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Model Choice & Checking

• Confirmatory Goals.

• General Empirical Model Development.

• Residuals.

. Martingale residuals

• Influence

• Predictive Model Development & Assessment.

. Bias versus variance

• Accuracy Ideas for Survival Data.

. Extension of R2?

. ROC curves? C index?
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Regression Analysis

Q: What are the goals of regression analysis?

A: Estimation, Testing, & Prediction

• Estimation of the “effect” of one variable (exposure), called the

predictor of interest (POI), after “adjusting”, or controlling for

other measured variables.

. Remove confounding effects.

. Remove bias.

• Testing whether variables are associated with the response.

• Prediction of a response variable given a collection of covariates.
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Regression Analysis

• First step is to identify the scientific question. Apriori consideration

of the goals of analysis is crucial!

• Classification of Variables:

. Response variable

∗ Dependent variable.

∗ Outcome variable.

. Predictor of interest

∗ Exposure variable.

∗ Treatment assignment.
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• Classification of Variables: continued...

. Confounding variables

∗ Associated with response and POI.

∗ Not intermediate.

. Precision variables

∗ Associated with response and not POI.

∗ Reduces response uncertainty.
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Model Building Strategies

Kleinbaum, Logistic Regression Chapter 6:

“Most epidemiologic research studies in the literature... provide a

minimum of information about modeling methods used in the data

analysis.”

“Without meaningful information about the modeling strategy used, it

is difficult to assess the validity of the results provided. Thus, there is

need for guidelines regarding modeling strategy to help researchers

know what information to provide.”
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“In practice, most modeling strategies are ad hoc; in other words,

researchers often make up a strategy as they go along in their analysis.

The general guidelines that we recommend here encourage more

consistency in the strategy used by different researchers.”

Information often not provided:

1. how variables chosen / selected

2. how effect modifiers assessed

3. how confounders assessed
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Model Goals

Main Model Goals:

• Valid “effect” estimation (exposure → disease)

• Good prediction of the outcome

• Parsimonious description of correlations / associations
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Model Goals

Classification of Analysis:

• Confimatory Data Analysis (CDA)

◦ Formal hypothesis testing

◦ Protocol contains analysis plans

• Exploratory Data Analysis (EDA)

◦ Hypothesis generating

◦ Write / create analysis plans

◦ Confirmatory studies to follow
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Guidelines for CDA

Carefully decide the scientific question that you want answered.

Outcome: T = survival time

Exposure of Interest: E

Variable Specification

• Restrict attention to clinically or biologically meaningful variables.

◦ Study goals

◦ Literature review

◦ Theoretical basis

◦ Define these variables as C1, C2, . . . , Cp
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Guidelines for CDA

• Decide how you will use the variables

◦ Will you include interactions among

these covariates?

◦ Call the combinations Vj

(ie. this may be just be the C’s or

may include some CjCk terms)

• Decide what interactions between E and the Vj are to be considered.

◦ In most cases the number of apriori
interactions is limited.

461 Heagerty, 2006



'

&

$

%

Guidelines for CDA

Kleinbaum (1994):

“In general, regardless of the number of V ’s in one’s model, the

method for assessing confounding when there is no interaction is to

monitor changes in the effect measure corresponding to different

subsets of potential confounders in the model.”

“To evaluate how much of a change is a meaningful change when

considering the collection of coefficients... is quite subjective.”

Recommendations:

• 10% change in the measure of interest

◦ Mickey & Greenland (1989) AJE

◦ Maldonado & Greenland (1993) AJE
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Regression Models

“It will rarely be necessary to include a large number of variables in the

analysis, because only a few exposures are of genuine scientific interest

in any one study, and there are usually very few variables of sufficient

a priori importance for their potential confounding effect to be

controlled for. Most scientists are aware of the dangers of analyses

which search a long list of potentially relevant exposures. These are

known as data dredging or blind fishing and carry considerable danger

of false positive findings. Such analyses are as likely to impede

scientific progress as to advance it.
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There are similar dangers if a long list of potential confounders is

searched, either with a view to explaining the observed relationship

between disease and exposure or to enhancing it – findings will

inevitably be biased. Confounders should be chosen a priori and not

on the basis of statistical significance.”

Clayton and Hills (1993)

Statistical Methods in Epidemiology

page 273

464 Heagerty, 2006



'

&

$

%

Multiple Comparisons

Example:

Hilsenbeck, Clark, and McGuire

“Why do so many prognostic factors fail to pan out?”

Breast Cancer Research and Treatment
(1992) 22: 197-206

• Figure 1: Cutpoint analysis curves for typical simulated datasets

(n = 250) with: A) a true 10% difference in 5-year relapse-free

survival; and B) no difference in 5-year RFS.

• Figure 3: Type I errors rates for training and validation datasets

with no difference in prognosis. Square = sample size of 250, Diamond

= sample size of 125, dased line is observed rates, solid line is fitted

non-linear regression.
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Empirical Model Building

A Strategy Cox and Wermuth (1996) section 7.2

1. Establish the main scientific research question.

2. Check Data Quality

• Look for:

. Possible errors in coding.

. Outliers.

. Missing values.

• Produce univariate summaries.
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3. Classification of variables based on substantive grounds.

• Document pairwise associations:

. correlations

. mean differences with s.e.’s

. log odds ratios with s.e.’s

• Additional stratified analyses for key variables.
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4. Regression models developed:

• Main effects regression.

• Forward selection for strong interactive effects.

• Backward selection for stable effects.

• Summary of standardized regression coefficient(s) for each omitted

variable if added individually in order to reassure that no important

further effects have been overlooked.

5. Presentation of model(s):

• Coefficients and s.e.’s

• Graphical display
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Empirical Model Building

Model Development Cox and Wermuth (1996) section 7.3

1. Specify required explanatory variables:

• Predictor of interest.

• Known important variables (a priori).

2. Regress response on all explanatory variables considered. Include

nonlinear terms (ie. age2) that are a priori considered important.

3. Eliminate (individually) variables that have small standardized

regression coefficients. Identify one or more simple, well-fitting

models.
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4. Examine, one term at a time, the impact of adding squared terms

and cross-product terms into the model.

Any significant terms uncovered in this way need detailed

interpretation before we decide how to incorporate them into the

“final” model.

5. List the contribution of omitted primary explanatory variables if

added back to the model one at a time (individually) to check

that no important effect has been overlooked.
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Statistical Thinking

Breslow (1999)

“As a medical statistician, I am appalled by the large number of

irreproducible results published in the medical literature. There is a

general, and likely correct, perception that this problem is associated

more with statistical, as opposed to laboratory, research. I am

convinced, however, that results of clinical and epidemiological

investigations could become more reproducible if only the investigators

would apply more rigorous statistical thinking and adhere more closely

to well established principles of the scientific method. While I agree

that the investigative cycle is an iterative process, I believe that is

works best when it is hypothesis driven.”
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Statistical Thinking

Breslow (1999)

“The epidemiology literature is replete with irreproducible results

stemming from the failure to clearly distinguish between analyses that

were specified in the protocol and that test the a priori hypotheses

whose specification was needed to secure funding, and those that were

performed post-hoc as part of a serendipitous process of data

exploration.”
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Some Recommendations

• For CDA fit three regression models:

. Unadjusted

. Adjusted for known confounders

. Adjusted for known confounders, and candidate confounders

• Analysis Plan:

. Scientific Aims

. Classification of variables (by group)

. List of Basic Tables

. Details for Primary Regression Analyses by Aim

. Details for Secondary Regression Analyses by Aim
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Model Selection / Building Summary

? Determine the scientific question.

? Classify the measured variables.

? Thorough univariate and bivariate summaries.

? Choose an analysis plan.

◦ Confirmatory regression.

formal analysis plan a priori
limited number of models (three!)

◦ Exploratory / Empirical regression.

more flexible

have a strategy! (ie. reproducible analysis)
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Model Checking Methods

• We have seen that we can check the PH assumption using:

. Global and individual tests (stphtest)

. Evaluate β(t) using scaled Schoenfeld residuals.

• Q: How can assess whether Xj is modeled using an appropriate

functional form?

. Use splines to create a flexible relationship, and plot the fitted

values.

. Use Martingale residuals to evaluate non-linearity.

• Q: How can we assess whether certain individuals have a large

influence on the fitted model?

. Calculate delta-betas to estimate impact of dropping each

subject.
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Martingale Residuals

• Recall: used to check PH

. Schoenfeld residual = “observed covariate” - “expected

covariate”

. Only for observed failure times.

• Martingale Residual:

M̂i = δi − Λ̂0(ti) exp(β̂1X1i + . . . + β̂kXki)

. δi : event indicator for subject i.

. Λ̂0(ti) : Estimated cumulative hazard at final follow-up time

for subject i.

. exp(β̂1X1i + . . .) : estimated coefficients applied to observed

covariate for subject i.
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Martingale Residuals

• Use:

. These residuals can be plotted against covariates, Xj , that are

either included in the model, or excluded, to see if

appropriately modeled.

. With time-dependent covariates it is more difficult to generate

these since we use:

Λ(t) =
∫ t

0

λ(s)ds =
∫ t

0

λ0(s) exp[βX(s)]ds

• Q: Justification?

. These are justified by the “counting process” theory that is

used for non- and semi-parametric analysis of censored survival

data.
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Counting Process Idea (* = extra)

• Define: N(t) = 1(T ∗ ≤ t, δ = 1)

• Consider breaking the time axis into very small intervals t, t + ∆.

E[N(t + ∆)−N(t) | T ≥ t] = P [T ∈ (t, t + ∆) | T ≥ t]

≈ ∆ · λ(t)

• This comes from the basic definition of the hazard.

• Define dN(t) = N(t + ∆)−N(t). Let tj = j ·∆. Then we have

N(t) =
∑
tj<t

dN(tj)
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Counting Process Idea (* = extra)

• From this we can show

E[N(t)] =
∑
tj<t

∆ · λ(tj)

≈
∫ t

0

λ(s)ds = Λ(t)

0 = E[N(t)− Λ(t)]

• And furthermore, if we provide information about survival (and

perhaps covariates) throught time s < t then it can be shown that:

E[N(t)− Λ(t) | T ≥ s] = N(s)− Λ(s)

• This particular property is known as the “martingale property”.

• See Hosmer & Lemeshow (1999) Appendix 2.
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Deviance Residuals

• The Martingale residuals, M̂i, have a skewed distribution:

. maximum possible value for M̂i: 1

. mininum possible value for M̂i: −∞
• Transformations to achieve a more symmetric distribution are

helpful.

• One such transformation is motivated by deviance residuals used

for logistic and poisson regression.

• Define:

di = sign(M̂i)
√

2
√
−M̂i − δi log(δi − M̂i)
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Deviance Residuals

• Note that di = 0 only when M̂i = 0.

• The square root shrinks the large negative martingale residuals,

while the logarithm transformation expands those residuals that

are close to zero.

• Usage:

. Again, these residuals can be plotted against covariates, Xj ,

that are either included in the model, or excluded, to see if

appropriately modeled.

. Plot versus observation number as an indication of the

discrepancy between the fitted model and the observed data

for each observation.
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Illustration with Simulated Data

• To learn about the behavior of these residuals we explore simulated
data where we know what the “right” functional form is:

λ(t | Dose) = λ0(t) exp[β · log(Dose)︸ ︷︷ ︸
X

]

• We consider the residuals from different fits:

. Model that assumes log hazard is linear in Dose

. Model that assumes log hazard is linear in log-Dose

. Model that assumes log hazard follows a linear spline in Dose

• N = 300 observations; 40% censored.
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log hazard linear in DOSE
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log hazard linear in logDOSE
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log hazard linear in DOSE SPLINES
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log hazard curve using fracpoly
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Summary: Simulation Illustration

• We can use the martingale and/or deviance residuals to look for sys-
tematic patterns in the residuals which suggest a lack of fit (non-
linearity).

• We can estimate the “dose response” curve (log hazard) using either
standard spline methods and/or fractional polynomial methods.

• The spline approach allows inference regarding violation of “linear”
assumptions for continuous covariates.
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Example: Mayo PBC Data

• To obtain martingale residuals with STATA we modify the Cox

regression call so that these are created and saved:

. stcox x1 x2 x3, mgale(varname)

• To obtain deviance residuals with STATA we use the “predict”

command following a Cox regression fit:

. predict varname, deviance
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Example: Mayo PBC Data

************************************************************

***

*** Cox regression -- using LINEAR versions of PREDICTORS

***

stcox bili albu age proth edema, nohr ///

scaledsch(resid0*) esr(esr*) mgale(mres)

*** generate deviance residuals

predict dres, deviance

label variable mres "martingale residual"

label variable dres "deviance residual"
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***

*** plot residuals vs predictor(s)

***

lowess mres bili, mean bwidth(5) ///

title("Martingale Residual vs. Bilirubin") ///

mcolor(maroon) msymbol(Oh)

graph export c:/COURSES/SURVIVAL/CoxRegn/bili-mres.ps, as(eps) replace

lowess dres bili, mean bwidth(5) ///

title("Deviance Residual vs. Bilirubin") ///

mcolor(green) msymbol(Oh)

graph export c:/COURSES/SURVIVAL/CoxRegn/bili-dres.ps, as(eps) replace
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Example: Mayo PBC Data

*****************************************************************

***

*** Cox regression -- using TRANSFORMED versions of PREDICTORS

***

drop mres dres resid0* esr*

stcox logbil logalb age logpro edema, nohr ///

scaledsch(resid0*) esr(esr*) mgale(mres)

*** generate deviance residuals

predict dres, deviance

label variable mres "martingale residual"

label variable dres "deviance residual"
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Example: Mayo PBC Data

Cox regression -- Breslow method for ties

No. of subjects = 312 No. of failures = 125

Log likelihood = -541.70071

--------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------+-----------------------------------------------------------

logbil | 0.9017 0.0982 9.18 0.000 0.7091 1.0944

logalb | -3.0973 0.7228 -4.28 0.000 -4.5142 -1.6805

age | 0.0327 0.0085 3.82 0.000 0.0159 0.0495

logpro | 3.1844 1.0072 3.16 0.002 1.2102 5.1587

edema | 0.4839 0.2373 2.04 0.041 0.0187 0.9491

--------------------------------------------------------------------
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Example: Mayo PBC Data

*****************************************************************

***

*** Cox regression -- using TRANSFORMED with splines

***

mkspline logbil1 0.8 logbil2 = logbil, marginal

mkspline logalb1 1.1 logalb2 = logalb, marginal

mkspline logpro1 2.4 logpro2 = logpro, marginal

stcox logbil1 logbil2 logalb1 logalb2 age logpro1 logpro2 edema, nohr ///

scaledsch(resid0*) esr(esr*) mgale(mres)

*** generate deviance residuals

predict dres, deviance

label variable mres "martingale residual"

label variable dres "deviance residual"
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Example: Mayo PBC Data

Cox regression -- Breslow method for ties

No. of subjects = 312 No. of failures = 125

Log likelihood = -540.34442

------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------+---------------------------------------------------------

logbil1 | 1.2337 0.2662 4.63 0.000 0.7118 1.7556

logbil2 | -0.5111 0.3596 -1.42 0.155 -1.2159 0.1936

logalb1 | -3.5134 1.3852 -2.54 0.011 -6.2285 -0.7984

logalb2 | 0.8529 2.0487 0.42 0.677 -3.1624 4.8684

age | 0.0321 0.0085 3.78 0.000 0.0154 0.0488

logpro1 | 4.9560 2.5182 1.97 0.049 0.0204 9.8916

logpro2 | -2.3762 3.4911 -0.68 0.496 -9.2186 4.4661

edema | 0.4920 0.2369 2.08 0.038 0.0276 0.9565

------------------------------------------------------------------
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Detecting Influential Observations

• Delta-Betas

• Idea: Just like with linear regression and logistic regression, we

measure how coefficient estimates would change if each

observation was individually omitted.

• Influence of the ith observation on β̂:

∆β(i) = β̂(i) − β̂

. β̂(i) = the estimated coefficient without subject i.

• Cox Regression: exact calculation of delta-beta would require

refitting the model – so as many regression fits as subjects =

computing time (but still possible).

• An alternative is to approximate ∆β(i) with a “one-step” estimator

that is a single iteration away from the entire data estimate, β̂.
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Detecting Influential Observations

• By looking at the delta-betas we can see whether the value of the

estimated relative hazard is influenced by one observation.

• We may also consider alternative impacts such as the impact on

the test statistic Z = β̂/s.e., or on the p-value associated with

this test.

• Impact of omitting observation i:

. If a censored observation then dropping alters the contribution

to every risk set in which it appears.

. If an observed failure then dropping alters the contribution to

every risk set in which it appears, and removes one risk set (if

no ties).
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Example: Mayo PBC Data

***

*** compute delta-betas

***

set matsize 400

mkmat esr1 esr2 esr3 esr4 esr5, matrix(esr)

mat V = e(V)

mat Inf = esr*V

svmat Inf, names(dfb)

label var dfb1 "dfbeta log(bili)"

label var dfb2 "dfbeta log(albu)"

label var dfb3 "dfbeta Age"

label var dfb4 "dfbeta log(prot)"

label var dfb5 "dfbeta Edema"
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Example: Mayo PBC Data
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Summary

• Formulate an analysis plan.

• Model checking:

. PH assumption

. Functional form (martingale residuals)

. Influential observations (delta-betas)

• Q: How to choose a good model for prediction?
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