Biostat/Stat 571 Exercise #1

Answer Key/Comments

Question 2:

The King county data KingCounty2001.data contain a sample of size 2500 of data from the birth
certificates for children born in King County WA in 2001. The data are restricted to singletons (i.e. no
twins or triplets).

(a) We wish to summarize the evidence for the effectiveness of the First Steps program, designed to
provide “maternity care necessary for to ensure healthy birth outcomes for low-income families”.

The following is a general strategy that one could adopt:

¢ Examine closely the scientific question of interest as this will likely help considerably with some
of the decisions you will be faced with below.

o Classify each of the covariates; outcome, predictor of interest, adjustment variables.
e Look at univariate and bivariate summaries

o this will help distinguish confounders, precision and nuisance
o variables (according to the data at least)

o Pick three models:

(1) No adjustment
(2) Adjusting for confounders identified by a priori consideration
(3) Adjusting for additional (potential) confounders that seem reasonable.

o Model diagnostics for the specific model that we use to answer the question of interest

Since the main issue is whether or not a baby has low birth weight, I decided to dichotomise the
continuous measure of birth weight (at 2500gm) and use this binary indicator as the outcome of
interest. Given this and the prospect of probably needing to adjust for potential confounders of the
outcome/First Steps association, this suggests that the model that we adopt will likely, be a logistic
regression.

Before continuing it is important to consider the two groups that are being compared when we look at
enrollement vs non-enrollement into the First Steps program. In particular, the First Steps program
is aimed at “low income” mothers. Thus, those not enrolled in the program either (a) do not meet the
eligibility criteria and presumiably in a “high” income bracket or (b) do meet the criteria but were not
enrolled for some reason. Ideally, to assess the impact of the First Steps program we would perform
the assessment amoung mothers of the same socio-economic status. Thus, in any analysis it will be
necessary to include measures of income in the model. However, in the dataset we don’t have such
information and consequently we have to make do with two surrogate variables; welfare participation
and education. This can be done by either including the variables in any model or restricting the
analysis to an appropriate subset of the 2500 observations. In this analysis, adjustments were made
by including education as a 3-level factor variable where the levels correspond to an lower than high
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school education, a high school education, and a post-high school (college) education. To address
the impact of the First Steps program (in the “low income”) I have included an interaction between
participation in the program and the categorised education variable. In particular, the assessment
will be based on the estimate of the impact of First Steps amoung the low (less than high school)
education group.

Covariate Weight > 2500gm Weight < 2500gm  Combined
n = 2363 n =127 n = 2500
First Steps Program  Yes 378 (15.9) 25 (19.7) 403 (16.1)
Gender Female 1146 (48.3) 63 (49.6) 1209 (48.4)
Age (yrs) 30 (25,34) 29 (24,34) 30 (25,34)
Race Asian 368 (15.5) 24 (18.9) 392 (15.7)
Black 161 (6.8) 17 (13.4) 178 (7.1)
Hispanic 211 (8.9) 9 (7.1) 220 (8.8)
Other 30 (1.3) 1 (0.8) 31 (1.2)
White 1603 (67.6) 76 (59.8) 1679 (67.2)
Married Yes 1877 (79.1) 79 (62.2) 1956 (78.2)
Welfare Program Yes 36 (1.5) 6 (4.7) 42 (1.7)
Smoking Status Yes 154 (6.5) 21 (16.5) 175 (7)
Drinker ? Yes 28 (1.2) 1(0.8) 29 (1.2)
Prior Weight (Ibs) 140 (125,161) 136 (115,153) 140 (125,160)
Weight Gain (Ibs) 32 (25,40) 25 (20,30) 31 (25,40)
Education Less than HS 259 (10.9) 18 (14.2) 277 (11.1)
HS 447 (20.0) 33 (26.0) 510 (20.4)
College 1637 (69.1) 76 (59.8) 1713 (68.5)
Gestation (wks) 39 (38,40) 35 (32,37) 39 (38,40)
Parity 0 1095 (46.1) 71 (55.9) 1166 (46.6)
1 835 (35.2) 34 (26.8) 869 (34.8)
2 204 (12.4) 13 (10.2) 307 (12.3)
>3 149 (6.3) 9 (7.1) 158 (6.3)

Table 1: Univariate and Bivariate (vs outcome) summaries. For factor variables, counts and percentages
(within columns) are given. For continuous variables, medians and inter-quartile ranges are provided.

Initially, we can look at some descriptives for the covariates both for the cases (i.e. those baby’s whose
weight is less than 2500gm) and controls (i.e. those baby’s whose weight is greater than 2500 gm),
as well as the combined group. From Table 1. it seems that the set of variables which seem to be
univariately associated with the outcome contain marital status, smoking status, prior weight, weight
gain, gestation period and the parity. Thus, this set was used as an intermediary set of adjustment
variables. Table 2 provides the results of the three logistic regression models outlined above. In each
case, the point estimate for the regression coefficient and associated standard error are provided.
In addition, the likelihood ratio test statistic and associated p-value, to test the hypothesis of no
treatment (First Steps) effect, are provided.

Model 1, which provides a crude analysis, indicates that for a low education (i.e. target population)
mother who is enrolled in the First Steps program, the odds of her baby having a low birth weight are
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Education Model 1 Model 2 Model 3.
Category Odds Approx. 95% | Odds Approx. 95% | Odds Approx. 95%
Ratio CI Ratio CI Ratio CI
LRT® 3.882 (0.275) 2.523 (0.471) 2.539 (0.468)
Less than High School | 1.16  (0.44,3.09) | 1.60  (0.41,6.97) | 1.93  (0.46,8.14)
High School 144 (0.61,3.39) | 1.39  (0.50,3.90) | 1.26  (0.43, 3.67)
College 053  (0.27,1.03) | 057  (0.24,1.33) | 0.57  (0.24, 1.36)

% Likelihood Ratio Test statistic and p-value (based on the xj distribution).

Table 2: Logistic Regression results.

estimated to be approximately 16% higher than the corresponding odds for a low education mother
that is not enrolled in the First Steps program. Model 2 indicates, that holding marital status,
smoking status, prior weight, weight gain, gestation period and the parity constant, the odds for
a low education mother in the First Steps program are estimated to be 69% higher than for a low
education mother not enrolled. Here, by ‘holding constant’ this selection of variables we mean that we
are comparing two women with the same characteristics for this list of variables. Evidently, the 95%
confidence intervals are very wide so that it is not clear to what extent we can depend on the point
estimates for interpretation.

Overall, it is clear that there is no evidence in this data to support a positive impact on birth weight
outcomes for the First Steps program.

Comments :

e Q: Why don’t we worry about overdispersion ? Since each of the outcomes is the results of a
Bernoulli trial, there is no potential for overdispersion in this case. For a Bernoulli(x) random
variable the variance is given by p(l — p).

¢ In the above model, I haven'’t really considered any interactions between covariates that might be
of interest. Typically, you could either pick a few interactions which might be relevant (such as
the impact of the First Steps program depending on race)or, preferably, ask an “expert” in the
scientific field.

e The variable selection processes may not be the best or most appropriate. As in the above
comment, typically you would want to consider a more scientifically driven variable selection
process. In this case it doesn’t seem like it would make alot of difference though.

e Although not presented here, there are many diagnostic tools for logistic regression. Hosmer and
Lemeshow (2002) is a great reference for these. They include assessing the appropriateness of the
link, functional form for covariates, residual diagnostics, and influence statistics. There are also a
series of techniques which compare observed values from the data and expected values from the
model.
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(b) Here, we wish to build a rule which will be used to predict whether a baby will be born with a weight
of less than 2500 grams. Regardless of the choice of model-building technique, the model will need to
be validated (internally). There are three main ways of acheiving this: data-splitting, cross-validation,
and bootstrapping. See Section 6 of Harrell et al (1996) for more details. Here, I am going to use
a single instance of data-splitting to illustrate the need for validation. In particular, of the 2500
observations I used 1500 as a training (model-building) data set, and the remaining 1000 for the
validation dataset. After selected a subset of 1500 observations on which to build the data set, we can
use the S-Plus function step.glm to find the model. This model is based on variables which will be
available early on in the pregnancy (i.e. variables such as weight gain and gestation are not included).
Note, since there were so few observations in the ‘Other’ race category, these were combined with the
‘Hispanic’ race group.

> summary(model.step, cor = F)
Call: gim(formula = low ~ newrace + married + smoker + wpre, family = binomial, data = king[ - index, ], na.action = na.omit)
Coefficients:
Value Std. Error t value
(Intercept) 1.762398525 0.639547005 2.7566982
newraceasian -0.620674535 0.316362310 -1.9619105
newraceblack -1.062856810 0.374909363 -2.8082969
newraceother -0.166300247 0.414375227 -0.4013277
married 0.491241711 0.284013728 1.7296407
smoker -1.064650639 0.361176890 -2.9477264
wpre 0.008406429 0.003981048 2.1116118

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 595.5457 on 1499 degrees of freedom
Residual Deviance: 564.9728 on 1493 degrees of freedom

From this model we may compute a predicted probability of a baby being of low birth weight. Typi-
cally, we would then compare this fitted probability to some pre-specified cutoff. If the probability is
greater than the cutoff, then we predict that the baby will have low birth weight. We could conceivably
choose several criteria by which we can assess the predictive ability of a model. Again, Harrell et al
(1996) provides many details. Here, I am going to use sensitivity = P(rule indicates baby has weight
less than 2500gm | baby’s actual weight is less than 2500gm) and specificity = P(rule indicates baby
has weight greater than 2500gm | baby’s actual weight is greater than 2500gm) as my criteria. Figure
1 provides the ROC curves (sensitivity vs 1-specificity), when the prediction rule given by the above
model is applied to the training and the validation data.

The main issue in deciding upon a cutoff is the balance between sensitivity and specificity. One
possiblity is to look at a weighted sum of the two quantities. This allows you to attach different
weights to the sensitivity and specificity depending on which you felt to be more important. Typically,
there are many factors which would be involved in a decision regarding weights. In particular, it
is likely that an “expert” in the field would want to be consulted about relative costs of different
missclassifications. Then, translation of these relative costs into weights will need to be done. This
is unlikely to be easy and would require quite careful thought. Here, it seems that sensitivity would
be the most important of the two. We would not want to missclassify a baby that ultimately has a
low birth weight, while missclassifying a baby that is ultimately an acceptable weight is not as bad.
Table 2 provides “optimal” cutoffs based on three different (and fairly arbitrary) weighting schemes.
The first scheme treats sensitivity and specificity equally. The third treats sensitivity as twice as
‘important’ as specificity. The second scheme is intermediary.

Table 3 provides the sensitivity and specificity measures for the validation set for three potential cutoff
points based on the above table. We can see that when applied to the validation set, the decision rule
has better sensitivity but worse specificity. However, we have to be aware that these results depend on
the way that the original dataset was split in two. Another configuration of the training and validation
datasets would have resulted in different final results. This variabilty in the results can be address
using either cross-validation or bootstrapping mentioned above.
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Figure 1: ROC Curves for the King County Birth 2001 data.

Weights = (1, 1)
Cutoff Sensitivity Specificity

Weights = (1.5, 1)
Cutoff  Sensitivity Specificity

Weights = (2, 1)
Cutoff Sensitivity Specificity

0.94755 69.3% 60.0% 0.90580 91.3% 29.3% 0.90580 91.3% 29.3%
0.94628 70.3% 58.7% 0.90663 91.2% 29.3% 0.90663 91.2% 29.3%
0.94960 67.6% 61.3% 0.90692 91.0% 29.3% 0.90692 91.0% 29.3%
0.94771 68.9% 60.0% 0.90736 90.8% 29.3% 0.90736 90.8% 29.3%
0.94636 70.2% 58.7% 0.93626 77.5% 49.3% 0.90477 91.4% 28.0%

Table 3: Cutoffs and associated sensitivity/specificity chosen on the basis of a weighted sum of the two

probabilties.

(c) Suppose that the data that we have available to analyse resulted from a biased sampling scheme. In

particular, where we sampled women who were not enrolled in the First Steps program (firsteps
0) with probability 1/10, while women who did enroll in the program (firsteps

with probability 1/3.

1) were sampled

e One way to view this situation is as a missing data problem. In particular, there is missing data (to
different degrees in the two groups defined by enrollement into the program) and the missingness
is by design of the study. Here the missingness mechanism depends solely on enrollement into the
First Steps program. In other words, the missingness is MAR (Missing At Random). In this casze,
as long as we account for the covariates that drive the missingness (i.e. we condition on them)




Biostat/Stat 571 Exercise #1 6

Cutoff Sensitivity Specificity

0.95 87. 7% 19.2%
0.93 93.6% 15.4%
0.90 98.2% 11.5%

Table 4: Sensitivity and Specificity based on three cutoffs applied to the validation data set.

and as long as we model the mean correctly inference based on the observed data is valid.

e In part (a), since we are interested in the firsteps effect (i.e. it is in the model) we would not
need to change our analysis (as long as we are happy with the mean model).

e In part (b), it would not necessarily be the case that we include enrollement into the First Steps
program (especially given our analysis in part (a)). To adjust for the sampling scheme, we then
need to incorporate weights where the weights are equal to the inverse of the probabilty of selection
(i.e. 10 for the non-enrollees and 3 for the enrollees).

¢ One intuitive (perhaps?) was of thinking about the weighting is as follows. Consider the case
where we sampled from each of the groups with probability equal to 1. This would effectively be
equivalent to simple random sampling where the proportion of non-enrollees to enrollees in the
sample is representative of the true proportion in the population. One can think of our sampling
scheme as resulting in a dataset which contains 1/10 of the non-enrollees and 1/3 of the enrollees.
Thus the proportion is no longer representative. By weighting each of the non-enrollees by 10 in
the likelihood we are effectively creating 10 copies of each non-enrollee (similarly for the enrollees).
The likelihood then contains contributions from the two groups in proportion to the contributions
that would have been made via simple random sampling. One can think of this as creating some
pseudo-population upon which our inference is based.

e We saw that for part (a), as long as the mean is modelled correctly, weighting adjustments are
not strictly necessary. However, in general, it is probably best to use a weighting scheme.

o More efficient estimation ?
o More robust to mean model misspecification ?

S-Plus Code

options( contrasts = c("contr.treatment”, "contr.poly") )

library( mass )

#*

#### Source in any additional code. Please send me an e-mail if you would like copies of these functioms.
»

source( "C:\\TA\\SPlus_Functions\\TableOne.SSC" )

source( "C:\\TA\\SPlus_Functions\\LogisticRegressionDiagnostics.SSC" )

sourca( "C:\\TA\\SPlus_Functions\\DiagnosticModels.SSC" )

**

#### Load in the data

[2)

king <- read.table( "C:\\TA\\5671_w03\\data\\KingCounty2001_data.txt" )

names( king ) <~ c( "gender”, "plural®, "age", "race", "parity", "married”, "bwt", "smokeN",
"drinkN", "firstep", "welfare", "smoker", "drinker", "wpre", "wgain", "educ", "gest" )

king$firstep <- factor( king$firstep, labels = c("No", "Yes") )

king$welfare <- factor( king$welfare, labels = c("No", "Yes") )

king$married <- factor( king$married, labels = c("No", "Yes") )

king$newpar <- king$parity

king$nevpar [king$newpar > 3] <- 3

king$newpar <- factor( king$newpar )

king$low <- factor( cut(king$bwt, breaks = c(0, 2500, 10000), labels = c("Yes", "No")) )
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HERNRERRRRRRNERR
#4488 PART A #4848
HRRBRRRRERRARARIE

"

###% Univariate and Bivariate (according to treatment) summaries

#* ,

#% GetTableOne( kingl,c(10,1,3,4,6,8,9,11,12,13,14,15,16,17,18)], king$low, c("No", "Yes") )

#

#### From these we can pick a subset of covariates which 'seem’ associated with the outcome.
#4## - marital status, smoking status, prior weight, weight gain, gest, parity.

####% This could have been done in any number of ways. For example, some stepwise procedure.
#84% Without the assistance of a specialist our choices at this stage are fairly arbitrary.
#

**

#### Look at welfare vs education

**

boxplot( split(king$educ, king$welfare), xlab = "Welfare participation", ylab = "Education level” )
king$educcat <- rep( 0, 2500 ) # less than a high school education

king$educcat [king$educ == 12] <- 1 # high school education

king$aduccat (king$educ > 12] <- 2 # more than a high school education

king$educcat <- factor( king$educcat, labels = c("Low", "HighSchool", "College") )

#

#### Model 1: No adjustment

*

model.1 <- glm( low ~ firsteptreduccat, family = binomial, data = king )

model.1.null <- glm( low ~ educcat, family = binomial,data = king )

2

##8% Model 2: Adjustments; married smoker wpre wgain newpar

2

model.2 <- glm( low ~ firstep*educcat + married + smoker + wpre + wgain + newpar + gest,
family = binomial, data = king )

model.2.null <~ glm( low ~ educcat + married + smoker + wpre + wgain + newpar + gest,
family = binomial, data = king )

2

#### Model 3: Adjustments for all covariates

#

model.3 <- glm( low ~ firstepseduccat + gender + age + race + married + smoker + drinker + wpre + wgain + gest + newpar,
family = binomial, data = king )

model.3.null <- glm( low ~ educcat + gender + age + race + married + smoker + drinker + wpre + wgain + gest + newpar,
family = binomial, data = king )

2]

###% Look at the results from the three models

k2]

lrt.stat.1 <- deviance(model.i.null) - deviance(model.l)

1rt.stat.2 <- deviance(model.2.null) - deviance(model.2)

1rt.stat.3 <- deviance(model.3.null) - deviance(model.3)

#

round( rbind( c(irt.stat.l, 1 - pchisq(lrt.stat.1, 3)),

c(lrt.stat.2, 1 - pchisq(lrt.stat.2, 3)),

c(lrt.stat.3, 1 - pchisq(lrt.stat.3, 3)) ), 3)

#

cbind( rbind( GetORs(c(0,1,0,0,0,0), model.1),

GetORs(c(0,1,0,0,1,0), model.1),

GetORs(c(0,1,0,0,0,1), model.1) )

’
rbind( GetORs(c(0,1,0,0,0,0,0,0,0,0,0,0,0,0), model.2),

GetORs(c(0,1,0,0,0,0,0,0,0,0,0,0,1,0), model.2),

GetORs(c(0,1,0,0,0,0,0,0,0,0,0,0,0,1), model.2) ),

rbind( GetDRs(c(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), model.3),
GetORs(c(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0), model.3),

GetORs(c(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1), model.3) ) )

FHERRRRRRU RS RE

###% PART B #¥##

FRRRERERRERANERE

"

#%#% We want to come up with a rule that we can use to help predict if a baby will

#### be classified as ’lovw birth weight’, ie. bwt < 2600gms.

###% Need to pick ’'reasonable’ variables for the model. This probably won’t include weight gain
#4## gestation. Also, it is not clear if some of these variables are measured vhen the

#### baby is born. Ideally ve would have a model that is based upon covariates

###% measured at the same time at which we would apply the prediction rule.

###% Note: race is the same as the old race except that hispanic and other have been combined.
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R newpar is also re-coded so that all mothers with parity >= 2 are together.
»*

king$newrace <- as.numeric( king$race )

king$newrace [king$newrace == 3] <- 4

# re-code the whites to be the reference

king$nevrace [king$newrace == 5] <- 0

king$nevrace <- factor(king$newrace, labels = c("vhite", "asian", "black", "other"))
*

king$nevpar2 <- as.numeric( king$newpar ) - 1
king$newpar2[king$newpar2 > 2] <- 2
king$newpar2 <- factor( king$newpar2 )

*

##¥# Gonorate a validation set

*»

index <- sample( 1:2500, 1000 )

# To distinguish training and validation datasets
sub.weights <- rep(1, 2500)

sub.weights[index] <- O

#*

#### Get the prediction model

**

model.full <~ glm( low ~ newrace + married + welfare + smoker + wpre + educ + newpar2,

family = binomial, data = king, weights = sub.veights, na.action = na.omit )

model.step <- stepAIC( model.full,

scope = list(upper = ~ newrace + married + welfare + smoker + wpre + educ + newpar2, lower = ~ 1) )
summary{ model.step, cor = F )

#

#### Compute the ROC curves for the training and validation datasets

"

GetROCv2( model.step$fitted-index], model.step$y[-index]}, model.step$fitted[index), model.step$y[index] )

#*

#### Evaluate Sensitivity and Specificity

*

cbind( EvalSensSpec(GetROC( model.step$fitted[-index], model.step$y[-index] ), c(1, 1)),
EvalSensSpec (GetROC( model.step$fitted([~index], model.step$y[-index] ), c(1.5, 1)),
EvalSensSpec (GetROC( model.step$fitted[-index], model.step$yl[-index] ), c(2, 1)) )
GetSensSpec( 0.95, model.step$fitted(index], model.step$y[index] )

GetSensSpec( 0.93, model.step$titted[index], model.step$y(index] )

GetSensSpec( 0.90, model.step$fitted{index], model.step$y[index] )



