
Chapter 1

Longitudinal Data Analysis

1.1 Introduction

One of the most common medical research designs is a “pre-post” study in
which a single baseline health status measurement is obtained, an interven-
tion is administered, and a single follow-up measurement is collected. In
this experimental design the change in the outcome measurement can be as-
sociated with the change in the exposure condition. For example, if some
subjects are given placebo while others are given an active drug, the two
groups can be compared to see if the change in the outcome is different for
those subjects who are actively treated as compared to control subjects. This
design can be viewed as the simplest form of a prospective longitudinal study.

Definition: A longitudinal study refers to an investigation where partici-
pant outcomes and possibly treatments or exposures are collected at multiple
follow-up times.

A longitudinal study generally yields multiple or “repeated” measurements
on each subject. For example, HIV patients may be followed over time and
monthly measures such as CD4 counts, or viral load are collected to charac-
terize immune status and disease burden respectively. Such repeated mea-
sures data are correlated within subjects and thus require special statistical
techniques for valid analysis and inference.

A second important outcome that is commonly measured in a longitudinal
study is the time until a key clinical event such as disease recurrence or death.
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Analysis of event time endpoints is the focus of survival analysis which is
covered in chapter ??.

Longitudinal studies play a key role in epidemiology, clinical research, and
therapeutic evaluation. Longitudinal studies are used to characterize normal
growth and aging, to assess the effect of risk factors on human health, and
to evaluate the effectiveness of treatments.

Longitudinal studies involve a great deal of effort but offer several bene-
fits. These benefits include:

Benefits of longitudinal studies:

1. Incident events are recorded. A prospective longitudinal study mea-
sures the new occurance of disease. The timing of disease onset can be
correlated with recent changes in patient exposure and/or with chronic
exposure.

2. Prospective ascertainment of exposure. In a prospective study partic-
ipants can have their exposure status recorded at multiple follow-up
visits. This can alleviate recall bias where subjects who subsequently
experience disease are more likely to recall their exposure (a form of
measurement error). In addition the temporal order of exposures and
outcomes is observed.

3. Measurement of individual change in outcomes. A key strength of a
longitudinal study is the ability to measure change in outcomes and/or
exposure at the individual level. Longitudinal studies provide the op-
portunity to observe individual patterns of change.

4. Separation of time effects: Cohort, Period, Age. When studying change
over time there are many time scales to consider. The cohort scale is
the time of birth such as 1945 or 1963, period is the current time such
as 2003, and age is (period - cohort), for example 58 = 2003-1945,
and 40 = 2003-1963. A longitudinal study with measurements at times
t1, t2, . . . tn can simultaneously characterize multiple time scales such as
age and cohort effects using covariates derived from the calendar time
of visit and the participant’s birth year: the age of subject i at time
tj is ageij = (tj − birthi); and their cohort is simply cohortij = birthi.
Lebowitz [1996] discusses age, period, and cohort effects in the analysis
of pulmonary function data.
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5. Control for cohort effects. In a cross-sectional study the comparison
of subgroups of different ages combines the effects of aging and the
effects of different cohorts. That is, comparison of outcomes measured
in 2003 among 58 year old subjects and among 40 year old subjects
reflects both the fact that the groups differ by 18 years (aging) and
the fact that the subjects were born in different eras. For example, the
public health interventions such as vaccinations available for a child
under 10 years of age may difer during 1945-1955 as compared to the
preventive interventions experienced in 1963-1973. In a longitudinal
study the cohort under study is fixed and thus changes in time are not
confounded by cohort differences.

An overview of longitudinal data analysis opportunities in respiratory epi-
demiology is presented in Weiss and Ware [1996].

The benefits of a longitudinal design are not without cost. There are
several challenges posed:

Challenges of longitudinal studies:

1. Participant follow-up. There is the risk of bias due to incomplete follow-
up, or “drop-out” of study participants. If subjects that are followed to
the planned end of study differ from subjects who discontinue follow-up
then a naive analysis may provide summaries that are not representa-
tive of the original target population.

2. Analysis of correlated data. Statistical analysis of longitudinal data
requires methods that can properly account for the intra-subject cor-
relation of response measurements. If such correlation is ignored then
inferences such as statistical tests or confidence intervals can be grossly
invalid.

3. Time-varying covariates. Although longitudinal designs offer the op-
portunity to associate changes in exposure with changes in the outcome
of interest, the direction of causality can be complicated by “feedback”
between the outcome and the exposure. For example, in an observa-
tional study of the effects of a drug on specific indicators of health,
a patient’s current health status may influence the drug exposure or
dosage received in the future. Although scientific interest lies in the
effect of medication on health, this example has reciprocal influence
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between exposure and outcome and poses analytical difficulty when
trying to separate the effect of medication on health from the effect of
health on drug exposure.

1.1.1 Examples

In this subsection we give some examples of longitudinal studies and focus on
the primary scientific motivation in addition to key outcome and covariate
measurements.

(1.1) Child Asthma Management Program (CAMP) – In this study
children are randomized to different asthma management regimes. CAMP is
a multicenter clinical trial whose primary aim is the evaluation of the long-
term effects of daily inhaled anti-inflammatory medication use on asthma
status and lung growth in children with mild to moderate ashtma (Szefler
et al. 2000). Outcomes include continuous measures of pulmonary function
and catergorical indicators of asthma symptoms. Secondary analyses have
investigated the association between daily measures of ambient pollution and
the prevalence of symptoms. Analysis of an environmental exposure requires
specification of a lag between the day of exposure and the resulting effect.
In the air pollution literature short lags of 0 to 2 days are commonly used
(Samet et al. 2000; Yu et al. 2000). For both the evaluation of treatment
and exposure to environmental pollution the scientific questions focus on the
association between an exposure (treatment, pollution) and health measures.
The within-subject correlation of outcomes is of secondary interest, but must
be acknowledged to obtain valid statistical inference.

(1.2) Cystic Fibrosis and Pulmonary Function – The Cystic Fibro-
sis Foundation maintains a registry of longitudinal data for subjects with
cystic fibrosis. Pulmonary function measures such as the 1-second forced
expiratory volume (FEV1) and patient health indicators such as infection
with Pseudomonas aeruginosa have been recorded annually since 1966. One
scientific objective is to characterize the natural course of the disease and
to estimate the average rate of decline in pulmonary function. Risk factor
analysis seeks to determine whether measured patient characteristics such as
gender and genotype correlate with disease progression, or with an increased
rate of decline in FEV1. The registry data represent a typical observational
design where the longitudinal nature of the data are important for determin-
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ing individual patterns of change in health outcomes such as lung function.

(1.3) The Multi-Center AIDS Cohort Study (MACS) – The MACS
study enrolled more than 3,000 men who were at risk for acquisition of HIV1
(Kaslow et al. 1987). This prospective cohort study observed N = 479 inci-
dent HIV1 infections and has been used to characterize the biological changes
associated with disease onset. In particular, this study has demonstrated the
effect of HIV1 infection on indicators of immunologic function such as CD4
cell counts. One scientific question is whether baseline characteristics such
as viral load measured immediately after seroconversion are associated with
a poor patient prognosis as indicated by a greater rate of decline in CD4 cell
counts. We use these data to illustrate analysis approaches for continuous
longitudinal response data.

(1.4) HIVNET Informed Consent Substudy – Numerous reports sug-
gest that the process of obtaining informed consent in order to participate in
research studies is often inadequate. Therefore, for preventive HIV vaccine
trials a prototype informed consent process was evaluated among N = 4, 892
subjects participating in the Vaccine Preparedness Study (VPS). Approxi-
mately 20% of subjects were selected at random and asked to participate in a
mock informed consent process (Coletti et al. 2003). Participant knowledge
of key vaccine trial concepts was evalulated at baseline prior to the informed
consent visit which occured during a special 3 month follow-up visit for the
intervention subjects. Vaccine trial knowledge was then assessed for all par-
ticipants at the scheduled 6, 12, and 18 month visits. This study design is
a basic longitudinal extension of a pre-post design. The primary outcomes
include individual knowledge items, and a total score that calculates the
number of correct responses minus the number of incorrect responses. We
use data on a subset of men and women VPS participants. We focus on
subjects who were considered at high risk of HIV acquisition due to injection
drug use.

1.1.2 Notation

In this chapter we use Yij to denote the outcome measured on subject i at time
tij. The index i = 1, 2, . . . , N is for subject, and the index j = 1, 2, . . . , n
is for observations within a subject. In a designed longitudinal study the
measurement times will follow a protocol with a common set of follow-up
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times, tij = tj. For example, in the HIVNET Informed Consent Study sub-
jects were measured at baseline, t1 = 0, at 6 months after enrollment, t2 = 6
months, and at 12 and 18 months, t3 = 12 months, t4 = 18 months. We let
Xij denote covariates associated with observation Yij. Common covariates
in a longitudinal study include the time, tij, and person-level characteristics
such as treatment assignment, or demographic characteristics.

Although scientific interest often focuses on the mean response as a func-
tion of covariates such as treatment and time, proper statistical inference
must account for the within-person correlation of observations. Define ρjk =
corr(Yij, Yik), the within-subject correlation between observations at times tj

and tk. In the following section we discuss methods for explorating the struc-
ture of within-subject correlation, and in section 1.5 we discuss estimation
methods that model correlation patterns.

1.2 Exploratory Data Analysis

Exploratory analysis of longitudinal data seeks to discover patterns of sys-
tematic variation across groups of patients, as well as aspects of random
variation that distinguish individual patients.

1.2.1 Group means over time

When scientific interest is in the average response over time, summary statis-
tics such as means and standard deviations can reveal whether different
groups are changing in a similar or different fashion.

Example 1 Figure 1.1 shows the mean knowledge score for the informed
consent subgroups in the HIVNET Informed Consent Substudy. At baseline
the intervention and control groups have very similar mean scores. This is
expected since the group assignment is determined by randomization which
occurs after enrollment. At an interim 3 month visit the intervention sub-
jects are given a mock informed consent for participation in a hypothetical
phase III vaccine efficacy trial. The impact of the intervention can be seen
by the mean scores at the 6 month visit. In the control group the mean
at 6 months is 1.49 (S.E.=0.11), up slightly from the baseline mean of 1.16
(S.E.=0.11). In contrast, the intervention group has a 6 month mean score of
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3.43 (S.E.=0.24), a large increase from the baseline mean of 1.09 (S.E.=0.24).
The intervention and control groups are significantly different at 6 monts
based on a 2-sample t-test. At later follow-up times further change is ob-
served. The control group has a mean that increases to 1.98 at the 12 month
visit and to 2.47 at the 18 month visit. The intervention group fluctuates
slightly with means of 3.25 (S.E.=0.27) at month 12, and 3.76 (S.E.=0.25) at
18 months. These summaries suggest that the intervention has a significant
effect on knowledge, and that small improvement is seen over time in the
control group.
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Figure 1.1: Mean knowledge scores over time by treatment group, HIVNET
Informed Consent Substudy.
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Example 2 In the MACS study we compare different groups of subjects
formed on the basis of their initial viral load measurement. Low viral load is
defined by a baseline value less than 15×103, medium as 15×103 - 46×103,
and high viral load is classified for subjects with a baseline measurement
greater than 46×103. Table 1.1 gives the average CD4 count for each year of
follow-up. The mean CD4 declines over time for each of the viral load groups.

Table 1.1: Mean CD4 count and standard error over time. Separate sum-
maries are given for groups defined by baseline viral load level.

Baseline Viral Load
Low Medium High

year mean (S.E.) mean (S.E.) mean (S.E.)
0-1 744.8 (35.8) 638.9 (27.3) 600.3 (30.4)
1-2 721.2 (36.4) 588.1 (25.7) 511.8 (22.5)
2-3 645.5 (37.7) 512.8 (28.5) 474.6 (34.2)
3-4 604.8 (46.8) 470.0 (28.7) 353.9 (28.1)

The subjects with the lowest baseline viral load have a mean of 744.8 for the
first year after seroconversion and then decline to a mean count of 604.8 dur-
ing the fourth year. The 744.8-604.8 = 140.0 unit reduction is smaller than
the decline observed for the medium viral load group, 638.9-470.0 = 168.9,
and the high viral load group, 600.3-353.9 = 246.4. Therefore, these sum-
maries suggest that higher baseline viral load measurements are associated
with greater subsequent reduction in mean CD4 counts.

Example 3 In the HIVNET Informed Consent Substudy we saw a substan-
tial improvement in the knowledge score. It is also relevent to consider key
individual items that comprise the total score such as the “safety item” or
the “nurse item.” Regarding safety, participants were asked whether it was
true or false that “Once a large-scale HIV vaccine study begins, we can be
sure the vaccine is completely safe.” Table 1.2 shows the number of respond-
ing subjects at each visit and the percent of subjects who correctly answered
that the safety statement is false. These data show that the control and
intervention groups have a comparable understanding of the safety item at
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Table 1.2: Number of subjects and percent answering correctly for the safety
item from the HIVNET Informed Consent Substudy.

Control Group Intervention Group
visit N % correct N % correct
baseline 946 40.9 176 39.2
6 month 838 42.7 171 50.3
12 month 809 41.5 163 43.6
18 month 782 43.5 153 43.1

baseline with 40.9% answering correctly among controls, and 39.2% answer-
ing correctly among the intervention subjects. A mock informed consent
was administered at a 3 month visit for the intervention subjects only. The
impact of the intervention appears modest with only 50.3% of intervention
subjects correctly responding at 6 months. This represents a 10.9% increase
in the proportion answering correctly, but a 2-sample comparison of inter-
vention and control proportions at 6 months (eg. 50.3% versus 42.7%) is not
statistically significant. Finally, the modest intervention impact does not ap-
pear to be retained as the fraction correctly answering this item declines to
43.6% at 12 months and 43.1% at 18 months. Therefore, these data suggest
a small but fleeting improvement in participant understanding that a vaccine
studied in a phase III trial can not be guaranteed to be safe.

Other items show different longitudinal trends. Subjects were also asked
whether it was true or false that “The study nurse will decide who gets the
real vaccine and who gets the placebo.” Table 1.3 shows that the groups
are again comparable at baseline, but for the nurse item we see a large
increase in the fraction answering correctly among intervention subjects at
6 months with 72.1% correctly answering that the statement is false. A
cross-sectional analysis indicates a statistically significant difference in the
proportion answering correctly at 6 months with a confidence interval for
the difference in proportions of (0.199, 0.349). Although the magnitude of the
separation between groups decreases from 27.4% at 6 months to 17.8% at 18
months, the confidence interval for the difference in proportions at 18 months
is (0.096, 0.260) and excludes the null comparison, p1 − p0 = 0. Therefore,
these data suggest that the intervention has a substantial and lasting impact
on understanding that research nurses do not determine allocation to real
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Table 1.3: Number of subjects and percent answering correctly for the nurse
item from the HIVNET Informed Consent Substudy.

Control Group Intervention Group
visit N % correct N % correct
baseline 945 54.1 176 50.3
6 month 838 44.7 171 72.1
12 month 808 46.3 163 60.1
18 month 782 48.2 153 66.0

vaccine or placebo.

1.2.2 Variation among individuals

With independent observations we can summarize the uncertainty or vari-
ablibility in a response measurement using a single variance parameter. One
interpretation of the variance is given as one half the expected squared dis-
tance between any two randomly selected measurements, σ2 = 1

2
E[(Yi−Yj)

2].
However, with longitudinal data the “distance” between measurements on
different subjects is usually expected to be greater than the distance be-
tweeen repeated measurements taken on the same subject. Thus, although
the total variance may be obtained with outcomes from subjects i and i′ ob-
served at time tj, σ2 = 1

2
E[(Yij−Yi′j)

2] (assuming that E(Yij) = E(Yi′j) = µ),
the expected variation for two measurements taken on the same person (sub-
ject i) but at times tj and tk may not equal the total variation σ2 since the
measurements are correlated: σ2(1 − ρjk) = 1

2
E[(Yij − Yik)

2] (assuming that
E(Yij) = E(Yik) = µ). When ρjk > 0 this shows that between-subject vari-
ation is greater than within-subject variation. In the extreme ρjk = 1 and
Yij = Yik implying no variation for repeated observations taken on the same
subject.

Graphical methods can be used to explore the magnitude of person-to-
person variability in outcomes over time. One approach is to create a panel
of individual line plots for each study participant. These plots can then be
inspected for both the amount of variation from subject-to-subject in the
overall “level” of the response, and the magnitude of variation in the “trend”
over time in the response. Such exploratory data analysis can be useful for
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determining the types of correlated data regression models that would be
appropriate. Section 1.5 discusses random effects regression models for lon-
gitudinal data. In addition to plotting individual series it is also useful to
plot multiple series on a single plot stratifying on the value of key covariates.
Such a plot allows determination whether the type and magnitude of inter-
subject variation appears to differ across the covariate subgroups.

Example 4 In Figure 1.2 we plot an array of individual series from the
MACS data. In each panel the observed CD4 count for a single subject is
plotted against the times that measurements were obtained. Such plots allow
inspection of the individual response patterns and whether there is strong
heterogeneity in the trajectories. Figure 1.2 shows that there can be large
variation in the “level” of CD4 for subjects. Subject ID=1120 in the upper
right corner has CD4 counts greater than 1000 for all times while ID=1235 in
the lower left corner has all measurements below 500. In addition, individuals
plots can be evaluated for the change over time. Figure 1.2 indicates that
most subjects are either relatively stable in their measurements over time, or
tend to be decreasing.

In the common situation where we are interested in correlating the out-
come to measured factors such as treatment group or exposure it will also be
useful to plot individual series stratified by covariate group. Figure 1.3 takes
a sample of the MACS data and plots lines for each subject stratified by the
level of baseline viral load. This figure suggests that the highest viral load
group has the lowest mean CD4 count, and suggests that variation among
measurements may also be lower for the high baseline viral load group as
compared to the medium and low groups. Figure 1.3 can also be used to
identify individuals who exhibit time trends that differ markedly from other
individuals. In the high viral load group there is an individual that appears to
dramatically improve over time, and there is a single unusual measurement
where the CD4 count exceeds 2000. Plotting individual series is a useful
exploratory prelude to more careful confirmatory statistical analysis.

1.2.3 Characterizing correlation and covariance

With correlated outcomes it is useful to understand the strength of correla-
tion and the pattern of correlations across time. Characterizing correlation
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Figure 1.2: A sample of individual CD4 trajectories from the MACS data.

is useful for understanding components of variation and for identifying a
variance or correlation model for regression methods such as mixed-effects
models or generalized estimating equations (GEE) discussed in section 1.5.2.
One summary that is used is an estimate of the covariance matrix which is
defined as:




E[(Yi1 − µi1)
2] E[(Yi1 − µi1)(Yi2 − µi2)] . . . E[(Yi1 − µi1)(Yin − µin)]

E[(Yi2 − µi2)(Yi1 − µi1)] E[(Yi2 − µi2)
2] . . . E[(Yi2 − µi2)(Yin − µin)]

...
. . . . . .

E[(Yin − µin)(Yi1 − µi1)] E[(Yin − µin)(Yi2 − µi2)] . . . E[(Yin − µin)2]


 .
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The covariance can also be written in terms of the variances σ2
j and the

correlations ρjk:

cov(Yi) =




σ2
1 σ1σ2ρ12 . . . σ1σnρ1n

σ2σ1ρ21 σ2
2 . . . σ2σnρ2n

...
. . .

...
σnσ1ρn1 σnσ2ρn2 . . . σ2

n


 .

Finally, the correlation matrix is given as

corr(Yi) =




1 ρ12 . . . ρ1n

ρ21 1 . . . ρ2n

...
. . .

...
ρn1 ρ2n . . . 1




which is useful for comparing the strength of association between pairs of out-
comes particularly when the variances σ2

j are not constant. Sample estimates
of the correlations can be obtained using

ρ̂jk =
1

N − 1

∑

i

(Yij − Y ·j)

σ̂j

(Yik − Y ·k)

σ̂k

where σ̂2
j and σ̂2

k are the sample variances of Yij and Yik respectively, i.e.
across subjects for times tj and tk.

Graphically the correlation can be viewed using plots of Yij versus Yik

for all possible pairs of times tj and tk. These plots can be arranged in an
array that corresponds to the covariance matrix and patterns of association
across rows or columns can reveal changes in the correlation as a function of
increasing time separation between measurements.

Example 5 For the HIVNET informed consent data we focus on correla-
tion analysis of outcomes from the control group. Parallel summaries would
usefully characterize the similarity or difference in correlation structures for
the control and intervention groups. The correlation matrix is estimated as:

month 0 month 6 month 12 month 18
month 0 1.00 0.471 0.394 0.313
month 6 0.471 1.00 0.444 0.407
month 12 0.394 0.444 1.00 0.508
month 18 0.313 0.407 0.508 1.00
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The matrix suggests that the correlation in outcomes from the same individ-
ual is slightly decreasing as the time between the measurements increases.
For example, the correlation between knowledge scores from baseline and
month 6 is 0.471, while the correlation between baseline and month 12 de-
creases to 0.394, and further decreases to 0.313 for baseline and month 18.
Correlation that decreases as a function of time separation is common among
biomedical measurements and often reflects slowly varying underlying pro-
cesses.

Example 6 For the MACS data the timing of measurement is only approx-
imately regular. The following displays both the correlation matrix and the
covariance matrix:

year 1 year 2 year 3 year 4
year 1 92280.4 [ 0.734] [ 0.585] [ 0.574]
year 2 63589.4 81370.0 [ 0.733] [ 0.695]
year 3 48798.2 57457.5 75454.5 [ 0.806]
year 4 55501.2 63149.9 70510.1 101418.2

In brackets above the diagonal are the correlations. On the diagonal are the
variances. For example, the standard deviation among year 1 CD4 counts is√

92280.4 = 303.8, while the standard deviations for years 2 through 4 are√
81370.0 = 2853,

√
75454.5 = 274.7, and

√
101418.2 = 318.5 respectively.

Below the diagonal are the covariances which together with the standard de-
viations determine the correlations. These data have correlation for measure-
ments that are one year apart of 0.734, 0.733 and 0.806. For measurements
two years apart the correlation decreases slightly to 0.585 and 0.695. Finally,
measurements that are three years apart have a correlation of 0.574. Thus,
the CD4 counts have a within-person correlation that is high for observations
close together in time, but the correlation tends to decrease with increasing
time separation between the measurement times.

An alternative method for exploring the correlation structure is through
an array of scatter plots showing CD4 measured at year j versus CD4 mea-
sured at year k. Figure 1.4 displays these scatter plots. It appears that the
correlation in the plot of year 1 versus year 2 is stronger than for year 1 ver-
sus year 3, or for year 1 versus year 4. The sample correlations ρ̂12 = 0.734,
ρ̂13 = 0.585, and ρ̂14 = 0.574 summarize the linear association presented in
these plots.
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Figure 1.3: Individual CD4 trajectories from the MACS data by tertile of
viral load.
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Figure 1.4: Scatterplots of CD4 measurements (counts/ml) taken at years
1-4 after seroconversion.
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1.3 Derived Variable Analysis

Formal statistical inference with longitudinal data requires either that a uni-
variate summary be created for each subject or that methods for correlated
data are used. In this section we review and critique common analytic ap-
proaches based on creation of summary measures. A derived variable analysis
refers to a method that takes a collection of measurements and collapses them
into a single meaningful summary feature. In classical multivariate methods
principal component analysis is one approach for creating a single major fac-
tor. With longitudinal data the most common summaries are the average
response and the time slope. A second approach is a “pre-post” analysis
which analyzes a single follow-up response in conjunction with a baseline
measurement. In section 1.3.1 we first review average or slope analyses, and
then in section 1.3.2 we discuss general approaches to pre-post analysis.

1.3.1 Average or Slope Analysis

In any longitudinal analysis the substantive aims determine which aspects
of the response trajectory are most important. For some applications the
repeated measures over time may be averaged, or if the timing of measure-
ment is irregular an area under the curve, or AUC, summary can be the
primary feature of interest. In these situations statistical analysis will focus
on Y i = 1

n

∑n

j=1 Yij. A key motivation for computing an individual average
and then focusing analysis on the derived averages is that standard methods
can be used for inference such as a 2-sample t-test. However, if there are any
incomplete data then the advantage is lost since either subjects with partial
data will need to be excluded, or altenative methods need to be invoked to
handle the missingness. Attrition in longitudinal studies is unfortunately
quite common and thus derived variable methods are often more difficult to
validly apply than they first may appear.

Example 7 In the HIVNET informed consent study the goal is to improve
participant knowledge. A derived variable analysis to evaluate evidence for
an effect due to the mock informed consent process can be conducted using
Y i = (Yi1 + Yi2 + Yi3)/3 for the post-baseline times t1 = 6 months, t2 = 12
months, and t3 = 18 months. The following table summarizes the data for
subjects who have all three post-baseline measurements:
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Baseline Final
Group N N mean S.E. 95% CI
Control 947 714 2.038 (0.095)
Intervention 177 147 3.444 (0.223)
Difference 1.406 (0.243) [0.928, 1.885]

First, notice that only 714/947 = 75.4% of control subjects, and 147/177 =
83.1% of intervention subjects have complete data and are therefore included
in the analysis. This highlights one major limitation to derived variable
analysis: there may be selection bias due to exclusion of subjects with missing
data. We discuss missing data issues in section 1.6. Based on the above data
we would conclude that there is a statistically significant difference between
the mean knowledge for the intervention and control groups with a 2-sample
t-test of t = 5.796, p < 0.001. Analysis of the single summary for each
subject allows the repeated outcome variables to be analyzed using standard
independent sample methods.

In other applications scientific interest centers on the rate of change over
time and therefore an individual’s slope may be considered as the primary
outcome. Typically each subject in a longitudinal study has only a small
number of outcomes collected at the discrete time in the protocol. For ex-
ample, in the MACS data each subject was to complete a study visit every 6
months and with complete data would have 9 measurements between baseline
and 48 months. If each subject has complete data an individual summary
statistic can be computed as the regression of outcomes Yij on times tj:

Yij = βi,0 + βi,1tj + εij; and β̂i is the ordinary least squares estimate based
on data from subject i only. In the case where all subjects have the same
collection of measurement times and have complete data the variation in the
estimated slope, β̂i,1, will be equal across subjects provided the variance of
εij is also constant across subjects. Therefore if,

1. The measurement times are common to all subjects: t1, t2, . . . , tn,

2. Each subject has a complete collection of measurements: Yi1, Yi2, . . . Yin,

3. The within-subject variation σ2
i = var(εij) is constant across subjects:

σ2
i ≡ σ2,

then the summaries β̂i,1 will have equal variances attributable to using simple
linear regression to estimate individual slopes. If any of 1-3 above do not hold
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then the variance of individual summaries may vary across subjects. This
will be the case when each subject has a variable number of outcomes due
to missing data.

In the case where 1-3 is satisfied simple inference on the derived outcomes
β̂i,1 can be performed using standard 2-sample methods, or regression meth-
ods. This allows inference regarding factors that are associated with the rate
of change over time. If any of 1-3 do not hold then mixed model regression
methods discussed in section 1.5 may be preferable to simple derived variable
methods. See Frison and Pocock [1992, 1997] for further discussion of derived
variable methods.

Example 8 For the MACS data we are interested in determining whether
the rate of decline in CD4 is correlated with the baseline viral load mea-
surement. In section 1.2 we looked at descriptive statistics comparing the
mean CD4 count over time for categories of viral load. We now explore the
association between the rate of decline and baseline viral load by obtaining
a summary statistic, using the individual time slope β̂i obtained from a re-
gression of the CD4 count Yij on measurement time tij. Figure 1.5 shows a
scatterplot of the individual slope estimates plotted against the log of base-
line viral load. First notice that plotting symbols of different sizes are used
to reflect the fact that the number of measurements per subject, ni, is not
constant. The plotting symbol size is proportional to ni. For the MACS
data we have the following distribution for the number of observations per
subjects over the first four years:

Number of observations (ni)
1 2 3 4 5 6 7 8 9

Number of
Subjects 5 13 8 10 25 44 82 117 3

For Figure 1.5 the (5+13)=18 subjects with either 1 or 2 measurements were
excluded as a summary slope is either unestimable (ni = 1) or highly vari-
able (ni = 2). Figure 1.5 suggests that there is a pattern of decreasing slope
with increasing log baseline viral load. However, there is also a great deal of
subject-to-subject variation in the slopes with some subjects having β̂i,1 > 0
count/month indicating a stable or increasing trend, and some subjects hav-

ing β̂i,1 < 15 count/month suggesting a steep decline in their CD4. A linear
regression using the individual slope as the response and log baseline viral
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load as the predictor yields a p-value of p=0.124 implying a non-significant
linear association between the summary statistic β̂i,1 and log baseline viral
load.

A categorical analysis using tertiles of baseline viral load parallels the
descriptive statistics presented in Table 1.1. The average rate of decline in
CD4 can be estimated as the mean of the individual slope estimates:

N subjects average slope standard error
Low Viral Load 66 -5.715 (1.103)
Medium Viral Load 69 -4.697 (0.802)
High Viral Load 65 -7.627 (0.789)

We find similar average rates of decline for the medium and low viral load
groups and find a greater rate of decline for the high viral load group. Using
ANOVA we obtain an F-statistic of 2.68 on 2 and 197 degrees of freedom,
with a p-value of 0.071 indicating we would not reject equality of average
rates of decline using the nominal 5% significance level.

Note that neither simple linear regression nor ANOVA accounts for the
fact that response variables β̂i,1 may have unequal variance due to differing
ni. In addition, a small number of subjects were excluded from the analysis
since a slope summary was unavailable. In section 1.5 we discuss regression
methods for correlated data that can efficiently use all of the available data
to make inference with longitudinal data.
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Figure 1.5: Individual CD4 slopes (count/month) versus log of baseline viral
load, MACS data.
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1.3.2 Pre/Post Analysis

In this section we discuss analytic methods appropriate when a single baseline
and a single follow-up measurement are available. We focus on the situation
where interest is in the comparison of two groups: Xi = 0 denotes member-
ship in a reference or control group; and Xi = 1 denotes membership in an
exposure or intervention group. Assume for each subject i we have a baseline
measurement denoted as Yi0 and a follow-up measurement denoted as Yi1.
The following table summarizes three main analysis options using regression
methods to characterize the two group comparison:

Follow-up only : Yi1 = β0 + β1Xi + εi

Change analysis : (Yi1 − Yi0) = β∗
0 + β∗

1Xi + ε∗i

ANCOVA : Yi1 = β∗∗
0 + β∗∗

1 Xi + β∗∗
2 Yi0 + ε∗∗i

Since Xi is a binary response variable we can interpret the coefficients β1, β
∗
1 ,

and β∗∗
1 as differences in means comparing Xi = 1 to Xi = 0. Specifically, for

the follow-up only analysis the coefficient β1 represents the difference in the
mean response at follow-up comparing Xi = 1 to Xi = 0. If the assignment
to Xi = 0/1 was randomized then the simple follow-up comparison is a
valid causal analysis of the effect of the treatment. For change analysis the
coefficient β∗

1 is interpreted as the difference between the average change

for Xi = 1 as compared to the average change for Xi = 0. Finally, using
ANCOVA estimates β∗∗

1 which represents the difference in the mean follow-
up outcome comparing exposed (Xi = 1) to unexposed (Xi = 0) subjects
who are equal in their baseline response. Equivalently, we interpret β∗∗

1 as
the comparison of treated versus control subjects after adjusting for baseline.

It is important to recognize that each of these regression models provides
parameters with different interpretations. In situations where the selection of
treatment or exposure is not randomized the ANCOVA analysis can control
for “confounding due to indication”, or where the baseline value Yi0 is associ-
ated with a greater/lesser likelihood of recieving the treatment Xi = 1. When
treatment is randomized Frison and Pocock [1992] show that β1 = β∗

1 = β∗∗
1 .

This result implies that for a randomized exposure each approach can provide
a valid estimate of the average causal effect of treatment. However, Frison
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and Pocock [1992] also show that the most precise estimate of β1 is obtained
using ANCOVA, and that final measurement analysis is more precise than
the change analysis when the correlation between baseline and follow-up mea-
surements is less than 0.50. This results from var(Yi1 − Yi0) = 2σ2(1 − ρ)
which is only less than σ2 when ρ > 1/2.

Example 9 To evaluate the effect of the HIVNET mock informed consent
we focus analysis on the baseline and 6 month knowledge scores. The fol-
lowing table gives inference for the follow-up, Yi1, and for the change in
knowledge score, Yi1 − Yi0 for the 834/947 control subjects and 169/177 in-
tervention subjects who have both baseline and 6 month outcomes:

Month 6 Analysis:

Group N mean S.E 95% CI
Control 834 1.494 (0.111)
Intervention 169 3.391 (0.240)
Difference 1.900 (0.264) [1.375, 2.418]

Change Analysis:

Group N mean S.E 95% CI
Control 834 0.243 (0.118)
Intervention 169 2.373 (0.263)
Difference 2.130 (0.288) [1.562, 2.697]

The correlation between baseline and month 6 knowledge score is 0.462
among controls and 0.411 among intervention subjects. Since ρ < 0.5 we
expect an analysis of the change in knowledge score to lead to a larger stan-
dard error for the treatment effect than a simple cross-sectional analysis of
scores at the 6 month visit.

Alternatively we can regress the follow-up on baseline and treatment:
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ANCOVA Analysis:

Coefficients
estimate S.E. Z value

(Intercept) 0.946 (0.105) 9.05
treatment 1.999 (0.241) 8.30
baseline (Yi0) 0.438 (0.027) 16.10

In this analysis the estimate of the treatment effect is 1.999 with a standard
error of 0.241. The estimate of β1 is similar to that obtained from a cross-
sectional analysis using 6 month data only, and to the analysis of the change
in knowledge score. However, as predicted, the standard error is smaller that
the standard error for each alternative analysis approach. Finally, in Figure
1.6 the 6 month knowledge score is plotted against the baseline knowledge
score. Separate regression lines are fit and plotted for the intervention and
control groups. We see that the fitted lines are nearly parallel indicating that
the ANCOVA assumption is satisfied for these data.



1.3. DERIVED VARIABLE ANALYSIS 25

Knowledge score at baseline

K
no

w
le

dg
e 

sc
or

e 
at

 M
on

th
 6

-10 -5 0 5 10

-5
0

5
10

Knowledge Score:  Post versus Pre

Figure 1.6: Month 6 knowledge score versus baseline knowledge score (jit-
tered), HIVNET Informed Consent Substudy.
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For discrete outcomes different pre/post analysis options can be consid-
ered. For example, with a binary baseline, Yi0 = 0/1, and a binary follow-up,
Yi1 = 0/1 the difference, Yi1 − Yi0, takes the values −1, 0, +1. A value of -1
means that a subject has changed from Yi0 = 1 to Yi1 = 0, while +1 means
that a subject has changed from Yi0 = 0 to Yi1 = 1. A difference of 0 means
that a subject had the same response at baseline and follow-up, and does not
distinguish between Yi0 = Yi1 = 0 and Yi0 = Yi1 = 1. Rather than focus on
the difference it is useful to consider an analysis of change by subsetting on
the baseline score. For example, in a comparative study we can subset on
subjects with baseline value Yi0 = 0 and then assess the difference between
intervention and control groups with respect to the percent that respond
Yi1 = 1 at follow-up. This analysis allows inference regarding differential
change from 0 to 1 comparing the two groups. When a response value of
1 indicates a positive outcome this analysis provides information about the
“corrective” potential for intervention and control groups. An analysis that
restricts to subjects with baseline Yi0 = 0 and then comparing treatment and
control subjects at follow-up will focus on a second aspect of change. In this
case we are summarizing the fraction of subjects that start with Yi0 = 1 and
then remain with Yi1 = 1 and thus do not change their outcome but rather
maintain the outcome. When the outcome Yij = 1 indicates a favorable sta-
tus this analysis summarizes the relative ability of intervention and control
groups to “maintain” the favorable status. Statistical inference can be based
on standard 2-sample methods for binary data (see chapter ??). An analysis
that summarizes current status at follow-up stratifying on the baseline, or
previous outcome, is a special case of a transition model (see Diggle et al.,
2002, chapter 10).

Example 10 The HIVNET Informed Consent Substudy was designed to
evaluate whether an informed consent procedure could correct misunder-
standing regarding vaccine trial conduct, and to reinforce understanding that
may be tentative. In section 1.2 we saw that for the safety item assessment
at 6 months the intervention group had 50% of subjects answer correcly as
compared to only 43% of control subjects. For the nurse item the fractions
answering correcly at 6 months were 72% and 45% for intervention and con-
trol groups respectively. By analyzing the 6 months outcome separately for
subjects that answered incorrecly at baseline, Yi0 = 0, and for subjects that
answered correctly at baseline, Yi0 = 1, we can assess the mechanisms that
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lead to the group differences at 6 months: does the intervention experience
lead to greater rates of “correction” where answers go from 0 → 1 for baseline
and 6 month assessments; and does intervention appear to help “maintain”
or reinforce correct knowledge by leading to increased rates of 1 → 1 for
baseline and 6 month responses?

The following table stratifies the month 6 safety knowledge item by the
baseline response:

Safety Item
“Correction” : Yi0 = 0 “Maintain” : Yi0 = 1

percent correct percent correct
N Yi1 = 1 N Yi1 = 1

Control 488 160/488 = 33% Control 349 198/349 = 57%
Intervention 105 43/105 = 41% Intervention 65 42/65 = 65%

This table shows that of the 105 intervention subjects that incorrectly an-
swered the safety item at baseline a total of 43, or 41%, subsequently an-
swered the item correctly at the 6 month follow-up visit. In the control
group only 160/488 = 33% correctly answered this item at 6 months after
they had incorrectly answered at baseline. A 2-sample test of proportions
yields a p-value of 0.118 indicating a non-significant difference between the
intervention and control groups in their rates of correcting knowledge of this
item. For subjects that correctly answered this item at baseline 42/65 = 65%
of intervention subjects and 198/349 = 57% of control subjects continued to
respond correctly. A 2-sample test of proportions yields a p-value of 0.230
indicating a non-significant difference between the intervention and control
groups in their rates of maintaining correct knowledge of the safety item.
Therefore, although the intervention group has slightly higher proportions of
subjects that switch from incorrect to correct, and that stay correct, these
differences are not statistically significant.

For the nurse item we saw that the informed consent led to a large fraction
of subjects who correctly answered the item. A 6 months the intervention
group had 72% of subjects anwswer correctly while the control group had
45% answer correctly. Focusing on the mechanisms for this difference we
find:
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Nurse Item
“Correction” : Yi0 = 0 “Maintain” : Yi0 = 1

percent correct percent correct
N Yi1 = 1 N Yi1 = 1

Control 382 122/382 = 32% Control 455 252/455 = 55%
Intervention 87 59/87 = 68% Intervention 85 65/85 = 76%

Thus intervention led to a correction for 68% of subjects with an incorrect
baseline response as compared to 32% among controls. A 2-sample test of
proportions yields a p-value of <0.001, and a confidence interval for the dif-
ference in proportions of (0.250, 0.468). Therefore the intervention has led to
a significantly different rate of correction for the nurse item. Among subjects
who correctly answered the nurse item at baseline only 55% of control sub-
jects answered correcly again at month 6 while 76% of intervention subjects
maintained a correct answer at 6 months. Comparison of the proportion that
maintain correct answers yields a p-value of <0.001 and a 95% confidence in-
terval for the difference in probability of a repeat correct answer of (0.113,
0.339). Therefore the informed consent intervention led to significantly dif-
ferent rates of both correction and maintainence for the safety item.

These categorical longitudinal data could also be considered as multiway
contingency tables and analyzed by the methods discussed in chapter ??.

1.4 Impact of Correlation on Inference

For proper analysis of longitudinal data the within-subject correlation needs
to be addressed. In section 1.3.1 we discussed one method that avoids consid-
ering correlation among repeated measures by reducing the multiple measure-
ments to a single summary statistic. In situations where there are variable
numbers of observations per subject alternative approaches are preferable.
However, in order to analyze longitudinal outcomes either a model for the
correlation needs to be adopted or the standard error for statistical sum-
maries needs to be adjusted. In this section we discuss some common cor-
relation models and discuss the impact of the correlation on the standard
errors and sample size.
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1.4.1 Common Types of Within-subject Correlation

The simplest correlation structure is the exchangeable model where:

corr(Yi) =




1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
ρ ρ 1 . . . ρ
...

. . .
...

ρ ρ ρ . . . 1




In this case the correlation between any two measurements on a given subject
is assumed to be equal, corr(Yij, Yik) = ρjk ≡ ρ. The longitudinal outcomes
form a simple “cluster” of responses and the time ordering is not considered
when characterizing correlation.

In other models the measurement time or measurement order is used to
model correlation. For example a banded correlation is

corr(Yi) =




1 ρ1 ρ2 ρ3 . . . ρn−1

ρ1 1 ρ1 ρ2 . . . ρn−2

ρ2 ρ1 1 ρ1 . . . ρn−3

ρ3 ρ2 ρ1 1 . . . ρn−3
...

. . .
...

ρn−1 ρn−2 ρn−3 ρn−4 . . . 1




and an auto-regressive structure is

corr(Yi) =




1 ρ|t1−t2| ρ|t1−t3| . . . ρ|t1−tn|

ρ|t2−t1| 1 ρ|t2−t3| . . . ρ|t2−tn|

ρ|t3−t1| ρ|t3−t2| 1 . . . ρ|t3−tn|

...
. . .

...
ρ|tn−t1| ρ|tn−t2| ρ|tn−t3| . . . 1




.

Each of these models is a special case of a serial correlation model where
the distance between observations determines the correlation. In a banded
model correlation between observations is determined by their order. All ob-
servations that are adjacent in time are assumed to have an equal correlation:
corr(Yi1, Yi2) = corr(Yi2, Yi3) = . . . = corr(Yin−1, Yin) = ρ1. Similarly all ob-
servations that are 2 visits apart have correlation ρ2, and in general all pairs of
observations that are k visits apart have correlation ρk. A banded correlation
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matrix will have a total of (n−1) correlation parameters. The auto-regressive
correlation model uses a single correlation parameter and assumes that the
time separation between measurements determines their correlation through
the model corr(Yij, Yik) = ρ|tj−tk |. Thus if ρ = 0.8 and observations are 1 unit
apart in time their correlation will be 0.81 = 0.8, while if they are 2 units
apart their correlation will be 0.82 = 0.64. In an auto-regressive model the
correlation will decay as the distance betweeen observations increases.

There are a large number of correlation models beyond the simple ex-
achangeable and serial models given above. See Verbeke and Molenberghs
[2000] and Diggle et al. [2002] for further examples.

1.4.2 Variance Inflation Factor

The impact of correlated observation on summaries such as the mean of
all observations taken over time and across all subjects will depend on the
specific form of the within subject correlation. For example,

Ȳ =
1∑
i ni

N∑

i=1

ni∑

j=1

Yij

var(Ȳ ) =
1

(
∑

i ni)2

N∑

i=1




ni∑

j=1

var(Yij) +

ni−1∑

j=1

ni∑

k=(j+1)

2 · cov(Yij, Yik)


 .

If the variance is constant, var(Yij) = σ2 we obtain

var(Ȳ ) =
σ2

(
∑

i ni)2

N∑

i=1


ni +

ni−1∑

j=1

ni∑

k=(j+1)

2 · corr(Yij, Yik)


 .

Finally, if all subjects have the same number of observations, ni ≡ n, and
the correlation is exchangeable, ρjk ≡ ρ, the variance of the mean is

var(Ȳ ) =
σ2

Nn
[1 + (n − 1) · ρ] .

The factor [1+(n−1)·ρ] is referred to as the variance inflation factor since this
measures the increase (when ρ > 0) in the variance of the mean calculated
using N · n observations that is due to the within-subject correlation of
measurements.
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To demonstrate the impact of correlation on the variance of the mean
we calculate the variance inflation factor, 1 + (n − 1)ρ, for various values of
cluster size, n, and correlation, ρ:

Variance Inflation Factor

ρ
0.001 0.01 0.02 0.05 0.1

2 1.001 1.01 1.02 1.05 1.10
5 1.004 1.04 1.08 1.20 1.40

10 1.009 1.09 1.18 1.45 1.90
100 1.099 1.99 2.98 5.95 10.90

1000 1.999 10.99 20.98 50.95 100.90

This shows that even very small within-cluster correlations can have an im-
portant impact on standard errors if clusters are large. For example, a vari-
ance inflation factor of 2.0 arises with (ρ = 0.001, n = 1001), (ρ = 0.01, n =
101), or (ρ = 0.10, n = 11).

The variance inflation factor becomes important when planning a study.
In particular, when treatment is given to groups of subjects (e.g. a cluster
randomized study) then the variance inflation factor needs to be estimated
to properly power the study. See Koepsell et al. [1991], or Donner and Klar
[1994, 1997] for discussion of design and analysis issues in cluster randomized
studies. For longitudinal data each subject is a “cluster”, with individual
measurements taken within each subject.

1.5 Regression Methods

Regression methods permit inference regarding the average response trajec-
tory over time and how this evolution varies with patient characteristics such
as treatment assignment or other demographic factors. However, standard
regression methods assume that all observations are independent, and if ap-
plied to longitudinal outcomes may produce invalid standard errors. There
are two main approaches to obtaining valid inference: a complete model
which includes specific assumptions regarding the correlation of observations
within a subject can be adopted and used to estimate the standard error of
regression parameter estimates; general regression methods can be used and
the standard errors can be corrected to account for the correlated outcomes.
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In the following section we review a regression method for continuous out-
comes that models longitudinal data by assuming random errors within a
subject and random variation in the trajectory among subjects.

1.5.1 Mixed Models

Figure 1.7 presents hypothetical longitudinal data for two subjects. In the
figure montly observations are recorded for up to one year, but one individual
drops out prior to the 8 month visit and thus the observations for months
8 through 12 are not recorded. Notice that each individual appears to be
tracking their own linear trajectory but with small fluctations about their
line. The deviations from the individual observations to the individual’s line
are referred to as the “within-subject” variation in the outcomes. If we only
had data for a single subject these would be the typical error terms in a
regression equation. In most situations the individuals in a study represent
a random sample from a well-defined target population. In this case the
specific individual line that a subject happens to follow is not of primary
interest, but rather the typical linear trajectory and perhaps the magnitude
of subject-to-subject variation in the longitudinal process. A dashed line in
the center of Figure 1.7 shows the average of individual linear time trajec-
tories. This average curve characterizes the average for the population as
a function of time. For example, the value of the dashed line at month=2
denotes the cross-sectional mean response if the 2 month observation for all
subjects was averaged. Similarly, the fitted value for the dashed line at 10
months represents the average in the population for the 10 month measure-
ment. Therefore, the “average line” in Figure 1.7 represents both the typical
trajectory and the population average as a function of time.

Linear mixed models make specific assumptions about the variation in ob-
servations attributable to variation within a subject and to variation among
subjects. The within-subject variation is seen in Figure 1.7 as the deviation
between individual observations, Yij, and the individual linear trajectory.
Let βi,0 +βi,1 ·Xij denote the line that characterizes the observation path for
subject i. In this example Xij denotes the time of measurement j on sub-
ject i. Note that each subject has an individual-specific intercept and slope.
Within-subject variation is seen in the magnitude of variation in the deviation
between the observations and the individual trajectory, Yij −(βi,0 +βi,1 ·Xij).
The between-subject variation is represented by the variation among the in-
tercepts, var(βi,0), and the variation among subjects in the slopes, var(βi,1).
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If parametric assumptions are made regarding the within- and between-
subject components of variation then maximum likelihood methods can be
used to estimate the regression parameters which characterize the population
average, and the variance components which characterize the magnitude of
within- and between-subject heterogeneity. For continuous outcomes it is
convenient to assume that within-subject errors are normally distributed,
and to assume that intercepts and slopes are normally distributed among
subjects. Formally, these assumptions are written as:

within-subjects : E(Yij | βi) = βi,0 + βi,1 · Xij

Yij = βi,0 + βi,1 · Xij + εij

εij ∼ N (0, σ2)

between-subjects :

(
βi,0

βi,1

)
∼ N

[(
β0

β1

)
,

(
D00 D01

D10 D11

)]

The model can be re-written using bi,0 = (βi,0 − β0) and bi,1 = (βi,1 − β1):

Yij = β0 + β1 · Xij︸ ︷︷ ︸
systematic

+ bi,0 + bi,1 · Xij + εij︸ ︷︷ ︸
random

(1)

In this representation the terms bi,0 and bi,1 represent deviations from the
population average intercept and slope respectively. These “random effects”
now have mean 0 by definition, but their variance and covariance is still
given by the elements of the matrix D. For example, var(bi,0) = D00 and
var(bi,0) = D11. In equation 1 the “systematic” variation in outcomes is given
by the regression parameters β0 and β1. These parameters determine how
the average for sub-populations differs across distinct values of the covariates,
Xij.

In equation 1 the random components are partitioned into the observation
level and subject level fluctuations:

Yij = β0 + β1 · Xij + bi,0 + bi,1 · Xij︸ ︷︷ ︸
between-subject

+ εij︸ ︷︷ ︸
within-subject
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A more general form is

Yij = β0 + β1 · Xi1 + . . . + βp · Xip︸ ︷︷ ︸
fixed effects

+ bi,0 + bi,1 · Xi1 + . . . + bi,q · Xiq︸ ︷︷ ︸
random effects

+ εij

Yij = X ′
ijβ + Z ′

ijbi + εij

where X ′
ij = [Xij,1, Xij,2, . . . , Xij,p] and Z ′

ij = [Xij,1, Xij,2, . . . , Xij,q]. In gen-
eral we assume the covariates in Zij are a subset of the variables in Xij and
thus q < p. In this model the coefficient of covariate k for subject i is given as
(βk +bi,k) if k ≤ q, and is simply βk if q < k ≤ p. Therefore, in a linear mixed
model there may be some regression parameters that vary among subjects
while some regression parameters are common to all subjects. For example,
in Figure 1.7 it is apparent that each subject has their own intercept, but
the subjects may have a common slope. A random intercept model assumes
parallel trajectories for any two subjects and is given as a special case of the
general mixed model:

Yij = β0 + β1 · Xi1 + bi,0 + εij .

In this model the intercept for subject i is given by β0 + bi0 while the slope
for subject i is simply β1 since there is no additional random slope, bi,1 in
the random intercept model.
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Figure 1.7: Hypothetical longitudinal data for two subjects. Each subject
has their individual linear trajectory, and one subject has incomplete data
due to drop-out.
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Laird and Ware [1982] discuss the linear mixed model and specfic meth-
ods to obtain maximum likelihood estimates. Although linear mixed models
can be computationally difficult to fit, modern software packages contain ex-
cellent numerical routines for estimating parameters and computing standard
errors. For example, the SAS package contains the MIXED procedure and
S-PLUS has the lme() function.

Example 11 In section 1.3.1 we explored the change over time in CD4
counts for groups of subjects according to their baseline viral load value.
Using linear mixed models we can estimate the average rate of decline for
each baseline viral load category, and test for differences in the rate of decline.

In order to test for differences in the rate of decline we use linear regression
with:

E(Yij | Xij) = β0 +

β1 · month +

β2 · I(Medium Viral Load) +

β3 · I(High Viral Load) +

β4 · month · I(Medium Viral Load) +

β5 · month · I(High Viral Load) .

Here Xij,3 = I(Medium Viral Load) = 1 if subject i has a medium value for
baseline viral load, and Xij,4 = I(High Viral Load) = 1 if subject i has a
high baseline viral load. Using this regression model the average slope for
the low baseline viral category is given by β1, while the average slope for
the other viral load categories are given by (β1 + β4) and (β1 + β5) for the
medium and high viral load categories respectively. If the estimate of β4 is
not significantly different from 0 then we can not reject equality of the average
rates of decline. Similarly, inference regarding β5 determines whether there
is evidence that the rate of decline for high viral load subjects is different
than for low viral load subjects.

The linear mixed model is specified by the regression model for E(Yij |
Xij) = µij and assumptions about random effects. We first assume random
intercepts, Yij = µij + bi,0 + εij, and then allow random intercepts and
slopes, Yij = µij + bi,0 + bi,1 ·month+ εij. Maximum likelihood estimates are
presented in Tables 1.4 and 1.5. In Table 1.4 the mixed model assumes that



1.5. REGRESSION METHODS 37

each individual has a random intercept, bi,0, but assumes a common slope.
In this model there are two estimated variance components: 162.5 = σ̂ =√

v̂ar(εij), and 219.1 =
√

D̂00 =
√

v̂ar(bi,0). The total variation in CD4 is
estimated as 162.52 + 219.12 = 272.82, and the proportion of total variation
that is attributed to within-person variability is 162.52/272.82 = 35% with
219.12/272.82 = 65% of total variation attributable to individual variation
in their general level of CD4 (eg. attributable to random intercepts).

Estimates from Table 1.4 are interpreted as follows:

• (Intercept) β̂0 = 803.4: The intercept is an estimate of the mean
CD4 count at seroconversion (ie. month=0) among the low viral load
subjects.

• month β̂1 = −5.398: Among subjects in the low viral load group the
mean CD4 declines -5.398 units per month.

• I[Medium Viral Load] β̂2 = −123.72: At seroconversion the average
CD4 among subjects with a medium value for baseline viral load is
123.72 units lower than the average CD4 among the low viral load
subjects.

• I[High Viral Load] β̂3 = −146.40: At seroconversion the average
CD4 among subjects with a high value for baseline viral load is 146.40
units lower than the average CD4 among the low viral load subjects.

• month * I[Medium Viral Load] β̂4 = 0.169: The rate of decline for
subjects in the medium viral load category is estimated to be 0.169
counts/month higher than the rate of decline among subjects with a
low baseline viral load. The rate of change in mean CD4 is estimated
as -5.398 + 0.169 = -5.229 counts/month among subjects with medium
baseline viral load.

• month * I[High Viral Load] β̂5 = −1.967: The rate of decline for
subjects in the high viral load category is estimated to be -1.967 counts/month
lower than the rate of decline among subjects with a low baseline viral
load. The rate of change in mean CD4 is estimated as -5.398 - 1.967 =
-7.365 counts/month among subjects with high baseline viral load.

Although the regression output also includes standard errors for each of the
regression estimates we defer making inference sice a model with random
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intercepts and random slopes appears more appropriate and impacts the
resulting confidence intervals or tests for the regression estimates (see Table
1.5).

In Table 1.5 we present maximum likelihood estimates assuming random
intercepts and random slopes. To assess whether the additional flexibility is
warranted we can evaluate the improvement in the fit to the data as measured
by the maximized log likelihood. The maximized log likelihood for random
intercepts is -9911.49 (see Table 1.4) while the maximized log likelihood is
increased by 61.56 to -9849.93 when also allowing random intercepts. A for-
mal likelihood ratio test is possible since the random intercepts and random
intercepts plus slopes form nested models, but since the null hypothesis re-
striction involves D11 = 0 which is on the boundary of the allowable values
for variance components (i.e. D11 ≥ 0) the null reference distrbution is of
non-standard form (Stram and Lee 1994; Verbeke and Molenberghs 2000).
However, the increase in maximized log likelihood of 61.56 is quite substantial
and statistically significant with p < 0.001. Although the variance assump-
tions can be further relaxed to allow serial correlation in the measurement
errors, εij, the improvement in the maximized log likelihood is small and does
not substantially impact the conclusions. We refer the reader to Diggle et
al. [2002] and Verbeke and Molenberghs [2000] for further detail regarding
linear mixed models that also include serial correlation in the errors.

Table 1.5 gives estimates of the variance components. For example, the
standard deviation in intercepts is estimated as

√
D̂00 = 244.1 and the stan-

dard deviation of slopes is given as
√

D̂11 = 5.681. Under the assumption of
normally distributed random effects these estimates imply that 95% of indi-
viduals with low baseline viral load would have a mean CD4 at seroconversion
between 803.5 - 1.96×244.1 = 325.1 and 803.5 + 1.96×244.1 = 1281.9. We
emphasize that this interval is for each individual values of the mean CD4 at
baseline rather than for individual measurements at baseline. The interval
(325.1, 1281.9) does not include the measurement variation attributable to
εij so only describes the variation in the means, β0 + bi,0, and not the actual
CD4 measurements Yij = β0 + bi,0 + εij. Similarly, 95% of low viral load sub-
jects are expected to have a slope of -5.322 ± 1.96×5.681 = (16.456, 5.813)
counts/month.

The estimated regression parameters can be used to make inference re-
garding the average rate of decline for each of the baseline viral load cate-
gories. For example, β̂4 = 0.159 estimates the difference between the rate of
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decline among medium viral load subjects and low viral load subjects and is
not significantly different from 0 based using the standardized regression co-
efficient as test statistic: 0.159/1.205 = 0.13 with p = 0.8954. Although the

estimated rate of decline is lower for the high viral load group, β̂5 = −2.240
this is also not significantly different from 0 with p-value p = 0.0648. It is
important to point out that inference using linear mixed models can be quite
sensitive to the specific random effects assumptions. If a random intercepts
model were used then the comparison of high versus low viral load group
slopes over time becomes statistically significant as seen in Table 1.4 where
the p-value for testing H0 : β5 = 0 is p = 0.0162 which would naively lead to
rejection of the null hypothesis. This inference is invalid as it assumes that
slopes do not vary among individuals, and the data clearly suggest between-
subject variation in slopes.

Table 1.4: Linear mixed model results for the CD4 data assuming random
intercepts. Output from S-PLUS.

Linear mixed-effects model fit by maximum likelihood

Data: MACS

AIC BIC logLik

19838.98 19881.38 -9911.491

Random effects:

Formula: ~ 1 | id

(Intercept) Residual

StdDev: 219.1106 162.5071

Fixed effects: cd4 ~ month * vcat

Value Std.Error DF t-value p-value

(Intercept) 803.356 29.712 1250 27.04 <.0001

month -5.398 0.578 1250 -9.34 <.0001

I[Medium Viral Load] -123.724 42.169 223 -2.93 0.0037

I[High Viral Load] -146.401 42.325 223 -3.46 0.0006

month * I[Medium Viral Load] 0.169 0.812 1250 0.21 0.8351

month * I[High Viral Load] -1.968 0.817 1250 -2.41 0.0162
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Table 1.5: Linear mixed model results for the CD4 data assuming random
intercepts and slopes. Output from S-PLUS.

Linear mixed-effects model fit by maximum likelihood

Data: MACS

AIC BIC logLik

19719.85 19772.84 -9849.927

Random effects:

Formula: ~ 1 + month | id

Structure: General positive-definite

StdDev Corr

(Intercept) 244.05874 (Inter

month 5.68101 -0.441

Residual 142.22835

Fixed effects: cd4 ~ month * vcat

Value Std.Error DF t-value p-value

(Intercept) 803.509 31.373 1250 25.61 <.0001

month -5.322 0.857 1250 -6.21 <.0001

I[Medium Viral Load] -125.548 44.536 223 -2.82 0.0053

I[High Viral Load] -142.177 44.714 223 -3.18 0.0017

month * I[Medium Viral Load] 0.159 1.205 1250 0.13 0.8954

month * I[High Viral Load] -2.240 1.212 1250 -1.85 0.0648

Residual plots can be useful for checking the assumptions made by the
linear mixed model. However, there are two types of residuals that can be
used. First, the population residuals are defined as

RP
ij = Yij − (β̂0 + β̂1 · Xij,1 + . . . + β̂p · Xij,p)

= Yij − X ′
ijβ̂ .

The population residuals measure the deviation from the individual mea-
surement to the fitted population mean value. These residuals contain all
components of variation including between- and within-subject deviations
since:

(Yij − X ′
ijβ) = Z ′

ijbi + εij .
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The population residuals can be used to evaluate evidence for systematic
departures from linear assumptions. Similar to standard multiple regression
plots of residuals versus predictors can be inspected for curvature.

Individual random effects bi can also be estimated and used to form a
second type of residual. Under the linear mixed model these random effects
are typically not estimated simply by using subject i data only to estimate
bi, but rather by using both the individual data Yi1, Yi2, . . . , Yi,ni

and the
assumption that random effects are realizations from a normal distribution
among subjects. Empirical Bayes estimates of bi balance the assumption that
bi is intrinsic to generating the data Yij in addition to the assumption that
distribution of bi is multivariate normal with mean 0. Thus, empirical Bayes
estimates are typically closer to 0 than estimates that would be obtained
solely by using individual i data. See Carlin and Louis [1996] for more detail
on empirical Bayes estimation. Using the estimated random effects provides
a second residual:

RW
ij = Yij − (β̂0 + β̂1 · Xij,1 + . . . + β̂p · Xij,p) −

(b̂i,0 + b̂i,1 · Xij,1 + . . . + b̂i,q · Xij,q)

= Yij − X ′
ijβ̂ − Z ′

ij b̂i .

If the regression parameter β and the random effects b were known rather
than estimated the residual RW

ij would equal the within-subject error εij. The
within-subject residuals RW

ij can be used to assess the assumptions regarding
the within-subject errors.

Example 12 We use the random intercepts and random slopes model for
the CD4 data to illustrate residual analysis for linear mixed models. The
population residuals are plotted in Figure 1.8 and the within-subject residu-
als are plotted in Figure 1.9. First, no violation of the linearity assumption
for month is apparent in either of these plots. Second, the population resid-
uals are weakly suggestive of an increasing variance over time. However, it
is important to note that under the assumption of random intercepts and
random slopes the total variance, var(bi,0 + bi,1 · month + εij), may be an
increasing or decreasing function of time. The population residuals suggest
right skewness in the cross-sectional distribution of CD4. Since the within-
subject residuals do not appear skewed the population residuals suggest that
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the random effects may not be normally distributed. Figure 1.10 presents
histograms of the estimated intercepts and slopes obtained using ordinary lin-
ear regression for subject i data rather than the empirical Bayes estimates.
The histograms for the individual intercepts appear to be right skewed while
the individual slopes appear symmetrically distributed. Therefore, residual
analysis coupled with exploratory analysis of individual regression estimates
suggests that linearity assumptions appear satisfied but normality of random
effects may be violated. The linear mixed model is known to be moderately
robust to distributional assumptions so large sample inference regarding the
average rate of decline for baseline viral load groups can be achieved.
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Figure 1.8: Population residuals, RP
ij, verus visit month for the MACS CD4

data. The dashed line is a smooth curve through the residuals.
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Figure 1.10: Estimates of individual intercepts and slopes by baseline viral
load category for the MACS CD4 data.
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Mixed models can be adopted for use with categorical and count response
data. For example, random effects can be included in logistic regression mod-
els for binary outcomes, and can be included in log linear models for count
data. Maximum likelihood estimation for these models requires specialized
software. Extensions of mixed models to alternate regression contexts is dis-
cussed in chapters 7 and 9 of Diggle et al. [2002].

Summary:

• Linear mixed models permit regression analysis with correlated data.

• Mixed models specify variance components that represent within-subject
variance in outcomes, and between-subject variation in trajectories.

• Linear mixed model parameters can be obtained using maximum like-
lihood.

1.5.2 Generalized Estimating Equations (GEE)

A second regression approach for inference with longitudinal data is known
as generalized estimating equations, or GEE (Liang and Zeger 1986). In this
approach two models are specified. First a regression model for the mean
response is selected. The form of the regression model is completely flexible
and can be a linear model, a logistic regression model, a log linear model,
or any generalized linear model (McCullagh and Nelder, 1989). Second a
model for the within-subject correlation is specified. The correlation model
serves two purposes: it is used to obtain weights (covariance inverse) that are
applied to the vectors of observations from each subject in order to obtain
regression coefficient estimates; and the correlation model is used to provide
model-based standard errors for the estimated coefficients.

A regression model specifies a structure for the mean response, µij =
E(Yij | Xij), as a function of covariates. For longitudinal data the mean
µij has been called the marginal mean since it does not involve any addi-
tional variables such as random effects, bi, or past outcomes, Yij−1. Mixed
models consider means conditional on random effects, and transition models
include past outcomes as covariates. Adding additional variables leads to
subtle changes in the interpretation of covariate coefficients which becomes
particularly important for non-linear models such as logistic regression. See
Diggle et al., 2002, chapters 7 and 11 for further discussion.
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GEE has two important robustness properties. First, the estimated re-
gression coefficients, β̂, obtained using GEE are broadly valid estimates that
approach the correct value with increasing sample size regardless of the choice
of correlation model. In this respect the correlation model is used simply to
weight observations and a good correlation model choice can lead to more
precise estimation of regression coefficients than a poor choice. Based on
optimal estimation theory (e.g. Gauss-Markov theory) the best correlation
model choice for efficiency of estimation is the true correlation structure.
Second, the correlation choice is used to obtain model-based standard errors
and these do require that the correlation model choice is correct in order to
use the standard errors for inference. A standard feature of GEE is the addi-
tional reporting of empirical standard errors which provide valid estimates of
the uncertainty in β̂ even if the correlation model is not correct. Therefore,
the correlation model can be any model, including one that assumes obser-
vations are independent, and proper large sample standard errors obtained
using the empirical estimator. Liang and Zeger [1993] provide an overview
of regression methods for correlated data, and Hanley et al. [2003] give an
introduction to GEE for an epidemiological audience.

Example 13 We return to the CD4 data and use GEE to investigate whether
the rate of decline in CD4 over the first 48 months post-seroconversion seems
to depend on the baseline viral load category. Table 1.6 presents the estimates
obtained using GEE and an independence correlation model. Standard er-
rors using the independence correlation model are identical to those obtained
from linear regression and are labeled as “model-based”. In this application
the key feature provided by GEE are the “empirical” standard errors which
are generally valid estimates of the uncertainty associated with the regres-
sion estimates. Notice that most of the empirical standard errors are larger
than the naive model-based standard errors which assume the data are inde-
pendent. However, corrected standard errors can be either larger or smaller
than standard errors obtained under an independence assumption and the
nature of the covariate and the correlation structure interact to determine
the proper standard error. It is an over-simplification to state that correction
for correlation will lead to larger standard errors. Using GEE we obtain con-
clusions similar to that obtained using linear mixed models: the high viral
load group has a steeper estimated rate of decline but the difference between
low and high groups is not statistically significant.
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Table 1.6: GEE estimates for the CD4 data using an independence working
correlation model.

standard error Z statistic
estimate model empirical model empirical

(Intercept) 792.897 26.847 36.651 29.534 21.633
month -4.753 0.950 1.101 -5.001 -4.318

I(Medium Viral Load) -121.190 37.872 46.886 -3.200 -2.585
I(High Viral Load) -150.705 37.996 45.389 -3.966 -3.320

month * I(Medium Viral Load) -0.301 1.341 1.386 -0.224 -0.217
month * I(High Viral Load) -1.898 1.346 1.297 -1.410 -1.464

Example 14 GEE is particularly useful for binary data and count data. We
now turn to analysis of the nurse item from the HIVNET informed consent
study. We need to choose a regression model and a correlation model. For our
first analysis we will assume a common proportion answering correctly after
randomization. For this analysis we create the covariate “Post” which takes
the value 1 if the visit occurs at month 6, 12, or 18, and takes the value 0 for
the baseline visit. We use the variable “ICgroup” to denote the intervention
and control group where ICgroupij = 1 for all visits j = 1, 2, 3, 4 if the
subject was randomized to the mock informed consent, and ICgroupij = 0
for all visits, j = 1, 2, 3, 4, if the subject was randomized to the control group.
Since the response is binary, Yij = 1 if the item was correctly answered by
subject i at visit j and 0 otherwise, we use logistic regression to characterize
the probability of a correct response as a function of time and treatment
group:

logitP (Yij = 1 | Xi) = β0 +

β1 · Postij +

β2 · ICgroupij +

β3 · ICgroupij · Postij .

Since the visits are equally spaced and each subject is scheduled to have
a total of four measurements we choose to use an unstructured correlation
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matrix. This allows the correlations ρjk to be different for each pair of visit
times (j, k).

In Table 1.7 we provide GEE estimates obtained using the SAS proce-
dure GENMOD. The estimated working correlation is printed and indicates
correlation that decreases as the time between visits increases. For example,
the estimated correlation for Yi1 and Yi2 is ρ̂12 = 0.204 while for Yi1 and Yi3

ρ̂13 = 0.194, and for Yi1 and Yi4 is ρ̂14 = 0.163. The correlation between
sequential observations also appears to increase over time with ρ̂23 = 0.302
and ρ34 = 0.351.

Regression parameter estimates are reported along with the empirical
standard error estimates. These parameters are interpreted as follows:

• (Intercept) β̂0 = 0.1676: The intercept is an estimate of log odds
of a correct response to the nurse item at baseline for the control
group. This implies an estimate for the probability of a correct response
at baseline among controls of exp(0.1676)/[1 + exp(0.1676)] = 0.5418
which agrees closely with the observed proportion presented in Table
1.3.

• Post β̂1 = −0.3238: The coefficient of Post is an estimate of the log of
the odds ratio comparing the odds of a correct response among control
subjects after randomization (either month 6, 12, or 18) relative to the
odds of a correct response among the control group at baseline. Since
the odds ratio estimate is exp(−0.3238) = 0.7234 < 1 the odds of a
correct response is lower after baseline. A test for equality of odds
comparing post-baseline to baseline yields a p-value p < 0.001.

• ICgroup β̂2 = −0.1599: The coefficient of ICgroup is an estimate of
the log of the odds ratio comparing the odds of a correct response
among intervention subjects at baseline relative to the odds of a correct
response among the control subjects at baseline. Since the assignment
to treatment and control was based on randomization we expect this
odds ratio to be 1.0, and the log odds ratio estimate is not significantly
different from 0.0.

• ICgroup * Post β̂3 = 1.0073: This interaction coefficient measures
the difference between the comparison of treatment and control after
randomization and the comparison of treatment and control at baseline.
Specifically, (β3 +β2) represents the log odds ratio comparing the odds
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of a correct response among intervention subjects post-baseline to the
odds of a correct response among control subjects post-baseline. Since
β2 represents the group comparison at baseline, β3 = (β3 + β2) − β2,
or β3 measures the difference between the comparison after baseline
and the group comparison at baseline. Therefore, the parameter β3

becomes the primary parameter of interest in this study as it assesses
the change in the treatment/control comparison that is attributable
to the intervention. A test of β3 = 0 is statistically significant with
p < 0.001.

GEE is a convenient analysis tool for the informed consent data as it allows
inference regarding the differences between treatment and control groups
over time. A standard logistic regression model is adopted and valid stan-
dard errors are calculated that account for the within-subject correlation of
outcomes.

In Table 1.7 we used a single time variable that was an indicator for
the post-baseline visits at 6, 12, and 18 months. However, inspection of
crude proportions correctly responding suggest that the treatment/control
comparison may be decreasing over time. For example, in Table 1.3 we
see (treatment, control) proportions of (72.1%, 44.7%) at month 6, (60.1%,
46.3%), and (66.0%, 48.2%) at months 12 and 18. To assess whether the
treatment effect appears to be decreasing over time we fit a second logistic
regression model that uses indicator variables for month 6, 12, and 18. Ta-
ble 1.8 presents GEE estimates using an exchangeable working correlation
model. In this model the coefficient of month6*ICgroup contrasts the treat-
ment/control log odds ratio at the 6 month visit and at baseline. Similar
to our earlier analysis this difference in time-specific log odds ratios is the
primary treatment effect observed at 6 months. Similarly, the coefficients
of month12*ICgroup and month18*ICgroup represent treatment effects at
12 and 18 months. Each of the estimated differences in log odds ratios are
significant as indicated by the individual p-values in Table 1.8. In addition,
we contrast the observed treatment effect at 6 months with the treatment
effect observed at 12 and 18 months. The difference between the estimated
coefficient of month6*ICgroup and month12*ICgroup assesses the change in
the treatment effect and is estimated as 1.3232 - 0.7362 = -0.5871. A test of
this contrast yields a p-value of p = 0.0035 indicating a different treatment
effect at 12 months as compared to the treatment effect at 6 months. A
similar analysis for the 18 month effect as compared to 6 months is barely
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statistically significant with p = 0.041. Therefore, there is evidence that the
effect of the intervention may be changing over time. Once again GEE pro-
vides a general tool for evaluating the evolution of mean outcomes over time
for different subgroups of subjects.

There are a number of extensions of the GEE approach introduced by
Liang and Zeger [1986]. More flexible and tailored dependence models have
been proposed for binary data (Lipsitz, Laird and Harrington, 1991; Carey,
Zeger and Diggle 1993), and extension for multiple survival times has been
developed (Wei, Lin and Weissfeld 1988; Lee, Wei and Amato 1992)

Summary:

• GEE permits regression analysis with correlated continuous, binary, or
count data.

• GEE requires specification of a regression model and a working corre-
lation model.

• Two standard error estimates are provided with GEE: a model-based
standard error that is valid if the correlation model is correctly speci-
fied; and an empirical standard errors which are valid even if the cor-
relation model is not correct provided the data contain a large number
of independent clusters.

• Estimation with GEE does not involve a likelihood function, rather it
is based on the solution to regression equations that only use models
for the mean and covariance.
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Table 1.7: GEE analysis of the nurse item from the HIVNET informed con-
sent study. Output from SAS procedure GENMOD.

GEE Model Information

Correlation Structure Unstructured

Subject Effect id (1123 levels)

Number of Clusters 1123

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 1

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.2044 0.1936 0.1625

Row2 0.2044 1.0000 0.3022 0.2755

Row3 0.1936 0.3022 1.0000 0.3511

Row4 0.1625 0.2755 0.3511 1.0000

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.1676 0.0652 0.0398 0.2954 2.57 0.0102

Post -0.3238 0.0704 -0.4618 -0.1857 -4.60 <.0001

ICgroup -0.1599 0.1643 -0.4819 0.1622 -0.97 0.3306

ICgroup*Post 1.0073 0.2012 0.6128 1.4017 5.01 <.0001



52 CHAPTER 1. LONGITUDINAL DATA ANALYSIS

Table 1.8: GEE analysis of the nurse item from the HIVNET informed con-
sent study. Output from SAS procedure GENMOD.

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.1644 0.0653 0.0364 0.2923 2.52 0.0118

month6 -0.3803 0.0839 -0.5448 -0.2158 -4.53 <.0001

month12 -0.3261 0.0854 -0.4934 -0.1587 -3.82 0.0001

month18 -0.2460 0.0886 -0.4197 -0.0723 -2.78 0.0055

ICgroup -0.1536 0.1639 -0.4748 0.1676 -0.94 0.3487

month6*ICgroup 1.3232 0.2319 0.8687 1.7777 5.71 <.0001

month12*ICgroup 0.7362 0.2358 0.2739 1.1984 3.12 0.0018

month18*ICgroup 0.9101 0.2273 0.4647 1.3556 4.00 <.0001

Contrast Estimate Results

Standard Chi-

Label Estimate Error Alpha Confidence Limits Square

Effect at 12 versus 6 -0.5871 0.2014 0.05 -0.9817 -0.1924 8.50

Effect at 12 versus 6 -0.4131 0.2023 0.05 -0.8097 -0.0166 4.17

Contrast Estimate Results

Label Pr > ChiSq

Effect at 12 versus 6 0.0035

Effect at 12 versus 6 0.0412
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1.6 Missing Data

One of the major issues associated with the analysis of longitudinal data
is missing data, or more specifically montone missing data that arise when
subjects drop out of the study. It is assumed that once a participant drops
out they provide no further outcome information. Missing data can lead to
biased estimates of means and/or regression parameters when the probability
of missingness is associated with outcomes. In this section we first review
a standard taxonomy of missing data mechanisms and then briefly discuss
methods that can be used to alleviate bias due to attrition. We also discuss
some simple exploratory methods that can help determined whether subjects
that complete the longitudinal study appear to differ from those who drop
out.

1.6.1 Classification of Missing Data Mechanisms

To discuss factors that are associated with missing data it is useful to adopt
the notation, Rij = 1 if observation Yij is observed, and Rij = 0 if Yij is
missing. Let Ri = (Ri1, Ri2, . . . , Rin). Monotone missing data implies that
if Rij = 0 then Rij+k = 0 for all k > 0. Let Y O

i denote the subset of the
outcomes Yi = (Yi1, Yi2, . . . , Yin) that are observed, and let Y M

i denote the
missing outcomes. For longitudinal data a missing data classification is based
on whether observed or unobserved outcomes are predictive of missing data
(Laird 1988):

Missing Completely at Random P (Ri | Y O
i , Y M

i , Xi) = P (Ri | Xi)
(MCAR)

Missing at Random P (Ri | Y O
i , Y M

i , Xi) = P (Ri | Y O
i , Xi)

(MAR)

Non-Ignorable P (Ri | Y O
i , Y M

i , Xi) depends on Y M
i

(NI)
In Figure 1.7 an example of monotone missing data is presented. For subject
1 all observations after the 7 month visit are missing. If the reason that
these observations are missing is purely unrelated to outcomes (observed or
not) then the missing data are called MCAR. However, if the observed data
are predictive of missingness then the missing data are called MAR, and the
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mechanism introduces a form of selection bias. MAR data could occur if an
attending physician decides to dis-enroll any participant who appears to be
failing treatment, particularly when the decision is based on the value of past
measurements or factors associated with the past outcomes Yij. Finally, the
unobserved outcomes may be associated with missingness, if for example,
subjects who are the most ill refuse to travel to attend their scheduled study
visit.

The missing data taxonomy translates directly into implications for po-
tential selection bias. If data are MCAR then both the missing and the
observed outcomes are representative of the source population. Therefore
when data are MCAR standard statistical summaries based on the observed
data remain valid. However, if data are MAR or NI then summaries based
on the available cases may be biased. Returning to Figure 1.7, if the drop-
out for patient 1 is indicative of a general process by which those subjects
who have a high response value do not return for study, then the observed
mean for the measured outcomes will not be representative of what would
be observed had the entire population been followed. In this example, the
mean among available subject would underestimate the population mean for
later months.

Formally we write E(Yij | Xi, Rij = 1) to denote the expected response
conditional on responding, and we write E(Yij | Xi) for the target of infer-
ence. If the data are MCAR then E(Yij | Xi, Rij = 1) = E(Yij | Xi). How-
ever, if data are either MAR or NI then E(Yij | Xi, Rij = 1) 6= E(Yij | Xi)
implying that the available data, Rij = 1, may not provide valid estimates
of population parameters.

In any given application serious thought needs to be given to the types
of processes that lead to missing data. External information can help deter-
mine whether missingness mechanisms may be classified as MCAR, MAR, or
NI. Unfortunately, since NI missingness implies that unobserved data, Y M

i ,
predicts drop-out we can not empirically test whether data are NI versus
MAR or MCAR. Essentially one would need the unobserved data to check
to see if it is associated with missingness, but these data are missing! The
observed data can be used to assess whether the missingness appears to
be MAR or MCAR. First, the drop-out time can be considered a discrete
time “survival” outcome and methods introduced in chapter ?? can be used
to assess whether past outcomes Yij−1, Yij−2, . . . are predictive of dropout,
Rij = 0. Second, each subject will have a drop-out time, or equivalently a
“last measurement” time, with those completing the study having the final
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assessment time as their time of last measurement. The longitudinal data
can be stratified according to the drop-out time. For example, the mean at
baseline can be calculated separately for those subjects that drop-out at the
first visit, second visit, through those that complete the study. Similarly,
the mean response at the first follow-up visit can be computed for all sub-
jects that have data for that visit. Such analyses can be used to determine
whether the outcomes for the drop-out subjects appears to be different from
the “completers.” Naturally subjects that are lost can only be compared to
others at the visit times prior to their drop-out. These exploratoy analyses
are complementary: the first approach assesses whether outcomes predict
dropout; and the second approach evaluates whether the drop-out time pre-
dicts the outcomes. An example of such modeling can be found in Zhou and
Castelluccio [2004].

1.6.2 Approaches to Analysis with Missing Data

There are several statistical approaches that attempt to alleviate bias due to
missing data. General methods include:

1. Imputation of missing data. See Little and Rubin [1987], Schafer
[1997], or Koepsell and Weiss [2003] for more information on imputa-
tion methods. Imputation refers to “filling in” missing data. Proper
methods of imputation use multiple imputation to account for the un-
certainty in the missing data. Imputation methods require that a model
be adopted that links the missing data to the observed data.

2. Modeling of both the missing data process and the longitudinal data
using maximum likelihood for estimation. Use of linear mixed models
estimated with maximum likelihood is one example of this approach.
However, to validly correct for MAR missingness the mean and the
covariance must be correctly specified. See Verbeke and Molenberghs
[2000] for more details.

3. Weighting the available data using non-response methods to weight
the observed data in order to account for the missing data. Use of
inverse probability weighting, or non-response weighting can be applied
to general statistical summaries and has been proposed to allow for use
of GEE in MAR situations. See Robins, Rotnitzky and Zhao [1995] for
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the statistical theory, and Preisser, Lohman and Rathouz [2002] for a
simulation study of the performance of weighted GEE methods.

However, it is important to note that these methods are designed to address
data that are assumed to be MAR rather than the more serious non-ignorable
(NI) missing data. Non-ignorable missing data can lead to bias which can
not be corrected simply through modelling and estimation of the drop-out
model and/or the response model since unidentifable parameters that link
the probability of missingness to the unobserved data are needed. Therefore,
reliance on statistical methods to correct for bias due to attrition either re-
quires an untestable assumption that the data are MAR, or requires some
form of sensitivity analysis to characterize plausible estimates based on vari-
ous missingness assumptions. See Diggle et al. chapter 13 for discussion and
illustration.

Example 15 In the HIVNET informed consent study there was substantial
missing data due to attrition. In Tables 1.2 and 1.3 we see a decreasing
number of subjects over time. In the control group there are 946 subjects
with baseline data, and only 782 with 18 month data. Is the knowledge
score for subjects that complete the study different than those that drop-
out? Figure 1.11 shows the mean response over time stratified by drop-out
time. For example, among subjects that drop-out at the 12 month visit
their mean knowledge score at baseline and 6 months is plotted. This plot
suggests that subjects who complete only the baseline interview have a lower
mean baseline knowledge score compared to all other subjects. In addition,
for subjects that complete the study the average knowledge score at 6 and
12 months appears greater than the mean knowledge score among subjects
that do not complete the 18 month visit. Thus, Figure 1.11 suggests that
the “completers” and the “drop-out” subjects differ with respect to their
knowledge scores. Any analysis that does not account for differential drop-
out is susceptible to selection bias.
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Figure 1.11: Patterns of mean knowledge score by dropout time for the
control group. HIVNET Informed Consent Substudy.
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1.7 Summary

Longitudinal data provide unique opportunities for inference regarding the
effect of an intervention or an exposure. Changes in exposure conditions
can be correlated with changes in outcome conditions. However, analysis
of longitudinal data requires methods that account for the within-subject
correlation of repeated measures. Texts by Diggle et al. [2002], Verbeke
and Molenberghs [2000], Brown and Prescott [1999], and Crowder and Hand
[1990] provide comprehensive discussion of statistical methods for the analy-
sis of longitudinal data. There are a number of additional issues that warrant
attention but are beyond the scope of this book.

NOTES 1 1.7.1 Non-linear mixed models

We have introduced linear mixed models and GEE. However, mixed models
have also been extended to logistic regression and other non-linear model
settings. See Diggle et al. [2002] chapters 8 and 11 for illustration.

1.7.2 Models for survival and repeated measurements

In many longitudinal studies both information on repeated measurements
and on the ultimate time-until death or key clinical endpoint is collected.
Methods have been developed to jointly analyze such data. See Hogan and
Laird [1997a, 1997b] for an overview of approaches for the joint analysis of
survival and repeated measures.

1.7.3 Models for time-dependent covariates

In designed experiments the exposures Xij may be controlled by the investi-
gator. However, in many observational studies the exposures or treatments
that are selected over time may be related to past health outcomes. For
example, subjects with low values of CD4 may be more likely to be exposed
to a therapeutic agent. Analysis of such serial data to assess the effect of the
intervention is complicated by the “feedback” between outcome and expo-
sure. Robins [1986], Robins, Greenland and Hu [1999] have identified proper
causal targets of inference and methods for estimation in the setting where
time-varying covariates are both causes and effects. See Diggle et al. [2002]
chapter 12.
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PROBLEMS 1

1. This exercise considers the interplay between the covariate distribution
and the correlation. For each of the following scenarios assume that
there are a total of N pairs of observations, (Yi1, Yi2), with covariates
(Xi1, Xi2). Assume that the covariate is binary: Xij = 0, or Xij = 1
denoting control and treatment exposures. Let Y 1 denote the mean
of all observations where Xij = 1, and let Y 0 denote the mean of all
observations where Xij = 0. Assume a constant variance σ2 = var(Yij |
Xij), and a correlation ρ = corr(Yi1, Yi2).

a. Assume that half of the subjects are assigned to control for both
visits, (Xi1, Xi2) = (0, 0), and half of the subjects are assigned
to intervention for both visits, (Xi1, Xi2) = (1, 1). What is the

variance of the estimated mean difference ∆̂ = (Y 1 − Y 0)?

b. Assume that subjects change their treatment over time with half of
the subjects are assigned to control and then treatment, (Xi1, Xi2) =
(0, 1), and half of the subjects assigned to treatment and then
control, (Xi1, Xi2) = (1, 0). This design is referred to as a “cross-
over” study. What is the variance of the estimated mean difference
∆̂ = (Y 1 − Y 0)?

c. Comment on the advantages / disadvantages of these two study
designs.

2. Consider a study with a single pre-randomization measurement, Yi0,
and a single post-randomization measurement, Yi1. For any constant, a,
we can define the average contrast, D(a) = mean[di(a)] where di(a) =
Yi1 − a · Yi0. Let D0(a) denote the mean for the control group, and
let D1(a) denote the mean for the intervention group. Assume that
σ2 = var(Yij) for j = 0, 1, and let ρ = corr(Yi0, Yi1). We assume that the
subjects are randomized to treatment and control after randomization
at baseline. Therefore the following table illustrates the mean response
as a function of treatment and time:

Control Intervention
Baseline µ0 µ0

Follow-up µ1 µ1 + ∆
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a. Show that the expected value of ∆̂(a) = D1(a) − D0(a) equals ∆
for any choice of a.

b. When a = 0 we effectively do not use the baseline value, and ∆̂(0)
is the difference of means at follow-up. What is the variance of
∆̂(0)?

c. When a = 1 we effectively analyze the change in outcomes since
di(1) = Yi1 − Yi0. What is the variance of ∆̂(1)?

d. What value of a leads to the smallest variance for ∆̂(a)?

3. Use the data from the web page to perform GEE analysis of the HIVNET
Informed Consent Substudy “safety” item.

4. For the random intercepts and slopes model given in Table 1.5 the pro-
portion of total variation that is attributable to within-subject varia-
tion is not constant over time. Compute estimates of the proportion
of total variation at 0, 12, 24, and 36 months that is attributable to
within-subject variation, εij, as opposed to between subject variation,
bi,0 + bi,1 · month.

5. For the HIVNET Informed Consent Substudy data create pairs of plots:

a. Plot month 12 versus month 6 knowledge score. Add a pair of lines
that shows the ordinary least squares estimate for the intervention
and the control group.

b. Plot month 18 versus month 12 knowledge score. Add a pair
of lines that shows the ordinary least squares estimate for the
intervention and the control group.

c. Do these plots suggest that there are additional differences be-
tween the intervention and control groups that is not captured by
the difference that manifests at the 6 month visit?

6. For the NURSE and SAFETY items from the HIVNET Informed Con-
sent Substudy evaluate the transition from incorrect to correct, and
from correct to correct again, for the times (6 month → 12 month
visit) and (12 month → 18 month visit). Is there evidence that the
intervention and control groups differ in terms of the “correction” and
the “maintenance” of knowledge at the later time points?
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