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SUMMARY

It is common in biomedical studies with binary responses that variability in the observed number of
events exceeds binomial variability, a phenomenon known as overdispersion. Failure to make an
adjustment to the nominal standard errors can lead to seriously misleading inference for regression
analysis. In this note, we examine a series of examples drawn from the literature to see which of two
commonly used variance formulas is more adequate for describing overdispersion in applications.
Two methods, residual analysis and formal comparison, are introduced. We recommend that both
methods be employed in seeking an appropriate variance expression for binary responses. Each of
the five data sets exhibits substantial overdispersion, one favoring the beta~binomial form, another
favoring a constant overdispersion factor. The remaining three examples exhibit no preference.

1. Introduction

The “ideal” or “standard” assumption in binary regression models is that the observations Y; are
independent, and that Y; ~ B(m;, 7;), the binomial distribution with index m and parameter «. This
is a one-parameter family of distributions, implying that the mean, variance, and all higher-order
cumulants are determined by the single parameter . In practical applications of binary regression
models, it is frequently observed that variability in the observed number of successes exceeds binomial
variability mm(1 — =), sometimes by a substantial factor. This phenomenon is called overdispersion.
It is assumed throughout this paper that interest remains in the systematic effect of explanatory
variables on the response probability rather than on the nature of the excess dispersion. Since the
precision of parameter estimates is degraded by overdispersion, failure to make an adjustment to the
standard errors can lead to overoptimistic standard errors and seriously misleading inferences (Cox
and Snell, 1989, §3.2; McCullagh and Nelder, 1989, §4.5).

The remedies that have been suggested in the literature fall into two broad categories. One option
is to develop a parametric model for the excess dispersion, and to fit the more complex model by
maximum likelihood. In practice, it is rarely feasible to do this in a realistic way on a routine basis.
A practical difficulty is that several equally plausible models for the excess dispersion may give rise
to quite different likelihood functions, each requiring nonstandard tailor-made software for fitting
and testing. To take a tractable example, suppose that Y ~ B(m, P), where P has the beta distribution
with mean = = o/(a + ), and variance 7?7(l — w) = w(l — 7)/(a + 8 + 1). Then the marginal
distribution of Y is

m)B(y+a,m—y+B) Y= 0. Lo,

y B(a, B) ’

which is known as the beta-binomial distribution. For purposes of model construction it is usually
appropriate to reparameterize in terms of the proportion = and a measure of excess dispersion such

Pr(Y = y; «, B) =<

Key words: Beta-binomial; Binary regression; Overdispersion; Toxicological data.

623



624 Biometrics, June 1993

as 77 = 1/(a + 8 + 1) or some function thereof (Griffiths, 1973; Williams, 1975; Crowder, 1978). The
mean and variance of Y; are given by E(Y;) = mm; and

var(Y,) = ma (1 — w){l + (m; — )72},

Model specification can now be completed in a variety of ways—for example, by taking the excess
dispersion to be constant, 77 = 7%, and assuming a linear logistic model for the effect of covariates
on w,. Note, however, that if we were to parameterize the beta-binomial by = together with, say, v =
a”' + 7!, the latter being assumed constant over observations, a quite different likelihood function
would be obtained.

The second option is to avoid a fully parametric specification and to assume a particular relationship
between the variance and the mean of Y. Second-moment methods, in particular quasi-likelihood,
are then used for fitting and testing. For example, guided in part by the beta-binomial discussion, we
might be prepared to assume that the variance of Y; is

var(Y)) = ma(l — w){1 + (m; — 1)7%, n

with 0 < 7% < 1. The dispersion factor 1 + (m, — 1)7* can be derived under the assumption that
var(P) = (1 — =;)7% in particular, it is not necessary that P should have the beta distribution.
Alternatively, and slightly more conveniently, we might prefer to assume a constant dispersion factor
relative to the binomial, namely

Var()/,') = m,~7r,~(1 - 7l'i)0'2. (2)

Overdispersion is then modelled by ¢> > 1. Underdispersion, though less common in applications,
can be modelled by ¢ < 1. Certain cluster-sampling procedures can give rise to variances approxi-
mately of the form (2) (McCullagh and Nelder, 1989, §4.5.1). While the use of the quasi-likelihood
method will in general result in loss of efficiency, its loss is known to be modest in many practical
situations (Firth, 1987).

From a purely mathematical perspective, since Y is restricted to the integer values 0, 1, ..., m with
mean mm, we must have var(Y) < m?r(1 — ), implying o> < m; in (2) (McCullagh and Nelder, 1989,
p. 125). Thus, if all integer values m; = | are permissible, we can have only ¢ = 1 in (2). This is an
unfortunate property of the dispersion model (2), but it is rarely a serious concern in applications. In
practice, dispersion factors are often in the range 1-5, whereas the indices m; are typically larger than
this. The restriction that o? < m; can usually be ignored with impunity.

It is ultimately an empirical question whether excess variability in applications of binary regression
models is best modelled by the variable dispersion factor in (1) or the constant dispersion factor in
(2). The purpose of this paper is to look at a number of examples gleaned from the literature to see
which, if either, dispersion model is appropriate. It is worth pointing out that modelling via serial
correlation is a viable alternative when the binary responses are observed over time.

2. Examples

In the examples that follow, all fitted values are calculated under the standard model without
overdispersion.

2.1 Weil-Williams Toxicology Data
The observations are the numbers of rats surviving the 21-day lactation period as a fraction of the
number alive at 4 days (Weil, 1970; Williams, 1975). The control group and treatment group each
comprise 16 litters of rats. Since the excess dispersion appears to be larger in the treatment group
than in the control group, we examine the two groups separately. Figure 1 shows the residuals
(yi — mm)/vmm(l — 7) plotted against litter size m,. There is some evidence that the residuals tend
to increase with litter size, indicating a higher survival rate for larger litters, an effect not mentioned
by Williams. Both the treatment effect and the litter size effect are of borderline statistical significance.
However, there is no strong evidence that the variance of the residuals is related to litter size as
predicted by (1). Inclusion of litter size as a covariate in the model has little effect on this conclusion.
It has been suggested on some biological grounds that the survival rate may be associated with litter
size in a nontrivial manner (Dr Keith Soper, personal communication). How this observation may
affect the variance expression of Y; is unclear. For example, model (1) implies that, in the context of
toxicological experiments, 72 has the within-litter correlation coefficient interpretation that is constant
regardless of litter size. Model (2) assumes instead that the inverse of the within-litter coefficient is
linearly related to the litter size. More studies are warranted to examine which of the two assumptions
is more consistent with the above observations.
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Figure 1. Residuals plotted against litter size for the Weil-Williams toxicology data. & denotes a
control litter; @ denotes treated litter.
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Figure 2. Residuals plotted against batch size for Crowder’s seed germination data. & denotes
O. cernua; ® denotes O. aegyptiaca.

2.2 Crowder’s Germination Data

These data, taken from Crowder (1978, Tables 1 and 3), were collected in d series of experiments
concerning the effect of certain extracts on the germination rates of the seeds O. cernua, O. aegyptiaca
75, and O. aegyptiaca 73. Following Crowder’s analysis, we treat the dilution series data in his
Table 1 as a single-factor layout. The data from Table 3 are fitted using a 2 X 2 factorial model with
interaction on the logistic scale to model the systematic effects. Effectively, therefore, we have seven
groups with five to six batches in each group. The combined residuals from these fits are plotted in
Figure 2.

Crowder’s data exhibit strong evidence of overdispersion. Pearson’s statistic is 54.01 on 30 degrees
of freedom, giving an estimate of 5> = 1.80 based on the constant dispersion model (2). Although the
range of batch sizes is large, the residual plot shows no evidence that the variance of the residuals is
related in any way to the batch size as predicted by the beta~binomial model. The data, however, are
consistent with both (1) and (2), so there is insufficient information to refute either form of
overdispersion.

2.3 Chen-Kodell-Howe-Gaylor’s Toxicology Data

The data, taken from Chen et al. (1991), were collected from a study on developmental effects
resulting from exposure to hydroxyurea. The observations are the ratios of the number of dead or
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Figure 3. Residuals plotted against litter size for the Chen-Kodell-Howe-Gaylor teratology data.
< denotes a control litter;  denotes low dose; A denotes medium dose, M denotes high dose.

resorbed implants to the number of implantation sites. The experiment consisted of four treatment
groups: control, low dose, medium dose, and high dose. There is strong evidence of overdispersion as
Pearson’s statistic is 148.7 on 56 degrees of freedom. However, there is very little evidence from
Figure 3 to suggest that the variance of the residuals is linearly related to 7. Just as in Section 2.2,
the data appear to be consistent with both (1) and (2) and leave very little room to discriminate
between the two forms of overdispersion.

2.4 Soper’s Teratology Data

The observations shown in Table 1 are the numbers of resorbed fetuses from a teratological experiment
for which the data are kindly provided by Dr Keith Soper of Merck, Sharp and Dohme. Dams were

Table 1
Data from a teratological experiment provided by Dr Keith Soper.
Y: number of resorbed fetuses;,
M: number of fetuses per dam; D = dose (1: control, 2: 2 mg/kg,
3: 4 mg/kg, 4: 8 mg/kg).

D=1 D=2 D=3 D=4
Y M Y M Y M Y M
1 17 1 11 1 1 6 17
1 17 l 17 1 3 4 21
1 17 1 17 1 14 2 16
1 18 1 18 1 15 2 17
0 13 1 20 1 15 1 14
0 14 0 15 1 16 1 19
0 14 0 15 0 12 0 14
0 15 0 16 0 14 0 14
0 16 0 16 0 16 0 15
0 16 0 16 0 16 0 15
0 16 0 16 0 16 0 15
0 16 0 17 0 17 0 16
0 17 0 17 0 17 0 16
0 17 0 17 0 17 0 16
0 17 0 17 0 17 0 17
0 17 0 17 0 17 0 17
0 18 0 18 0 18 0 17
0 18 0 19 0 19 0 17
0 18 0 21 0 19 0 17
0 18 0 19 0 18
0 19 0 20 0 20
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Figure 4. Residuals plotted against litter size for Soper’s teratology data. & denotes a control litter;
& denotes a dose of 2 mg/kg, A denotes a dose of 4 mg/kg, M denotes a dose of 8 mg/kg.

assigned at random to vehicle control or dose 2, 4, or 8 mg/kg of a test compound, 20 dams per
treatment group. Dosing was done once daily during days 6-17 of gestation, and caesarean section
was on day 20. The treatment effect is evident only among the highest dose group. This finding was
unaltered when the linear and quadratic terms of litter size were adjusted. Figure 4 shows little, if
any, relationship between residuals and litter size, though the small number of large positive residuals
deserves further scrutiny.

2.5 Shepard-Mackler-Finch’s Teratology Data

The final example uses data from a study (Shepard, Mackler, and Finch, 1980) of the dietary regimen
effects on fetal development in laboratory rats reported by Moore and Tsiatis (1991). Fifty-eight
female rats were put on iron-deficient diets and divided into four groups. Group 1 is the untreated
(low-iron) group; group 2 received injections on day 7 or day 10 only; group 3 received injections on
days 0 and 7; and group 4 received injections weekly. There is a strong treatment effect that is
unaltered even when litter size is included as a covariate. There is strong evidence judging from
Figure 5 that the variance of the residuals is related to litter size as described by (1).
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Figure 5. Residuals plotted against litter size for the Shepard—-Mackler-Finch data. & denotes a
control litter; @ denotes injection on day 7 or 10, A denotes injection on day O and day 7, B denotes
weekly injection.
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3. Formal Comparison of Dispersion Models

One way formally to compare the dispersion models (1) and (2) is to take the squared residuals from
a well-fitting model as response. Then

Ry = W= )
}71,'7T,‘(1 - 7T,')

is approximately distributed as ¢7x7 with o7 satisfying the linear model
of = a + B(m; — 1). (3)

Under (1) we have « = 1, whereas under (2) we have 8 = 0. If the squared residuals are regarded as
independent, we may use gamma regression to fit the two-parameter model (3) together with both
one-parameter submodels.

For Weil-Williams’ data, the scaled deviances are 26.89 for (1), 26.0 for (2), and 25.17 for (3).
Again, neither (1) nor (2) is rejected in favor of (3). There is a statistically insignificant preference
of the constant dispersion form (2) over (1).

For Crowder’s seed data, the scaled deviances are 32.50 for (1), 33.96 for (2), and 32.32 for (3).
Thus neither (1) nor (2) is rejected in favor of the more general form (3). There is a slight, but
statistically insignificant, preference for the beta-binomial form (1) over (2).

For the data of Chen et al., the scaled deviances are 26.67 for (1), and 26.47 for (2) and (3). Either
(1) or (2) explains the residuals as well as the more general form (3). Judging from the deviances, no
preference may be claimed between (1) and (2).

For Soper’s data, the scaled deviances are 67.84 for (1) and 54.83 for (2) with 81 degrees of freedom.
It is clear that model (2) is favored over the beta-binomial form (1). This preference persists when
the dispersion factors are modeled separately for each of four groups. The scaled deviances are 59.27
for (1) and 44.76 for (2) with 78 degrees of freedom. In fact, this additional model fitting suggests that
the degree of dispersion varies among the four groups [the likelihood ratio test statistic equals 10.09
on 3 degrees of freedom for model (2)]. The degree of dispersion appears to increase with dose level
(61 =.78, 53 = .80, 53 = 3.82, 55 = 2.98).

For the data of Shepard et al., we observe as the deviances 69.4, 74.0, and 66.1 for models (1), (2),
and (3), respectively. The beta-binomial form (1) is clearly preferable as model (2) is rejected in favor
of (3) (the likelihood ratio test equals 3.95 with | degree of freedom) whereas no such claim can be
made for model (1). This appears to be consistent with the finding from Section 2.5.

The calculations can be done easily, for example, in GLIM (Baker and Nelder, 1978). The relevant
commands are given in the Appendix.

4. Discussion

In this paper, we have examined five data sets drawn from the literature to see which variance
formula, if either, is more adequate in describing dispersion associated with binary data. In three of
the examples, we have failed to refute either form of overdispersion. For the rest, the beta—binomial
variance (1) clearly outperformed (2) in one instance, and the reverse holds in the other example.
Thus, the answer to the above question is equivocal at best. For these two examples, Table 2 gives
the regression estimates and their estimated standard errors when fitting variance formulas (1) and
(2). For Soper’s data, the estimated effect, on the logit scale, of receiving 4 mg/kg relative to control
when using (1) is almost twice as big as when using the more favored variance (2) (.977 versus .503).
In addition, the estimated standard errors when using (1) are inflated by as much as 15%. The
discrepancies are milder in the Shepard-Mackler-Finch data.

The methods presented here are most useful when the number of responses is small or modest.
This is the situation where choice of the variance formulas may play an important role for regression
inference. These two methods, residual analysis and formal comparison introduced in Section 3, are
easy to employ. We also note that for all the examples considered, conclusions regarding choice of
the variance formula are consistent between the two approaches. It is our recommendation that both
methods be adopted to strengthen the conclusion when examining the adequacy of the variance
expression for overdispersion. It is, however, worthy of note that residuals are inevitably skewed when
the litter sizes are small and caution should be exercised in this case to avoid overinterpretation of
the results. '

Finally, when the number of responses is sufficiently large, the “robust” variance estimate of
regression coefficients by Liang and Zeger (1986) may be employed. It is robust in the sense that it
remains consistent even when the wrong variance structure is chosen. However, the question
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Table 2
Estimates and standard errors from logistic regression analyses using quasi-likelihood for two data
sets. Note that the regression coefficients for the last three variables in each data set represent the
difference, in logit scale, between each of three treated groups with the control reference group.

Var(Y)
Variable mw(l — 7)1 + (m— 1)73) mn(l — 7)o’
Soper’s data
Intercept —4.480 + .857 —4.454 + 747
2 mg/kg 370 = 1.141 311 + 1.005
4 mg/kg 977 £ 1.022 .503 = .968
8 mg/kg 1.404 + 964 1.422 + 839
77=.119 o°=2.333
Shepard-Mackler-Finch’s data
Intercept 1.212 £ .223 1.144 = 218
Group 2* —3.370 = .562 —3.323 £ .560
Group 3 —4.585 + 1.302 —4.476 £ 1.237
Group 4 —4.250 + .848 —4.130 £ .806
77=.192 o7 =2.863

2 Group 2: injections on day 7 or day 10 only: group 3: injections on day 0 and day 7; group 4: injections weekly.

concerning the number of responses that is “sufficiently large” remains open and will be addressed
through simulations in a separate report.
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RESUME

Il est courant, dans les études biomédicales réalisées avec des données dichotomiques, que la variabilité
du nombre d’événements observé soit plus grande que la variabilit¢ d’une loi binomiale: c’est ce
qu’on appelle une “overdispersion” (ou, en frangais, une surdispersion). Lorsque cela se produit, le
fait de ne pas ajuster la précision des parameétres en fonction de ce phénoméne peut conduire,
notamment dans les analyses de régression, a des inférences peu faibles. Le présent article examine
une série d’exemples tirés de la littérature, afin de déterminer laquelle des deux formules communé-
ment employées pour modéliser la variance dans ce cas de surdispersion s’avérerait la plus adéquate.
L’outil utilisé pour la comparaison consiste en deux méthodes—I’“analyse résiduelle” et la “compa-
raison formelle”—particuliérement indiquées pour évaluer la qualité de la modélisation de la variance
dans le cas des réponses dichotomiques. Des cing exemples abordés ici—qui présentent tous des
surdispersions marquées—I’un ameéne a préférer une modélisation béta-binomiale pour la surdisper-
sion, alors qu’un autre encourage plut6t la simple prise en compte d’un facteur constant (pour cette
méme surdispersion). Dans les trois autres exemples, il est indifférent de choisir I'un ou ’autre
modéle. '

REFERENCES

Baker, R. J. and Nelder, J. A. (1978). The GLIM System, Release 3, Generalized Linear Interactive
Modelling. Oxford: Numerical Algorithms Group.

Chen, J. J., Kodell, R. L., Howe, R. B., and Gaylor, D. W. (1991). Analysis of trinomial responses
from reproductive and developmental experiments. Biometrics 47, 1049-1058.

Cox, D. R. and Snell, E. J. (1989). Binary Data. London: Chapman and Hall.

Crowder, M. J. (1978). Beta—binomial ANOVA for proportions. Applied Statistics 27, 34-37.

Firth, D. (1987). On the efficiency of quasi-likelihood estimation. Biometrika 74, 233-245.

Griffiths, D. A. (1973). Maximum likelihood estimation for the beta-binomial distribution and an
application to the household distribution of the total number of cases in a disease. Biometrics
29, 637-648.

Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models.
Biometrika 73, 13-22.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. London: Chapman and Hall.



630 Biometrics, June 1993

Moore, D. F. and Tsiatis, A. (1991). Robust estimation of the variance in moment methods for extra-
binomial and extra-Poisson variation. Biometrics 37, 383-401.

Shepard, T. H., Mackler, B., and Finch, C. A. (1980). Reproductive studies in the iron-deficient rat.
Teratology 22, 329-334.

Weil, C. S. (1970). Selection of the valid number of sampling units and a consideration of their
combination in toxicological studies involving reproduction, teratogenesis or carcinogenesis.
Food and Cosmetics Toxicology 8, 177-182.

Williams, D. A. (1975). The analysis of binary responses from toxicological experiments involving
reproduction and teratogenicity. Biometrics 31, 949-952.

Received October 1991; revised March and June 1992; accepted July 1992.

APPENDIX

The following are the commands in GLIM needed to perform the formal comparison introduced in
Section 3. The variable R denotes the squared residual.

$YVAR R

$ERR G

$SCALE 2

$LINK L (or SQRT)
$FIT —
$RECYCLE

$LINK I

$FIT.

Note that the intermediate steps (commands 4-6) are needed only if one encounters negative fitted
values. Our experience in analyzing these five data sets has been that this is not an uncommon
phenomenon and the recommended steps are very helpful in avoiding this difficulty.



