, lty = 3 )

plot( uT, uf3, xlab = "Time (hour)", ylab = "Number", main = "Model 3", ylim = c(0,40), type = "1" ); lines( uT, uf7, 1ty = 3 )

plot( uT, uf4, xlab = "Time (hour)", ylab = "Number", main = "Model 4", ylim = c(0,40), type = "1" ); lines( uT, uf?, 1ty = 3 )

plot( uT, uf5, xlab = "Time (hour)", ylab = "Number", main = "Model 5", ylim = c(0,40), type = "1" ); lines( uT, uf?, lty = 3 )

plot( uT, uf6, xlab = "Time (hour)", ylab = "Number", main = "Model 6", ylim = c(0,40), type = "1" ); lines( uT, uf7, Ity = 3 )

#

par( mfrow = ¢(2,3) )

plot( modeli$fitted, residuals(modell, type = "pearson"), xlab = "Fitted Values", ylab = "Pearson Residuals", main = "Model 1",

lines(lowess( modeli$fitted, residuals(modell, type = "pearson") ))

abline( h = 0, 1ty = 3 )

plot( model2$fitted, residuals(model2, type = "pearson"), xlab = "Fitted Values", ylab = "Pearson Residuals", main = "Model 2",

lines(lowess( model2$fitted, residuals(model2, type = "pearson") ))

abline( h = 0, lty = 3 )

plot( model3$fitted, residuals(model3, type = "pearson”), xlab = "Fitted Values", ylab = "Pearson Residuals", main = "Model 3",

lines(lowess( model3$fitted, residuals(model3, type = "pearson") ))

abline( h = 0, 1ty = 3 )

plot( modeld$fitted, residuals(modeld, type = "pearson"), xlab = "Fitted Values", ylab = "Pearson Residuals", main = "Model q",

lines(lowess( model4$fitted, residuals(modeld, type = "pearson") ))

abline( h = 0, 1ty = 3 )

plot( model5§fitted, residuals(modelS, type = "pearson"), xlab = "Fitted Values", ylab = "Pearson Residuals", main = "Model 5",

lines(lovess( model5$fitted, residuals(model5, type = "pearson") ))

abline( h = 0, 1ty = 3 )

plot( model6$fitted, residuals(model6, type = "pearson"), xlab = "Fitted Values", ylab = "Pearson Residuals", main = "Model 6",

lines(lovess( model€$fitted, residuals(modelf, type = "pearson”) ))
abline( h = 0, 1ty = 3 )

#

i

###u# Part (b) : fit flexible model for time and evaluate overdispersion
HwHn

#

model0 <~ glm( Number ~ ns( Time, knots = c(9,11,13,18) ), family = poisson, data = bees )
#

summary( modelQ, cor = F )

#

par( mfrow = c(2,1}) )

plot( modelO$fitted, residuals(modelQ, type = "pearson")"2, xlab = "Fitted Values", ylab = "Squared Pearson Residuals",

main = "Squared Pearson Residuals vs Fitted Values (restricted y-axis)", pch = ".", yl
lines(lowess( model0$fitted, residuals(modeld, type = "pearson")"2 ))
abline( h = 0, 1ty = 3 )

im = ¢(0,20) }

plot{ bees$Time, residuals(model(, type = "pearson")"2, xlab = "Fitted Values", ylab = "Sguared Pearson Residuals",

main = "Squared Pearson Residuals vs Time (restricted y-axis)", pch = ".", ylim = c(0,
lines(lowess( bees$Time, residuals(modell, type = "pearson")"2 ))
abline( h = 0, 1ty = 3 )
#
#HH#H#H

200 3

##### Part (c) : use negative binomial model and AIC to identify adequate mean functions

#anhy

#

library( mass )

modell.nb <~ glm.nb( Number - Time, data = bees )

pch

pch

pch

pch

pch

pch
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model2.nb
model3.nb
modeld.nb
modelS.nb
model6.nb
model?.nb

#

## Compute

#

AIC1
AIC2.
AIC3
AIC4.
AICS
AICE
AICT
#

.nb

nb

.nb

nb

.nb
.mb
.nb

&=
<=
.
<=
<=
o

the AIC

el
cf
c(
4
c(
Gl
el

Number
Number
Number
Number
Number
Number

glm.nb(
glm.nb(
glm.nb(
glm.nb(
glm.nb(
glm.nb(

modell
model2

.nb¥twologlik,
.nbftwologlik,
model3, nb$twologlik,
modeld,nb$twologlik,
model5 ., nb$twologlik,
modelf.nbftwologlik,
model?.nbftwologlik,

bs{ Time, knots

: bigger is better

length(modell . nb$coef)
length(model2.nbfcoet)
length(model3.nbfcoef)
length(model4. nb$coef)
length(modelS.nb$coef)
length(model6.nb$coef)
length(model?.nb¥coet)

round(rbind( AICi.nb, AIC2.nb, AIC3.nb, AIC4.nb, AICS.nb,

#

## Choose the natural splines model

#

results <- predict( model6.nb, newdata = list(Time = uT), type
plot( uT, results$fit, type = "1", xlab = "Time",
"Fitted Values and 95% CI: Meg. Binomial", ylim
lines( uT, results$ci.fit[,1], lty
lines{ uT, results$ci.fit[,2], 1ty

main

#
L

#a##d Part (d)

HAn
#

model6.q <= glm( Number ~ ns( Time, knots
results <- predict( model6.q, newdata = list(Time

plot{ uT, results$fit, type = "1",

main

ylab =

33
3)

: comparison with quasilikelihood

uT),
xlab = "Time", ylab =

"Fitted Values and 95), CI: Quasilikelihood", ylim

lines( uT, results$ci.fit[,1], 1ty =3 )
lines({ uT, results$ci.fit[,2], lty = 3 )

Time + Time"2, data = bees )
Time + Time"2 + Time"3, data = bees )
c(9,11,13,15), degree=1 }, data = bees )
~ be( Time, knots = ¢(9,11,13,15) )}, data
ns( Time, knots
factor(Time), data = bees )

modell.
model2.
model3.
model4.
model5.
model§.
modelT.

+ 4+ + + o+
=

AICE.

"Number" ,

c(0,40) )

type
"Number",
c(0,40) )

bees )

c(9,11,13,15) ), data = bees )

nb¥twologlik
nb$twologlik
nb$twologlik
nbftwologlik
nb$twologlik
nb$twologlik
nb§twologlik

nb, AIC7.nb ), 1)

"response", ci.fit

ci.fit

c(9,11,13,15) ), quasi(link = log, variance = mu), data
"response",

2*(length(modell . nb$coef)
2% (length(model2.nb$coef)
2+ (length(model3.nbfcoef)
2x(length(modeld.nbfcoef)
2+ (length(model5.nbfcoef)
2+ (length(model6.nb$coef)
2= (length(model7.nb$coef)

T)

bees )
T

* ¥ ok F

)
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Problem 2:

(a)
EYi]|= E,[Ev(Y3)] = E Av] =N Eu[u] = hipi = s

Var [Yi] = E nu[ Var y(¥;)] + Var ,[ E y(V})]
= E ,[\y) + Var , [ M)
=X E [ui] + A2 Var ,[u]
= Aipi + A2pi(1 - pi)
#z
=l +—= — U
/ P: ;J‘

7

1 -1,
ot (LB
i

e, 2
= Wi + gl

(b) According to White (1982), the asymptotic distribution of the regression estimator is \/’TL(B = Bo) —d
N(0,A-'BA~1). Consequently, the variance of the estimator 3 is of the form :

Var [§] = %A”BA_I, where

A= lim — Z 1 O — g, and

n-co 1 v; 08 9B
. 4 Wy BPJ% 3#‘1
B=lm Z 2 88 95t %

Now, for the Poisson family v; = p;, and for the mixture model of interest w; = Var [Y;i] = p; + a;u?.

Noting that
Owi _ (O (Omi\ _ o
5~ () (55) =

and substituting in we have that,

= lim —me X;

-0 T

1
B = nlLu;Q = ;(ug + aip?)XIX,.
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()

(d)

(1)

First note that the A matrix given above remains the same. Now, assuming the scale model, ie.
Var [Y;] = ¢u;, we have that w; = ¢u; and hence

1 mn
B = lim — E XX
Jim opS ou X X;

Again, the A matrix given in (b) remains the same. Assuming the negative-binomial variance model,
ie. Var [Y;] = p; + ap?, we have that w; = p; + ap? and hence

As seen in part (a),

Var [Yi] = pi + (———1 ;pi) T

thus we will only obtain the scale variance in (c) if (T&T,) X W, ie. if the odds of having potential for

a positive count are proportional to the count rate given you have a the potential for a positive count.
Also, the mixture model variance given in (d) is only obtained if (1—;2*-) is constant (independent)
with respect to X;.

Code to simulate the data presented is given at the end of this problem. Figure 1(a) yields a plot of
the squared Pearson residuals vs. the fitted values resulting from a Poisson regression fit. We can see
that there is an irregular trend in the plot, suggesting that the mean-variance relationship is not as
would be expected by the Poisson process. If the Poisson regression were correct, the expected squared
Pearson residual value would be 1, but the smoothed line through the residuals does not look like the
horizontal line R? = 1, and also doesn’t resemble the horizontal line R? = (5 = 1.32 also shown on the
plot. Hence the scale model variance also does not seem very appropriate. If the smoother resembled
a straight line with slope a and intercept 1, this would correspond to the variance function given in
(d), since

2
g
i =14ap— (y—p)?=p+au?

— Var [Y] = p+ ap’.

In my plot, the smoothed line does not conform with what we would expect under either the scale or
negative binomial variance forms.

2
To diagnose whether «; was dependent on X;, I plotted estimates of «;, given by a@; = Efl
vs. X; in Figure 1(b). The smoother is not a horizontal line suggesting that there is a relationship
between a; and X;. It should be noted that there was great deal of variability in these plots and many

of them reveal no relationship!
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(g)-(h)

Squared Pearson residuals vs. fitted values alpha_i vs. the covariate x.1

alpha_i
o

Pearson Aesidualst2

0 5 10 15 oo 0z L] 06 [iE:) 10
Fitled values %1

(a) (b)

Figure 5: Residual plots to examine departures from the Poisson variance assumption.

For programming results, see the Splus code at the end of this problem. Parameter and standard error
estimates are given below. We can see that for each parameter, the scale, mixture (beta-binomial)
and empirical standard error estimates differ substantially from the naive Poisson-based estimates. It
seems that the standard error estimates from both the scale and mixture models are relatively close
to the empirical estimates for both the intercept and the coefficient associated with Xs. However, for
X, the scale and mixture model standard error estimates are different from the empirical estimates.
This is intuitive, since the underlying data generating mechanism depends on X; more substantially
than we allow for.

beta se.model se.scale se.mix se.empirical

(Intercept) -0.6870 0.1360 0.2326 0.2165 0.2040
x.1 2.7169 0.2542 0.4349 0.5541 0.4835
x.2 0.8429 0.1728 0.2957 0.3013 0.2948

For programming results, see the Splus code at the end of this problem. The table below presents the
‘true’ standard error estimates of 3 computed across the 1000 simulations, as well as mean sandwich
estimates. The simulation results agree with what was found in part (h). The model (Poisson) based
standard errors are heavily biased (due to the overdispersion!), while for the intercept and X5 the scale
and mixture model estimates are approximately unbiased. However, these two variance forms perform
poorly with respect to X;. As we would expect the empirical estimates perform well, although there
is an indication of slight negative bias.

true.se se.model se.scale se.mix se.empirical

Intercept 0.2017 0.1334 0.2259 0.2155 0.2016
x.1 0.5155 0.2529 0.4285 0.5625 0.4907
x.2 0.2991 0.17156 0.29056 0.3079 0.2875

Simulated coverage probabilities for each of the considered standard error estimates are given below.
We can see that for each of the sandwich estimators, the coverage probability remained very close to
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the nominal 95%, with the exception of the scale variance form coverage for the X; variable. The
coverage probabilities for the naive model are very low in comparison to the nominal 95%.

se.model se.scale se.mix se.empirical

Intercept 0.806 0.978 0.964 0.947
x.1 0.682 0.895 0.964 0.9356
x.2 0.740 0.951 0.958 0.946

(j) For programming results, see the Splus code at the end of this problem. The table below provides
simulation results for the negative binomial model. Firstly, we can see that the standard errors that
are reported by the glm.nb function (i.e. assuming that the true variance form is that of a negative
binomial) are biased. For each of the coefficients, the standard error estimates are too large. We also
find that the coverage probabilities are too large as well. That is our inference will be too conservative
(we would reject the null hypothesis too often).

true.nb.se se.neghbin coverage

Intercept 0.2041 0.2428 0.984
x.1 0.4832 0.6624 0.990
¥.2 0.2824 0.3759 0.987

Both the negative binomial and poisson regression estimators are biased, but in different directions.
However, if you compare the "true” standard error estimates (i.e. the simulation-based standard error
estimates), then the negative binomial distributional assumption results in estimators of g that are
slightly more efficient than the estimators under the Poisson assumption.

Splus Code for Problem 2:

##

#H##  Part ©  ##waR

#4

####4  Function to simulate overdispered data ###s
##

getODdata <- function( nobs, gamma, delta ){
%.1 <= ¢(1:nobs) / nobas
x.2 <= c( rep(0, (nobs/2)), rep(l, (nobs/2)) )
X <= ecbind{ 1, x.1, %.2 )
lambda <- exp( X }*% gamma )
p <= exp( X[,1:2] %% delta )
nu <- rbinom({ nobs, 1, p )
nul nu == 0 ] <- 10e-10
y <- rpois( nobs, lambda * nu )
return( as.data.frame( cbind( y, x.1, x.2 ) } )
}
simData <- getODdata( nobs=150, gamma=c( 0, 2, 1 ), delta=c( log(.6), log(.8/.6) ) )
##
####  GLM fit
#i
fit <- glm( y 7 x.1 + x.2 , data = simData, family = poisson }
summary( fit )
##
resids <- residuals( fit, type = "pearson" )
fits <- fitted( fit )
plot( fits, resids"2, pch="*", xlab="Fitted values", ylab="Pearson Residuals~2", main="Squared Pearson residuals vs. fitted values", ylim=ct
lines(lowess(fits, resids~2))
abline( sum(resids”2) / (150 - 2 ), 0, 1lty=3)
abline(1, 0, lty = 6}
##
alpha.hat <- ( resids"2 - 1 ) / fits
summary{ lm{ alpha.hat ~ x.1, data=simData } )
plot( simData$x.1, alpha.hat, pch="#", xlab="x.,1", ylab="alpha_i", main="alpha_i vs. the covariate x.1", ylim=c(-5,5) )
lines( lowess( simData$x.1, alpha.hat) )
abline( 0, 0, 1ty = 6 )
##
####t Parts g and h ##esd
#4
##### Function to calculate standard errors #####
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#H
get.se <- function( data )}{
fit <= glm( y ~ x.1 + x.2, data = data, family = poisson )
resids <- residuals( fit, type="pearson" )
fits <- fitted( fit )
nobs <- length( resids )

y <- data$y

#H

#### (1) estimate of scale parameter
#

phi <~ sum( resids~2 }/( nobs - 2 )
#H

####  (2) estimate of alpha

i

alpha <- mean( ( ( resids )"2 - 1 ) / fits )
##

#### Calculate standard errors...

##

X <- cbind( 1, data$x.1, data$x.2 )
#H

#### Fisher Information

#

YtmuX <- £( X ) %% ( fits » X )
I.inv <- solve( XtmuX )
se.model <- sqrt( diag( I.inv ) )
#
#### with linear combination of alpha
i
cheese <- t{ X ) %*i ( ( fits + alpha # fits™2 ) * £ )
se.mix <- sgrt( diag( I.inv %#*) (cheese) ¥#¥ I.inv ) )
it
#### with scale parameter
#
se.scale <= sqrt{ phi ) * se.model
##
#### with empirical variance of estimating function
#4
est.fox <- X * ( y - fits )
UUt <- t( est.fnx ) %*% est.fnx
se.empirical <- sgqrt( diag( I.inv %} UUt %% I.inv ) )
##
beta <- fit§coef
out <- cbind( beta, se.model, se.scale, se.mix, se.empirical }
return( round( out, 4 ) )
}
get.se( simData )
##
#4444 Parts i and j #H###
##
##
##u##  Function to calculate negative-binomial estimates and standard errors #####
###
library( mass )
get.nb.se <- function( data ){
fit <~ glm.nb( y ~ x.1 + x.2, data = data, maxit = 20 )
value <- summary(fit)$coef([,1:2]
return( round( value, 4 ) )
¥
beta <- matrix(NA, 1000, 3)
modelSE <- matrix(NA, 1000, 3)
scaleSE <- matrix(NA, 1000, 3)
nixSE <- matriz(NA, 1000, 3)
empiricalSE <- matrix(NA, 1000, 3)
beta.nb <- matrix( NA, 1000, 3)
negbinSE <- matrix( NA, 1000, 3)
for ( i in 1:1000 }{
simData <- getODdata( nobs=150, gamma=c{ 0, 2, 1 }, delta=c( log(.6), log(.8/.6) ) )
RSLT <- get.se( simData )
betal i, ] <- t( RSLT[ , 1] )
modelSE[ i, ] <- t( RSLT[ , 2]
scaleSE[ i, ] <- t( RSLT[ , 3 ]
mixSE[ i, ] <- t( RSLT[ , 4 ] )
empiricalSE[ i, ] <= t{ RSLT[ , 6§ ] )
RSLT.nb <- get.nb.se( simData )
beta.nb[ i, ] <- t( RSLT.ob[ ,1 ] )
negbinSE[ i, ] <- t{ RSLT.nb[ ,21] )
if( i %% 50 == 0 ) print( i)

)
)

+

Ed

#####  Compute summary statistics WEH##
i



Biostat/Stat 571 Exercise #3 12

se.betas <- sqrt( apply( beta, 2, var ) )

mean, se.model <- apply( modelSE, 2, mean )
mean.se.mix <- apply( mixSE, 2, mean )
mean.se.scale <- apply( scaleSE, 2, mean )

mean, se.empirical <- apply( empiricalSE, 2, mean )

mean.estimates <- cbind( se.betas, mean.se.model, mean.se.scale, mean.se.mix, mean.se.empirical )
dimnames(mean.estimates) <- list( c( "Intercept", "x.1", "x.2" ), c( "true.se", "se.model", "se.scale", "se.mix", "se.empirical” ) )
round (mean.estimates, 4)

se.nb.betas <- sqrt( apply( beta.nb, 2, var ) )
mean.se,negbin <- apply( negbinSE, 2, mean )

mean.nb.estimates <- cbind( se.nb.betas, mean.se.negbin )
dimnames (mean.nb.estimates) <- list{ c( "Intercept", "x.1", "x.2" ), c( "true.nb.se", "se.neghin" ) )
round (mean.nb.estinates, 4)

i
####4  Compute coverage probabilities
##
betal <- 0 + log(.6)
betal <- 2 + log(.8/.6)
1

beta2 <-

#

cov.prob <- matrix(NA, 3, 5)

dimnames(cov.prob) <- list{ c( "Intercept", "x.1", "x.2" ), c( "se.model", "se.scale", "se.mix", "se.empirical”, “se.negbin" ) )
#

cov.prob[1,1] <- sum( betal >= beta[,1] - gnorm(.975) * modelSE[,1] &

betal <= beta[,1] + qnorm(.975) * modelSE[,1] ) / 1000
cov.prob[2,1] <- sum( betal >= beta[,2] - qnorm(.975) * modelSE[,2] &

betal <= betal[,2] + qnorm(.975) * modelSE[,2] ) / 1000
cov.prob[3,1] <- sum( beta2 >= betal,3] - qnorm(.975) * modelSE[,3] &

beta? <= beta[,3] + gnorm(.975) * modelSE[,3] ) / 1000

cov.prob[1,2] <- sum( beta0 >= betal[,1] - gnorm(.975) * scaleSE[,1] &

betal <= betal[,1] + gnorm(.975) * scaleSE[,1] ) / 1000
cov.prob[2,2] <- sum( betal >= betal,2] - gqunorm(.975) * scaleSE[,2] &

betal <= betal,2] + gnorm(.975) * scaleSE[,2] ) / 1000
cov.prob[3,2] <- sum( beta2 >= betal,3] - qnorm(.975) * scaleSE[,3] &

beta2 <= betal,3] + gqnorm(.975) * scaleSE[,3] ) / 1000

cov.prob[1,3] <- sum( betal >= beta[,1] - qnorm(.975) * mixSE[,1] &

betal <= beta[,1] + gnorm(.975) * mixSE[,1] ) / 1000
cov.prob[2,3] <- sum( betal >= betal,2] - qnorm(.975) * mix3E[,2] &

betal <= betal,2] + gnorm(.975) * mixSE[,2] ) / 1000
cov.prob[3,3] <- sum( beta2 >= beta[,3] - qnorm(.975) * mix3E[,3] &

beta2 <= betal,3] + qnorm(.975) * wixSE[,3] ) / 1000

cov.prob[1,4] <- sum( betal >= betal[,1] - gnorm(.975) * empiricalSE[,1] &

beta0 <= beta[,1] + gnorm(.975) * empiricalSE[,1] )} / 1000
cov.prob[2,4] <- sum( betal >= beta[,2] - qnorm(.975) * empiricalSE[,2] &

betal <= betal,2] + gnorm(.975) * empiricalSE[,2] ) / 1000
cov.prob[3,4] <- sum( beta? >= beta[,3] - qnorm(.975) * empiricalSE[,3] &

beta2 <= betal,3] + gnorm(.975) * empiricalSE[,3] ) / 1000

cov.prob[1,5] <~ sum( betal >= beta[,1] - gnorm(.975) * negbinSE[,1] &

betal <= betal,1] + gnorm(.975} = negbinSE[,1] ) / 1000
cov.prob[2,5] <- sum( betal >= beta[,2] - gqnorm{.975) * negbinSE[,2] &

betal <= betal,2] + quorm(.975) = megbinSE[,2] ) / 1000
cov.prob[3,5) <- sum( beta2 >= beta[,3] - qnorm(.975) *= negbinSE[,3] &

beta2 <= beta[,3] + gnorm(.975) * negbinSE[,3] ) / 1000
cov.prob



