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Model Choice & Checking

• Predictive Model Development & Assessment.

. Defining error of prediction

. Bias versus variance

. AIC and BIC as criteria

. Internal vs. External validation

• Accuracy Ideas for Survival Data.

. ROC curves?

. C index?

. Extension of R2?
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Example: Continuous Response

• Diagnostic classification often relies on the comparison of an

observed measurement with “normal” or reference values.

. percent-predicted for FEV1

. height & weight growth charts for children

• In such situations we desire a good prediction for an outcome, and

typical ranges (e.g. 5th and 95th percentiles).

• As of (1999) there were no published reference percentiles for BMI

(body mass index) for children between 0 and 36 months of age.

• The following data are a sample of data used by Heagerty & Pepe

(1999) to create reference percentiles.

• The following data come from Group Health Cooperative based on

subjects born between 1965 and 1971.
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Example: BMI Data

Age (years)

B
M

I

0 1 2 3 4 5

12
14

16
18

20

training
validation

Female:  BMI vs Age
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Prediction Error

• One Statistical View:

. Objective: find a curve that is a function of age, f(age), that

can be used as a prediction function for the mean BMI at each

age, E(Y | age) where Y denotes BMI.

. Specifically, suppose that we will use splines to estimate the

function. Let p denote the number of splines that we are using

for the function. Q: what value of p should we pick?

. Define: a curve will be judged in terms of its ability to create

predictions that are “close” to real observations. We will

choose the curve that is best in terms of minimizing our

estimate of its error of prediction.

• Error In order to make progress we will need to choose some

method for estimating the “error” of prediction.
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Prediction Error

• Measuring the Error

. For continuous measurements we often choose to measure the

distance from the prediction to the observation, and call this

the error:

errori =
[
Yi − f̂(agei)

]2

• Sources of Error

. variance in observation Yi.

. variance in prediction function estimate f̂(agei).

. bias in prediction function choice f(agei).

512 Heagerty, 2006



'

&

$

%

Prediction Error

• Bias :

. f(agei) = our chosen curve if estimated with a huge

sample. Shape is determined by what model we allow (e.g.

linear, quadratic, splines).

. µ(agei) = true mean of Y as a function of age.

. Unless our model for f(x) is correct these two curves will be

different.

biasi = |µ(agei)− f(agei)|
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Decomposing Prediction Error

• Expected Prediction Error :

. We can calculate the expected value of the prediction error:

E {errori} = E

{[
Yi − f̂(agei)

]2
}

= E {[ Yi − µ(agei) +

µ(agei)− f(agei) +

f(agei)− f̂(agei)
]2

}
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Decomposing Prediction Error

• Expected Prediction Error :

. If Yi is “new” data, not used to create the estimated prediction

function, f̂(x) then:

E {errori} = E

{[
Yi − f̂(agei)

]2
}

= variance(Yi) +

bias2[f(agei)] +

variance[f̂(agei)]
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Balancing Bias and Variance

• Objective: our task is to create a “good” estimated prediction

function, f̂(agei), based on the available data (so-called “training

data”).

• Issue:

. Make function flexible ⇒ decrease bias.

. Make function flexible ⇒ increase variance since it’s harder to

estimate more parameters associated with a more flexible

model.

• Goal: find a function that minimizes the expected prediction

error, which will balance bias and variance of our prediction.
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Balancing Bias and Variance

• We have made progress: we have defined the error measurement

that we want to use. We see that more flexible models won’t

necessarily lead to better predictions.

• Next:

. If we can estimate the mean error for each possible f(x) form

(e.g. number of splines used) then we simply choose the

function that’s best.

. Q: How to estimate the error?

• Validation:

. Apply your prediction, f̂(agei), to some “new” data (so-called

“validation” data, or “test” data).

. Somehow use the data you have to estimate the out-of-sample

error.
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External Validation

• If you have some external test data (or have saved some data for

validation) then the job is easy – just compute the possible

prediction functions, apply them to the test data, and calculate

their error.

• Example: For the BMI data we have 100 observations that we

use to create prediction functions, and then apply the prediction

function to the new data (50 observations). We measure:

mean error =
1

Nnew

∑

j

[
Y new

j − f̂(agej)
]2

• We show the square root of this mean average as rMPE.
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Example: BMI Data

Age (years)

B
M

I

0 1 2 3 4 5

12
14

16
18

20

df = 2 , rMPE = 2.63
df = 5 , rMPE = 2.27
df = 10 , rMPE = 2.08
df = 15 , rMPE = 2.19
df = 20 , rMPE = 2.48

Female:  BMI vs Age
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Example: BMI Data (fit with df=10)

Age (years)

B
M

I

0 1 2 3 4 5

12
14

16
18

20

Female:  BMI vs Age
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Validation

• Q: Why not just estimate the error of prediction based on the

data you used to develop the prediction function:

mean within− error =
1

Nold

∑

i

[
Y old

i − f̂(agei)
]2

• A: Because this estimate is too optimistic – you’ve used the data

both to estimate the model, and to evaluate how well the model

performs.

• Second, you will always decrease the within-sample error by

adding more predictors, or more flexibility to your curve, f(x).

• However, the optimism is proportional to 1/N , so with large

sample sizes the optimism may be small.
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Example: BMI Data

Degrees of Freedom

ro
ot

−m
ea

n 
er

ro
r

5 10 15 20

1.
5

2.
0

2.
5

training
validation

Error Estimates (naive and CV)
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Within-sample Estimates of Prediction Error

• Cross Validation: CV works by leaving points (Yi, Xi) out one

at a time, and estimating the function f(x) based on the

remaining N − 1 points. This is an attempt to mimic the use of

training and test samples for prediction. The CV estimate is then:

CV =
1
N

∑

i

[
Yi − f̂ (−i)(agei)

]2

• Here f̂ (−i)(x) is the estimated function based on data removing

observation i.

• Estimate: There is an estimate called Cp that estimates the

prediction error based on theoretical calculations. This is given as

Cp = MSE(f̂) + 2 · p · σ2

N

523 Heagerty, 2006



'

&

$

%

Example: BMI Data

Degrees of Freedom

ro
ot
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1.
5
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0

2.
5

training
validation

Error Estimates (naive and CV)
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Example: BMI Data

• The purple curve on the previous plot is for Cp.

• The green curve on the previous plot is for CV.

• Cross-validation methods (CV) provide an approximately unbiased

estimate of the prediction error.

• Cross-validation methods also sometimes create K “blocks” of

data (for example breaking the data into K=10 blocks) and then

apply for each observation the fit obtained from data in the other

K − 1 blocks of data). Block choice is another bias/variance

trade-off where larger blocks lead to less variable estimates of

error, but with more potential for bias.

• Stone (1977) showed that AIC and the leave-one-out

cross-validation approach are asymptotically equivalent.
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Summary with Continuous Response

• Goal = good prediction.

• Define criterion for judging = error scale

• Job is now easy – choose model / function that is estimated to

provide the best prediction.

• Use external validation (test) data, or use the development data

and cross-validation or Cp.

• Q: what about binary data, or survival data?
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AIC: A Generalization

• Error Scale – the previous presentation with the BMI data

supposed that we have adopted a scale to measure the “distance”

from the prediction to the data.

• Recall – we used the likelihood (or partial likelihood) as a

method for measuring how well a model “fits” data.

logL(f̂) =
∑

i

logL(Yi | f̂) =
∑

i

log P [Yi | f̂ ]
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AIC: A Generalization

• Here the model f̂ denotes the parameters for the model – e.g. the

regression coefficients, βj , or as in the previous BMI example, the

estimate of the prediction curve f(x).

• Since a higher value here reflects better agreement (prediction of

Yi) we can use -1 times this probability to denote error, or:

errori = −2 · logL(Yi | f̂)
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AIC: A Generalization

• log Likelihood Error Scale – provided we are willing to consider

distance as measured by -2 times the probability of the observed

data we can proceed to try and find a model that has the smallest

error.

• Viewed another way, we seek a predictive model that when we

take the model and calculate the probability of some new test

(validation) data, the predictive model will assign high probability

to this new data.

• AIC: the Akaike Information Criterion is a method that allows

estimation of the expected prediction error:

E
[
−2 · logL(Y new

i | f̂)
]
≈ − 2

N
E[logL(f̂)] +

2 · p
N
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AIC: A Generalization

• AIC – Using this idea, we can estimate the expected error, or

more commonly presented as the total error where we don’t divide

by N :

AIC = −2 · logL(f̂) + 2 · p
• Here logL(f̂) is the maximized log-likelihood using the model f

which uses p parameters.

• Similar to before we can now search over models – possibly

non-nested models, or models with the same number of

parameters, and judge them in terms of their predictive potential.

• Notice that similar to before, we see that as we add more

parameters to the model the logL will increase (so -2 times it

decreases) but we correct by “penalizing” for the number of

parameters.
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AIC: A Generalization

• Our previous criterion Cp is just AIC/N for the normal linear

model.

• Summary:

. If we define prediction as our goal, and

. If we accept log-likelihood units as a measure of how far/close

we predict,

. Then we can use AIC as a guide for identifying one or more

candidate predictive models.
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AIC: A Generalization

• The only task is to define the possible models that would be used

for prediction, and then fit them all.

• Note: how many models possible with m predictors? If we

consider only additive models where each variable is either in or

out as a main effect then we have 2m possible models.

. m = 10, 2m = 1,024

. m = 20, 2m = 1,048,576

• STATA has a function swaic that will sequentially add or delete

predictors depending on whether they improve AIC.

• Note: we are taking an average of the error across all

observations, and are therefore averaging over the covariate

distribution in our sample. Will that generalize?
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Example: Mayo PBC Data

stset time, failure(status)

#delimit;

stcox

age

logalb

alkphos

ascites

logbil

chol

edema

hepmeg

plate

logpro

sex
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sgot

spiders

stage

treat

trigly

copper ;

#delimit cr

swaic, m
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Example: Mayo PBC Data

Cox regression -- Breslow method for ties

No. of subjects = 280 No. of failures = 112

Log likelihood = -466.65255

--------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------

age | 1.0271 0.0114 2.41 0.016 1.0050 1.0497

logalb | 0.1151 0.1082 -2.30 0.021 0.0182 0.7264

alkphos | 0.9999 0.0000 -0.06 0.951 0.9999 1.0000

ascites | 1.2756 0.4912 0.63 0.527 0.5996 2.7135

logbil | 2.1988 0.3483 4.97 0.000 1.6119 2.9995

chol | 1.0001 0.0004 0.24 0.809 0.9992 1.0009

edema | 1.8652 0.5380 2.16 0.031 1.0598 3.2828

hepmeg | 0.9199 0.2340 -0.33 0.743 0.5586 1.5146
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plate | 1.0007 0.0011 0.63 0.532 0.9984 1.0030

logpro | 10.7850 14.17989 1.81 0.070 0.8197 141.8928

sex | 0.8436 0.2664 -0.54 0.590 0.4543 1.5666

sgot | 1.0028 0.0020 1.38 0.166 0.9988 1.0067

spiders | 1.0808 0.2576 0.33 0.744 0.6773 1.7246

stage | 1.4187 0.2428 2.04 0.041 1.0143 1.9843

treat | 0.9843 0.2080 -0.07 0.941 0.6504 1.4895

trigly | 0.9979 0.0013 -1.59 0.112 0.9953 1.0004

copper | 1.0015 0.0012 1.23 0.217 0.9990 1.0040

--------------------------------------------------------------------
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Example: Mayo PBC Data

Stepwise Model Selection by AIC

stcox regression.

number of obs = 280

-----------------------------------------------------------------

Df Chi2 P>Chi2 -2*ll Df Res. AIC

-----------------------------------------------------------------

Null Model 1114.80 280 1114.80

Step 1: logbil 1 115.59 0.0000 999.21 279 1001.21

Step 2: logalb 1 23.19 0.0000 976.02 278 980.02

Step 3: age 1 15.56 0.0001 960.47 277 966.47

Step 4: logpro 1 8.95 0.0028 951.52 276 959.52

Step 5: copper 1 5.30 0.0213 946.21 275 956.21

Step 6: stage 1 4.08 0.0435 942.14 274 954.14

Step 7: edema 1 3.08 0.0792 939.06 273 953.06

Step 8: trigly 1 2.68 0.1016 936.38 272 952.38
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Step 9: sgot 1 1.77 0.1832 934.60 271 952.60

Step 10: ascites 1 0.37 0.5412 934.23 270 954.23

Step 11: plate 1 0.38 0.5374 933.85 269 955.85

Step 12: sex 1 0.25 0.6175 933.60 268 957.60

Step 13: spiders 1 0.12 0.7258 933.48 267 959.48

Step 14: hepmeg 1 0.10 0.7467 933.37 266 961.37

Step 15: chol 1 0.06 0.8066 933.31 265 963.31

Step 16: treat 1 0.00 0.9437 933.31 264 965.31

Step 17: alkphos 1 0.00 0.9510 933.31 263 967.31

-----------------------------------------------------------------
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Example: Mayo PBC Data

No. of subjects = 280 No. of failures = 112

Log likelihood = -468.18773

------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

--------+---------------------------------------------------------

logbil | 2.400 0.3104 6.77 0.000 1.8631 3.0933

logalb | 0.090 0.0737 -2.94 0.003 0.0181 0.4478

age | 1.025 0.0097 2.69 0.007 1.0069 1.0450

logpro | 8.572 10.7273 1.72 0.086 0.7379 99.5967

copper | 1.002 0.0010 2.18 0.029 1.0002 1.0042

stage | 1.334 0.1907 2.02 0.044 1.0079 1.7654

edema | 1.665 0.4353 1.95 0.051 0.9982 2.7803

trigly | 0.998 0.0011 -1.55 0.122 0.9958 1.0004

------------------------------------------------------------------
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Example: Mayo PBC Data

• This model with the minimum AIC includes the (5) “Mayo model”

variables (logbil, logpro, logalb, edema, age) and (3) additional

variables.

• Some of the additional variables were not allowed as part of the

Mayo model subset since they were not routinely or easily

available.

• Here we have used m = 17 candidate covariates, leading to:

217 = 131,072 possible additive models.

• Notice that AIC includes trigly even though the variable doesn’t

achieve nominal 0.05 significance.

540 Heagerty, 2006



'

&

$

%

Example: Mayo PBC Data

• This is due to the fact that AIC will include a variable (with 1 df)

provided the likelihood increases enough to compensate for the

penalty.

• This implies the likelihood ratio must be at least 2.0 for AIC to

add.

• The critical value for a 1 df LR test is 3.86. An LR test with value

2.0 corresponds to a p-value of 0.1573.

• Caution: the inference associated with the model displayed does

not account for the fact that model selection was done. We only

display those covariates that have p-values (approx) less than

0.15. How to interpret the p-value given that we only see it if it’s

less than 0.15?
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A Related Idea: BIC (* = extra)

• Bayesian Information Criterion (BIC) is similar to AIC but

motivated from a different perspective.

• Assume we have a set of m = 1, 2, . . . ,M models that we assume

all have an equal probability of being the “true” model.

• After analysis of the data we can then update our probabilities,

and the model with the smallest BIC is the model with the highest

probability of being the correct model.

• Define:

BIC = −2 · logL(f̂) + log(N) · p
• Rather than a penalty of 2 · p used for AIC, this criterion uses a

penalty of log(N) · p, and therefore will favor more parsimonious

models.
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Predictive Accuracy and Survival Data

• Use of AIC presumes that we are willing to adopt the

log-likelihood scale to measure error.

• Q: How might the prediction actually be used in practice?

. Predict a survival curve?

. Predict a survival time?

. Predict mortality within 1 year?

• In some (many) situations it is meaningful to try and identify those

subjects that are likely to die with a certain follow-up time (1 year,

2 years, 5 years). These subjects are candidates for aggressive

therapy, while the others may not require such procedures.

• In this case, we can consider classification errors associated with

a predictive model.
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Components of Accuracy

• Calibration

. Bias – does observed match predicted?

. Evaluated graphically and formally.

• Discrimination

. Does prediction separate subjects with different risks?

. Evaluated qualitatively based on K-M plots.

• For binary outcomes we have standard concepts of classification

error, and associated discrimination summaries.
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Binary Classification

Sensitivity “True Positive”

BINARY TEST : P (T+ | D = 1)

CONTINUOUS MARKER : P (M > c | D = 1)

Specificity “True Negative”

BINARY TEST : P (T− | D = 0)

CONTINUOUS MARKER : P (M ≤ c | D = 0)
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ROC Curve

An ROC curve plots the True Positive Rate, TP(c), versus the False

Positive Rate, FP(c) for all possible cutpoints, c:

FP(c) = P (M > c | D = 0)

TP(c) = P (M > c | D = 1)

ROC Curve : [ FP (c), TP (c) ] ∀c

ROC(p) : [ p = FP (cp), TP (cp) ] for p ∈ [0, 1]
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ROC Curves

1. “ROC plots provide a pure index of accuracy by demonstrating the

limits of a test’s ability to discriminate between alternative states

of health over a complete spectrum of operating conditions”

Zweig and Campbell (1993)

2. Compare different markers.

3. Compare sensitivity when controlling specificity.

4. AUC interpretation:

“For a randomly chosen case and control, the area under the ROC

curve is the probability that the marker for the case is greater than

the marker for the control.”

5. AUC is a marker-outcome concordance summary (c-index).
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Sensitivity and Specificity for Survival

Let T denote the survival time, and let D(t) denote the counting

process for the uncensored outcome:

D(t) = 1(T ≤ t)

Possible definitions:

CASE(t) :
{

Cumulative D(t) = 1

CONTROL(t) :
{

Dynamic D(t) = 0
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Example: 2-year mortality and Mayo PBC

• Consider the 5-variable “Mayo model”, and the 8-variable model

identified using AIC.

• Consider classification of subjects according to their “model score”

defined as β̂1 ·X1 + β̂2 ·X2 . . ..

• Consider Cases to be subjects who die within 2-years.

• Consider Controls to be subjects who live beyond 2-years.

• Q: How well do the two models discriminate between the 2-year

cases and controls?
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Example: 2-year mortality and Mayo PBC

**********************************

*** model 1 ***

**********************************

stcox logbil logalb logpro age edema

predict score1, xb

**********************************

*** model 2 ***

**********************************

stcox logbil logalb logpro age edema copper stage trigly

predict score2, xb

*****

***** consider 2-year survival

*****
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gen d2yr = (time <= 365*2)

*** check for censoring before 2-years

tab d2yr status

recode d2yr 1=. if status==0

*****

***** ROC curves

*****

graph box score1, by(d2yr)

graph box score2, by(d2yr)

*** score 1 ***

logit d2yr score1

lsens, gensens( sens1 ) genspec( spec1 )

lroc

*** score 2 ***
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logit d2yr score2

lsens, gensens( sens2 ) genspec( spec2 )

lroc

*** both ROC curves on one plot ***

gen FP1 = 1-spec1

gen TP1 = sens1

gen FP2 = 1-spec2

gen TP2 = sens2

sort FP1

graph twoway (connected TP1 FP1) (scatter TP2 FP2)
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Example: 2-year mortality and Mayo PBC
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Example: 2-year mortality and Mayo PBC
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Area under ROC curve = 0.8746
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Example: 2-year mortality and Mayo PBC
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Example: 2-year mortality and Mayo PBC

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Area under ROC curve = 0.8927
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Example: 2-year mortality and Mayo PBC
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Example: VA ACQUIP Data

• Cox model with age only.

M1 = β̂1X1 for validation data

• Cox model with age and score.

M2 = β̂2X2 for validation data

• Cox model with age and (PCS, MCS).

M3 = β̂3X3 for validation data

• Cox model with age, (PCS,MCS) and score.

M4 = β̂4X4 for validation data
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Survival Model: VA ACQUIP Data

• 5,469 subjects used for model development of comorbidity index

[SIC = Seattle Index of Comorbidity].

• 5,478 subjects used for model validation.

• AUC for model 3 = 0.71

• AUC for model 4 = 0.74, p < 0.005 for difference.

• See Fan et al. (2002) J. Clin Epi.
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1−specificity
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Accuracy: Some other proposals

R2 Generalizations

• Korn and Simon (1990)

• Schemper and Henderson (2000)

• O’Quigley and Xu (2001)

TP, FP, ROC Generalizations

• Etzioni et al. (1999); Slate and Turnbull (1999)

• Heagerty, Lumley, and Pepe (2000)

Concordance (c-index)

• Harrell et al. (1996)

• Heagerty & Zheng (2005)
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R2: Schemper and Henderson (2000)

Idea: D(t) = 1(T ≤ t) with E[D(t)] = 1− S(t)

Without Covariates With Covariates

variance S(t)[1− S(t)] S(t | X)[1− S(t | X)]

average (X) EX {S(t | X)[1− S(t | X)]}
average (T)

∫
t
S(t)[1− S(t)]f(t)dt

∫
t
EX {S(t | X)[1− S(t | X)]} f(t)dt

↓ ↓
V0 VX

Proposal: R2 = (V0 − VX)/V0
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Some Comments

• Schemper and Henderson (2000), p. 249:

“Consequently, there have been a number of attempts to

develop measures akin to R2 for Cox proportional hazards

models [[references]], though as yet, none have been

generally accepted.”

• Their R2 is not about variance in T .

• Natural to think of survival through counting process N(t).

• Uncommon to use R2 for logistic regression / binary classification.
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Summary: Predictive Models

• Clear goal of prediction (how will this be used?)

• Need to define an “error” measurement scale

. Distance for a continuous measurement

. Classification errors for discrete

• Need to obtain honest estimates of error rates

. Test data (external)

. Cross-validation

• Computational problem of searching candidate models.
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