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Generalized Linear Mixed Models

Recall: For continuous response data we have discussed two

related approaches to regression analysis. One approach is

based on specification of means and covariances, a second

approach constructs a complete likelihood for the response

vectors.

Correlated Continuous Response Data

? SEMI-PARAMETRIC APPROACH:

• Model: General Linear Model

◦ E(Y i | Xi) = Xiβ

◦ cov(Y i | Xi) = Σi

• Estimation: Weighted Least Squares

◦ solve
∑

i XT
i Σ−1

i (Y i − Xiβ) = 0

◦ β̂ = (
∑

i XT
i Σ−1

i Xi)
−1

∑
i XT

i Σ−1
i Y i

◦ cov(β̂) = A−1BA−1

◦ simple moment estimation for Σ̂i
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Correlated Continuous Response Data

? PARAMETRIC APPROACH:

• Model: Linear Mixed Model

◦ E(Y i | Xi) = Xiβ

◦ cov(Y i | Xi) = Σi = ZiDZT
i + Ri

◦ mean/covariance induced from:

◦ conditional mean E(Y i | Xi, bi) = Xiβ + Zibi

◦ heterogeneity model bi ∼ N (0, D)

• Estimation: Maximum Likelihood & REML

◦ solve
∑

i XT
i Σ−1

i (Y i − Xiβ) = 0

◦ cov(β̂) = (
∑

i XT
i Σ−1

i Xi)
−1

◦ ML/REML equations for α, variance components

of the matrices D and R.

? ? ? Additional features:

(1) Likelihood ratio tests

(2) Empirical Bayes estimates of bi

(3) Complete probability model (ie. we could simulate Y i).
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Generalized Linear Mixed Models

Parallel approaches exist for generalized linear models:

Correlated Discrete Response Data

? SEMI-PARAMETRIC APPROACH:

(Generalized Estimating Equations)

• Model: Marginal Model

◦ E(Y ij | Xi) = µij

g(µij) = Xijβ

◦ cov(Y i | Xi) = Σi = V
1/2

i Ri(α)V
1/2

i

Ri(α) = “working correlation”

• Estimation: Estimating Eqns / Sandwich Variance

◦ solve
∑

i

(
∂µ

i

∂β

T
)

Σ−1
i (Y i − µi) = 0

◦ cov(β̂) = A−1BA−1

◦ moment estimation of α

◦ B estimated empirically
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Generalized Linear Mixed Models

Correlated Discrete Response Data

? PARAMETRIC APPROACH:

(Generalized Linear Mixed Models)

• Model: Conditional Model + Heterogeneity

◦ [Y i | Xi, bi] ∼ exponential family

◦ E(Y ij | Xi, bi) = µb
ij

g(µb
ij) = Xijβ

∗ + Zijbi

◦ heterogeneity model bi ∼ N (0, D)

◦ Conditional independence:

Yi1, Yi2, . . . , Yini
independent given bi.
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Generalized Linear Mixed Models

Correlated Discrete Response Data

? PARAMETRIC APPROACH: (GLMMs)

• Estimation: Maximum Likelihood & Bayes

⇒ The likelihood of the observed data, Y i, is obtained by

integrating over the random effects (bi) distribution. In

general, this integration can not be done analytically.

◦ P (Y i | Xi) =
∫

b
P (Y i | Xi, bi)P (bi | Xi)dbi

◦ Maximize logL numerically

+ Quadrature Methods (ie. Gauss-Hermite)

+ EM (expectation-maximization)

+ Monte-Carlo methods

◦ Approximate ML methods

+ MQL (Zeger, Liang and Albert, 1988)

+ PQL (Breslow & Clayton, 1993)

◦ MCMC Approaches (Bayes)

+ Gibbs sampling (Zeger & Karim, 1991)

+ General MCMC
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Biostat/Stat 571 – Part II

? Linear Mixed Models

• General definition

◦ Y i = Xi + Zibi + ei

◦ bi ∼ N (0, D)

• Clustered data models

• Serial covariance models (Diggle, 1988)

• Interpretation of variance components

• Estimation for LMM

◦ Maximum Likelihood (ML)

◦ Restricted Maximum Likelihood (REML)

• Inference for the LMM

◦ Likelihood ratio tests

Hypotheses regarding variance components

Hypotheses regarding regression parameter

◦ Wald tests

◦ F tests

• Empirical Bayes estimates

◦ Estimates of E[bi | Y i]

• Evaluation of covariance assumptions

◦ Compare fitted and observed covariance

◦ Likelihood ratio, AIC, BIC

◦ Evaluate impact on β̂, s.e.(β̂)

• Fitting LMMs
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◦ S+ function lme()

◦ SAS procedure MIXED

• Analysis of Residuals

◦ Population residuals

◦ Cluster residuals

? Discrete Response Data – GEE

• Impact of ignoring correlation

◦ Between- and Within- cluster covariates

◦ Sandwich variance, var(β̂) = A−1B A−1

Marginal mean

◦ µij = E[Yij | Xij ]

Correlation model

◦ var(Y i) = Σi = V
1/2

i R(α) V
1/2

i

◦ “Working Correlation”

• Semi-parametric model (only mean and covariance)

• Asymptotic properties of β̂

◦ β̂ → β even under cov misspecification

◦ β̂ ∼ N (β, HN )

◦ Sandwich is consisent estimate of limN · HN

• Estimation

◦ Estimating function, U (β)

◦ Simple moment estimates for α

• Efficiency and working correlation models

◦ IEE versus WEE

7 P. Heagerty, Biostat 571



'

&

$

%

◦ Attempt to approximate cov(Y i)

• Inference

◦ Wald tests

◦ Score tests

• Caveats with time-dependent covariates

• GEE extensions

◦ GEE with second covariance parameter EE

◦ Odds ratio dependence models for binary data

◦ ALR

◦ GEE2

Optimal for δ = (β, α)

ML for QEF

? Discrete Response Data – GLMM

• Model definition

◦ Conditional distribution:

E[Y i | Xi, bi]

◦ Population heterogeneity model:

bi | Xi ∼ N (0, D)

• Regression parameter interpretation

◦ Conditional expectation

◦ “control” all covariates, including bi

• Covariance parameter interpretation
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• Estimation

◦ Maximum likelihood for (β, α)

Numerical Integration

EM

Monte Carlo

◦ Empirical Bayes estimates

• Marginal and Conditional Regressions

◦ Induced marginal means:

E[Yij | Xi] = E (E[Yij | Xi, bi])

◦ Attenuation?

Inference

Likelihood ratio

Wald, Score tests

? Other Topics...

• Categorical Data Likelihood Methods

• Missing Data / Drop-out

• Transition Models

• Bayes / MCMC Methods

• Non-linear Models (PK/PD)
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The BIG Picture

• Generalized linear models

◦ Models for the mean response

◦ Univariate response / independent

• Multinomial models

◦ Models for the mean response (transformed)

◦ Univariate response / independent

• Overdispersed GLMs

◦ Models for the mean response

◦ Models for the variance

◦ Univariate response / independent

• General Linear Model for Correlated Data

◦ Models for the mean response (continuous)

◦ Models for the covariance

◦ Vector response / dependent within

• Linear Mixed Model

◦ Models for the mean response (continuous)

◦ Models for the covariance (hierarchical)

◦ Vector response / dependent within

• Marginal GLM / GEE

◦ Models for the mean response (discrete,continuous)

◦ Models for the correlation

◦ Vector response / dependent within

• GLMM
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◦ Models for the conditional mean

response (discrete,continuous)

◦ Models for the heterogeneity (hierarchical)

◦ Vector response / dependent within
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The BIG Picture

SEMI-PARAMETRIC PARAMETRIC

Overdispersion Quasilikelihood beta-binomial

Est. Eq. poisson-gamma

cov(bβ) = A−1B A−1 likelihood

Continuous Resp. / WLS multiv. normal

linear model Est. Eq. LMM

cov(bβ) = A−1B A−1 likelihood

Discrete Response / GEE multiv. dist.

GLM Est. Eq. GLMM

cov(bβ) = A−1B A−1 likelihood
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