## Generalized Linear Mixed Models

Recall: For continuous response data we have discussed two related approaches to regression analysis. One approach is based on specification of means and covariances, a second approach constructs a complete likelihood for the response vectors.



- \* SEMI-PARAMETRIC APPROACH:
- Model: General Linear Model •  $E(\mathbf{Y}_i \mid \mathbf{X}_i) = \mathbf{X}_i \boldsymbol{\beta}$ •  $\operatorname{cov}(\mathbf{Y}_i \mid \mathbf{X}_i) = \boldsymbol{\Sigma}_i$

• Estimation: Weighted Least Squares • solve  $\sum_{i} X_{i}^{T} \Sigma_{i}^{-1} (Y_{i} - X_{i}\beta) = \mathbf{0}$ •  $\widehat{\boldsymbol{\beta}} = (\sum_{i} X_{i}^{T} \Sigma_{i}^{-1} X_{i})^{-1} \sum_{i} X_{i}^{T} \Sigma_{i}^{-1} Y_{i}$ •  $\operatorname{cov}(\widehat{\boldsymbol{\beta}}) = A^{-1} B A^{-1}$ • simple moment estimation for  $\widehat{\boldsymbol{\Sigma}}_{i}$ 







Generalized Linear Mixed Models

Correlated Discrete Response Data

\* PARAMETRIC APPROACH: (GLMMs)

• Estimation: Maximum Likelihood & Bayes  $\Rightarrow$  The likelihood of the observed data,  $Y_i$ , is obtained by integrating over the random effects  $(b_i)$  distribution. In general, this integration can not be done analytically.

 $\circ P(\boldsymbol{Y}_i \mid \boldsymbol{X}_i) = \int_b P(\boldsymbol{Y}_i \mid \boldsymbol{X}_i, \boldsymbol{b}_i) P(\boldsymbol{b}_i \mid \boldsymbol{X}_i) db_i$ 

 $\circ$  Maximize log  $\mathcal{L}$  numerically

+ Quadrature Methods (ie. Gauss-Hermite)

+ EM (expectation-maximization)

+ Monte-Carlo methods

• Approximate ML methods

+ MQL (Zeger, Liang and Albert, 1988)

+ PQL (Breslow & Clayton, 1993)

• MCMC Approaches (Bayes)

+ Gibbs sampling (Zeger & Karim, 1991)

+ General MCMC





• Attempt to approximate  $cov(\boldsymbol{Y}_i)$ Inference • Wald tests • Score tests Caveats with time-dependent covariates GEE extensions • GEE with second covariance parameter EE • Odds ratio dependence models for binary data  $\circ$  ALR  $\circ$  GEE2 Optimal for  $\boldsymbol{\delta} = (\boldsymbol{\beta}, \boldsymbol{\alpha})$ ML for QEF Discrete Response Data – GLMM  $\star$ Model definition • Conditional distribution:  $E[\boldsymbol{Y}_i \mid \boldsymbol{X}_i, \boldsymbol{b}_i]$ • Population heterogeneity model:  $m{b}_i \mid m{X}_i \sim \mathcal{N}(m{0}, m{D})$ Regression parameter interpretation  $\circ$  Conditional expectation  $\circ$  "control" all covariates, including  $b_i$ Covariance parameter interpretation

- Estimation
  - $\circ$  Maximum likelihood for  $(\boldsymbol{\beta}, \boldsymbol{\alpha})$ 
    - Numerical Integration

 $\mathbf{E}\mathbf{M}$ 

Monte Carlo

 $\circ$  Empirical Bayes estimates

Marginal and Conditional Regressions
Induced marginal means:

 $E[Y_{ij} \mid \boldsymbol{X}_i] = E\left(E[Y_{ij} \mid \boldsymbol{X}_i, \boldsymbol{b}_i]\right)$ 

 $\circ$  Attenuation?

Inference

Likelihood ratio

Wald, Score tests

**\*** Other Topics...

- Categorical Data Likelihood Methods
- Missing Data / Drop-out
- Transition Models
- Bayes / MCMC Methods
- Non-linear Models (PK/PD)

## The BIG Picture

- Generalized linear models
  - $\circ$  Models for the mean response
  - Univariate response / independent
- Multinomial models
  - $\circ$  Models for the mean response (transformed)
  - $\circ$  Univariate response / independent
- Overdispersed GLMs
  - $\circ$  Models for the mean response
  - $\circ$  Models for the variance
  - $\circ$  Univariate response / independent
- General Linear Model for Correlated Data
  - $\circ$  Models for the mean response (continuous)
  - $\circ$  Models for the covariance
  - $\circ$  Vector response / dependent within
- Linear Mixed Model
  - $\circ$  Models for the mean response (continuous)
  - Models for the covariance (hierarchical)
  - $\circ$  Vector response / dependent within
- Marginal GLM / GEE
  - $\circ$  Models for the mean response (discrete, continuous)
  - $\circ$  Models for the correlation
  - $\circ$  Vector response / dependent within

• GLMM

- Models for the conditional mean response (discrete,continuous)
- Models for the heterogeneity (hierarchical)
- $\circ$  Vector response / dependent within

## The BIG Picture

|                     | SEMI-PARAMETRIC                                                                                            | PARAMETRIC     |
|---------------------|------------------------------------------------------------------------------------------------------------|----------------|
| Overdispersion      | Quasilikelihood                                                                                            | beta-binomial  |
|                     | Est. Eq.                                                                                                   | poisson-gamma  |
|                     | $\operatorname{cov}(\widehat{\boldsymbol{eta}}) = \boldsymbol{A}^{-1}\boldsymbol{B} \ \boldsymbol{A}^{-1}$ | likelihood     |
| Continuous Resp. /  | WLS                                                                                                        | multiv. normal |
| linear model        | Est. Eq.                                                                                                   | LMM            |
|                     | $\operatorname{cov}(\widehat{\boldsymbol{eta}}) = \boldsymbol{A}^{-1}\boldsymbol{B} \ \boldsymbol{A}^{-1}$ | likelihood     |
| Discrete Response / | GEE                                                                                                        | multiv. dist.  |
| GLM                 | Est. Eq.                                                                                                   | GLMM           |
|                     | $\operatorname{cov}(\widehat{oldsymbol{eta}}) = oldsymbol{A}^{-1}oldsymbol{B} \ oldsymbol{A}^{-1}$         | likelihood     |