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Ranking problems arise in setting priorities for investigations, in provid- 
ing a simple summary of performance, in comparing objects in a manner 
robust to measurement scale, and in a wide variety of other applications. 
Commonly, rankings are computed from measurements that depend on the 
true attribute. Using the Gaussian model, we propose and compare methods 
for using these measurements to estimate the ranks of the underlying attri- 
butes and show that those based on an empirical Bayes model produce esti- 
mates that differ from ranking observed data. These differences result both 
from the effect of shrinking posterior means towards a common value by an 
amount that depends on the precision of individual measurements and from 
the Bayes processing of the posterior distribution to produce estimates that 
account for the uncertainty in the distribution of the ranks. We illustrate 
different ranking methods using data on school achievement reported by 
Aitkin and Longford (1986). Mathematical and empirical results highlight 
the importance of using appropriate ranking methods and identify issues 
requiring further research. 

Ranking and selection are related statistical problems with numerous 

applications. Ranking methods can provide key information in prioritizing 
chemicals for carcinogenicity testing, environmental monitoring of areas 

suspected to have elevated cancer rates (Lagakos, Wesson, & Zelen, 1986), 
and investigation of medical service regions suspected to have elevated 
surgical rates (McPherson, Wenneberg, Hovind, & Clifford, 1982). Selec- 
tion rules play an important role in many settings, including breeding re- 
search programs (Gianola & Fernando, 1986) and clinical decision making. 

Supported by grants DMS 8702402 and INT 8512148 from the National Science 
Foundation. This work was completed while the second author was in the Depart- 
ment of Biostatistics at the Harvard School of Public Health. We thank Nick 
Longford for background data, Jeff Longmate and David Wypij for their com- 
ments, Julia Bailey for the graphics, and Rosa Esparza for preparing the manu- 
script. 
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A recent paper by Aitkin and Longford (1986) on the evaluation of school 
effectiveness explored the use of various methods for ranking British ele- 
mentary schools based on pupil performance data. 

The books by Bechhofer, Kiefer, and Sobel (1968) and Gibbons (1971), 
a series of papers coauthored by Gupta (see Gupta & Hsiao, 1983), and 
the work of Pettitt (1982) provide general background in this area, but few 
publications discuss Bayes and empirical Bayes ranking methods. These 
methods estimate ranks for random effects in a variance components 
model. Portnoy (1982) discusses one aspect of the ranking problem in a 
random effects model; our approach can be applied more generally. The 
"histogram estimates" of Louis (1984) and Tukey (1974) are relevant, but 
do not explicitly estimate ranks. Recently, a Bayesian approach to selection 
of the maximum in ANOVA has been given by Berger and Deeley (1988). 
In this report, we discuss some conceptual and technical issues for this 
problem and use the Aitkin and Longford (1986) data as an example. 

Although the thrust of this manuscript is methodological, it is important 
to note that educators disagree about the suitability of ranking schools, 
even adjusting for pupils' backgrounds. As Aitkin and Longford (1986) 
note, a potentially more informative way of evaluating school effectiveness 
is to use regression methods, such as those described in Laird and Ware 
(1982), to explain differences in school achievements as a function of addi- 
tional pupil and school variables. If additional variables can be found that 
explain all the between-school variation, there is no basis for ranking. Our 
methodology is easily generalized to incorporate additional pupil and 
school variables and to produce ranks adjusted for these factors. If these 
factors do explain all the between-schools variation, the estimated ranks 
will be degenerate at the mean rank. One way of evaluating the relative 
importance of school and pupil variables would be to examine the impact 
on the ranks of excluding them from the model. 

Finally, we note that ranking can play a valuable role in drawing attention 
to unusually good or poor performance, thus providing a mechanism for 
setting priorities for case studies or detailed investigation. For example, 
low-ranking and high-ranking schools can be compared in an attempt to 
discover programmatic, staff, or student determinants of these extreme 
ranks. In other contexts, ranks can be used, for example, to set priorities 
for investigation of small areas with apparently elevated cancer rates and 
studies of potential carcinogens, and to scrutinize hospitals with elevated 
death rates. Ranks provide a summary that avoids misrepresentation of the 
precision of estimation and the validity of measurement systems. 

The generic ranking problem can be described as follows: K units are to 
be ranked on the basis of a set of unknown parameters, Ok, k = 1,..., K. 
The Ok S may be performance potential, genetic merit, and so forth. Data 
are available for each unit (possibly multivariate observations that may be 

30 



Empirical Bayes Ranking Methods 

stochastically dependent from unit to unit). A statistical model is used to 
specify the distribution of the data, conditional on the Ok and possibly other 
unknown parameters, say, 4. Of course, if the Os are known, so are the 
ranks, but generally the "best" ranks do not correspond to the ranked 
estimates of the Os. 

Aitkin and Longford (1986) use two general approaches to ranking: (a) 
Treat the 0k S as fixed parameters, estimate the 0k s (and 4) in some appro- 
priate way, and rank the estimated Ok s, (b) Treat the Ok S as random effects, 
estimate each 0k by its conditional expectation given the data, and rank the 
conditional expectations. The second approach can be viewed as standard 
Bayes or empirical Bayes (EB), where we compute a posterior for each Ok, 
conditional on data and prior parameters, then rank the Ok S on the basis of 
the posterior mean. If the prior parameters are unknown and estimates 
based on the data are used in calculating the posterior distribution (as in 
Aitkin and Longford), the approach is empirical Bayes. 

In this paper, we extend the second approach by treating the ranks of the 

0k S (denoted Rk s) as the parameters of interest, and developing ranking 
methods based on the conditional distribution of the ranks rather than the 
conditional distribution of the Ok s. Our methods move the rank of a unit 
with a relatively high posterior variance toward the average rank. Thus, our 
extension of the Aitkin and Longford (1986) analysis underscores the im- 
portance of incorporating posterior variability into the ranking procedure. 
In addition, we show the effect of inflating the posterior variance to account 
for uncertainty in estimating the Bayes model, and produce easily applied 
confidence procedures for estimated ranks. 

Our approach to ranking has the advantage of reporting the posterior 
means and variances of the ranks. Using these, rather than integer ranks, 
can give a much clearer picture of what differences there are (if any) among 
the schools. This clarity is illustrated in the Aitkin and Longford (1986) 
example. 

Most applications require modeling to adjust for covariates and thus 
produce estimated posterior distributions. Our methods focus on using 
these estimated posteriors, and the importance of including estimation un- 
certainty in them. The exact nature of the covariance adjustment influences 
our analyses only through its effect on estimated posterior distributions. 
Aitkin and Longford (1986) discuss relevant issues in the school evaluation 
context, and we do not consider them further. 

This report focuses on concepts and data analysis; the appendices contain 
most technical developments. The second section deals with ranking via 
posterior distributions. The third section describes empirical Bayes meth- 
ods for producing posterior distributions, the fourth section contains an 
example using the Aitkin and Longford (1986) school data, and the fifth 
section summarizes results and conclusions. 
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Ranking via Posterior Distributions 

General Issues 

To focus on the basic issues in using a Bayes approach to rank com- 
ponents, we assume for simplicity that modeling and data adjustment result 
in independent Gaussian posterior distributions for the Ok s: 

0khdata - N(Rk, T2), k = 1, . . , K (1) 

and our objective is to rank the Os. The independence assumption will often 
be reasonable for standard Bayesian analysis and a simplifying assumption 
for empirical Bayes models. We let Sk denote the ranks of the Rk S. Let 

K K 

Rk = rank(Ok) = 3 I(0k - Oj) = 3 Ijk, (2) 
j=1 = 1 

with I(.) the indicator function and Ijk = 1(0k - j). We assume that ties have 
probability 0, so the largest theta has rank 1 and so on. 

The (empirical) Bayesian methodology can be used to generate the joint 
posterior distribution of the ranks or, more simply, relevant summaries. 
Evaluation of multidimensional Gaussian integrals is required to produce 
the posterior and would be necessary to summarize the posterior by finding 
the modal ranks. As Pettitt (1982) shows, finding the modal ranks (Rk) 
requires delicate numerical integrations and extensive computations. His 
approximations provide an attractive approach. To avoid these computa- 
tions, we compute the posterior expected ranks (Rk) and the associated 
covariance matrix. Unlike the modal ranks, the posterior expected ranks 
can be affected by nonlinear monotone transforms, and they will not neces- 
sarily be integers. To obtain integers, we can rank the Rk, producing R . 

In some situations these rankings methods agree. For example, if the Tk S 
are all equal to a common 7, then Rk = Rk = Sk (the modal and ranked 
expected ranks equal the ranks of Rk S; see Appendix A). Portnoy (1982) 
generalizes this result for ranking random effects in the variance com- 
ponent model. His counterexamples highlight the conceptual and technical 
difficulties for arbitrary Tk. Other loss functions can be considered. For 
example, we conjecture that the RZ are Bayes with respect to squared error 
loss subject to the estimates' being a permutation of the K integers 1 to K. 

We use the Rk and Rk*, because they are easily computed, and the Rk 
permit us to produce standard confidence statements. They also clearly 
exhibit the effect of unequal posterior variances in producing inferences 
different from those based on ranked means. The Expected Ranks sub- 
section and Appendix B derive relatively straightforward properties of the 
Rk that display these differences. Gibbons (1971, section 7.5) and Pettitt 
and Siskind (1981) present similar results. 
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Expected Ranks 

Let 
K 

Rk = E(Rk)= Pjk, 
j=1 

where Pkk = 1 and Pjk = P(Ok -Oj) for all j * k. Assuming independence of 
the Ok S, 

jk = P(Ok - 0 - 0) = 4[(Ik - ij)/2'\k21], (3) 

with D the standard normal distribution function. Note that I•k = 

K(K + 1)/2. Formula 3 shows that as Tk- 0, Rk->1 + Xj*k I(Akj), where 
Akj = (Lk - ji)/r1j, and as Tk-> o00, Rk--> (K + 1)/2. We denote the R* the 
ranks of the Rk. If some of the Rk are tied, we produce the relevant R* in 
the usual manner by equating each to the average of the relevant ranks. 

In the case where the Ok S are independent, the discrepancy between, for 
example, R* and Sk depends on the differences in the TkS. As shown in 
Appendix A, if the Tk S are equal (producing stochastically ordered poste- 
riors), the ranks agree. If the Tk S differ, then the RZ ranks for relatively high 
"k S are pulled toward (K + 1)/2 compared to the Sk. 

Now consider the case where the Ok are not necessarily independent. If 
all the Os have a common variance (72) and a common correlation (p) that 
increases from 0 to 1, the Rk (and thus the Rk*) converge to the Sk. This 
result along with the previous shows that the degree of shrinkage toward 
(K + 1)/2 depends on both the variance (relatively higher variance for some 
components producing more shrinkage) and the correlation. To understand 
the role of the correlation coefficient, consider the representation for com- 
pound symmetry with a single latent random variable. Then, differences in 
Os have mean (Rk - j) and variance 272(1 - p), so as p-->l the differences 
are degenerate at the difference in means. Thus the Rk converge to Sk as 
p --> 1. 

Our method of computing the Rk ignores any correlation in the posterior 
distributions of the Ok S that may be induced by using estimated prior distri- 
butions (Laird & Louis, 1987; Rubin, 1982) or that may be present in a 
more general variance components model. The generalization of (3) to the 
model where the Os have a joint multivariate normal distribution is straight- 
forward. 

Producing Posterior Distributions 
In the Bayes model, the prior distribution for the Ok S and any nuisance 

parameters will be specified fully. The joint posterior for the Ok S, integrat- 
ing out nuisance parameters, can be produced in a straightforward way. 
Some formulae in the preceding section will need modification if the joint 
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posterior is not the product of independent normals, but the same concep- 
tual approach applies. 

Lindley and Smith (1972) give a Bayes approach for regression models. 
When the parameters of the prior are unspecified, a mixed model provides 
the appropriate structure. This model is also referred to as Model II in the 
analysis of variance, and empirical Bayes on random effects more gener- 
ally. Laird and Ware (1982) give the structure and show how to estimate the 
prior distribution and adjust the procedure for having estimated the prior 
mean (equivalently the fixed effects). An additional adjustment is neces- 
sary for having estimated the prior covariance matrix, as we discuss later in 
this section. 

The particular example we treat is bivariate; each school has an individ- 
ual slope and intercept relating initial performance to achievement. Like 
Aitkin and Longford (1986), we will take Ok to be expected achievement 
for a given initial performance. Our approach is to produce the bivariate 
posterior distribution of intercept and slope for each school. Then, assum- 
ing multivariate normality, the posterior for Ok follows directly from the bi- 
variate posterior of slope and intercept. 

Assume for the kth school and the jth student that 

Ykj = ak + bk Xkj + ekj 
k=l,...,nK 

S= 1, ..., nk, (4) 

where the ekj s are independent N(O, 02) random variables and the random 
effects (ak, bk) have a known Gaussian distribution: 

ak 

N 
2 [ ( 0t) (5) 

with 

2[o.; 

In the school effectiveness example, the response (ykj) is a measure of 
student achievement and Xkj is Verbal Reasoning Quotient (VRQ). The 
random intercept model of Aitkin and Longford (1986) results from setting 
as = -si = 0. Schools are to be ranked on the basis of predicted outcome at 
a given input X: Ok = ak + bkX. We suppress dependence on X. 

First, assume that all the fixed effects and variance components 
(cr, P, 02, 1) are known. Then the posterior distribution of (ak, bk) given the 
data and the fixed effects is: 

ak) data• N2 
[ink, 

Vk 

mk = 
Vk[Dk- (•) -1 

34 



Empirical Bayes Ranking Methods 

Vk = (Dk-• 1 ')-, (6) 

where (ak, bk) are the ordinary least squares (LS) estimates for the kth 
school, Dk = k2(X Xk)-1, and Xk is the kth school's design matrix. Formula 
6 shows that the posterior mean vector is closer to the prior mean vector 
than (^k, bk) is, in that the posterior mean lies inside the circle of radius 

[(ika - )2 + (k - 3)2]!2 around (at, P). This mapping can produce nonintui- 
tive results. For example, the posterior expected intercept need not be 
between ak and a. 

Because the ykjs are independent given (ak, bk) and the (ak,bk)'S are 
independent, the 0kS are a posteriori independent with: 

0k {data - N(pLk, 72), 
where 

Rk = mkl + mk2X 

Tk 
= (1 X)Vk X (7) 

When the fixed effects are unknown, Aitkin and Longford (1986) suggest 
using (7) for the posterior mean and variance of 0k, replacing the unknown 
fixed effects and variance components by suitable (e.g., marginal maximum 
likelihood: MML) estimates. As pointed out by Laird and Ware (1982), 
Morris (1983), and Laird and Louis (1987), the resulting posterior variance 
will be too small, because it neglects any uncertainty about the estimated 
prior. To account for estimating the prior mean, Laird and Ware modify the 
posterior variance expression (6) by introducing a flat prior for (a, P) and 
producing the marginal posterior of the (ak, bk)'s conditional on the data, 
a2, and Z. The resulting distribution for (ak, bk) is still bivariate normal with 
mean equal to rtk (& and P3 being replaced by their generalized least squares 
estimates) and variance given by 

V = 
varbk data, ,) = Vk+ Vk 1 Vk (8) 

where 

Q = ,- • VkDk- . k=1 

They replace o2, I with the restricted maximum likelihood estimates in 
computing (8). Harville (1976) and Tukey (1974) give sampling theory jus- 
tifications for the modified variance formula. 

The Laird and Ware approach needs to be extended to account for esti- 
mation of the variance components and to incorporate posterior correlation 
among schools. It is straightforward to incorporate the correlation resulting 
from estimating (at, p), but very complicated in general to adjust the poste- 
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riors to account for uncertainty about a2 and 1. The use of a multivariate 
analogue of Morris (1983) or the bootstrap (Laird & Louis, 1987) would be 
required. These details are not central to our main point and our data 
analysis is primarily based on the "naive" approach. However, for com- 
pleteness we include some details of this adjustment in Appendix C. 

School Effectiveness: Results 
In this section we use the school effectiveness data given in Aitkin and 

Longford (1986) to rank the 18 secondary schools on the basis of predicted 
performance at VRQ = 85 and 110. As noted in Aitkin and Longford, 
schools 17 and 18 are single-sex schools, and the rest are mixed-sex compre- 
hensive schools. The single-sex schools have considerably higher intake 
scores. For purposes of illustration, we retain all 18 schools for ranking and 

TABLE 1 
Predicted response 

VRQ = 85 VRQ = 110 

Least Least 

School squaresa Posteriorb squaresa PosteriorC 

number Mean SD Mean SD Mean SD Mean SD 

1 10.3 2.1 10.5 1.8 34.6 1.5 34.0 1.3 
2 12.5 1.3 12.3 1.2 32.8 2.0 32.4 1.6 
3 6.9 3.0 8.7 2.2 34.3 1.6 33.8 1.4 
4 6.5 2.4 8.2 1.9 28.7 1.7 29.7 1.5 
5 10.8 1.4 10.8 1.3 34.1 2.3 33.2 1.8 
6 8.5 1.6 9.1 1.5 29.0 3.6 30.9 2.2 
7 9.9 1.5 10.4 1.4 26.1 2.3 28.5 1.8 
8 10.3 1.9 10.6 1.6 29.6 1.6 30.1 1.4 
9 11.0 1.6 11.1 1.4 30.8 2.4 31.2 1.8 

10 14.9 2.1 13.7 1.8 36.2 1.9 34.7 1.6 
11 12.3 2.0 12.2 1.7 26.8 1.8 28.2 1.5 
12 4.8 2.2 6.7 1.8 38.8 2.1 36.4 1.7 
13 10.0 1.6 10.4 1.5 29.5 2.2 30.4 1.7 
14 10.5 2.8 10.7 2.1 32.0 2.5 31.9 1.9 
15 10.3 1.3 10.5 1.3 29.3 1.8 30.1 1.5 
16 12.3 1.7 12.1 1.5 27.6 1.8 28.8 1.5 
17 36.1 12.6 9.6 2.9 47.3 4.2 37.5 1.4 
18 20.6 10.1 12.8 2.8 32.1 4.1 29.9 1.5 

a Least squares depart from those in Table 6 of Aitkin and Longford (1986) because 
of rounding errors. 

b Prior mean = 12.1; prior SD = 3.3. 
"c Prior mean = 31.8; prior SD = 2.8. 
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restrict attention to models that include both random slope and intercept, 
because this policy produces the greatest spread in the resulting posterior 
means and variances. If only the 16 comprehensives are ranked, most 
methods of ranking based on random effects models give nearly identical 
results, because the posterior variances are so similar. 

Similarly, if we assume a single slope for all schools (as = cis = 0), there 
is less spread in posterior variances, making the rankings based on any 
empirical Bayes model very similar. For this reason, our rankings should 
not be compared with Aitkin and Longford (1986) ranks, because the only 
rankings they present for the variable-slope case are based on least squares 
(column 2 of our Tables 2 and 3). They argue instead for deleting school 12, 
whose slope is distinctly different from the others. Deleting it makes the 
resulting U& not significantly different from zero so that ranks can be based 
on a single-slope model. Our point here is not to draw different substantive 
conclusions, but rather to illustrate the performance of ranking methods in 
a more complex setting. 

For the first analysis, we use the approach of Aitkin & Longford (1986) 
to produce the Pk and 7kS (from formulae 6 and 7, replacing all fixed effects 
by their MML estimates provided by Aitkin and Longford). Table 1 gives 
the individual least squares estimates (kk = k + bk X), using slopes from 
Aitkin and Longford's Table 5 and intercepts calculated from their Table 1. 
Discrepancies between our Table 1 and their Table 6 are due to rounding 
errors. The posterior means and standard deviations shown in our Table 1 
are calculated using formula 6 and prior values supplied to us by Aitkin and 
Longford. As described in Appendix C we also calculated adjusted poste- 
rior variances that account for having estimated (a, 1, r2, 1) (not shown). 
The adjustment had very little effect on the posterior variances, except for 
schools 17 and 18, where increases in standard deviations ranged from 10 
to 150% (the .8 for school 17 in Table 3 changes to 2.4). This illustrates that 
these increases can be very dramatic for points far from the center of the 
distribution. 

Tables 2 and 3 give ranks based on least squares estimates, posterior 
means, and posterior expected ranks. In evaluating formulas 3 and 4 we 
replace 1k 

and Tk with their estimates and use 9-point Gaussian quadrature. 

Discussion 

Apparent anomalies occur in Table 1, as can be seen by looking at 
schools 17 and 18. For example, for VRQ = 85 school 17's LS mean of 36.1 
overshoots the prior mean of 12.1, when moving to the empirical Bayes 
posterior mean of 9.6. For VRQ = 110, school 18's LS mean (32.1) over- 
shoots the prior mean (31.8) when moving to the empirical Bayes posterior 
mean of 29.7. These behaviors could not occur in univariate Bayes or 
empirical Bayes models. In multivariate models, however, though the pos- 
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TABLE 2 
Ranking schools for VRQ = 85 

Ranks based on 

Posterior Posterior 
mean expected Posterior ranks (Rk) School LS mean response ranks 

number response (Sk) (Rk*) Meana SD 

17 1 14 14 11.3 5.4 
18 2 2 3 5.4 4.9 
10 3 1 1 3.2 2.8 
2 4 3 2 5.1 2.8 

16 5 5 4 5.8 3.5 
11 6 4 5 5.9 3.8 
9 7 6 6 8.3 3.7 
5 8 7 7 9.0 3.6 

14 9 8 8 9.2 4.8 
8 10 9 9 9.7 4.1 

15 11 10 10 9.9 3.7 
1 12 11 11 9.9 4.4 

13 13 13 13 10.2 3.9 
7 14 12 12 10.2 3.7 
6 15 15 15 13.2 3.3 
3 16 16 16 13.4 4.2 
4 17 17 17 14.5 3.4 

12 18 18 18 16.7 2.0 

"a Ties in the posterior means are due to rounding. The mean rank is 9.5. 

terior mean vector must be closer in Euclidean distance to the prior mean 
vector than is the observed mean vector, this relation need not hold for 
linear combinations. 

Ranking posterior means produces a big change from ranks based on 
unadjusted least squares means (Tables 2 and 3). Note especially the 
change in rank for VRQ = 85 for school 17: Its least squares rank is 1, but 
its posterior mean rank is 11.3. The large standard deviation of its least 
squares estimate (attributable to extrapolation to a VRQ value outside the 
range of its pupil's values) produces the change. As with the usual EB 
adjustments, the posterior expected ranks (Rk) are Closer to (K + 1)/2 [9.5] 
than are the ranked posterior means (the Sk), with the discrepancy de- 
pending on the posterior variance. So, the ranked Rk (the R* ) can differ 
from the Sk. Note the differences for schools 2, 18, 11, and 16 in Table 2. 
The adjusted posterior variances are more heterogeneous than the un- 
adjusted, producing a change in the rankings for schools 4, 12, 17, and 18 
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TABLE 3 
Ranking schools for VRQ = 110 

Ranks based on 

Posterior Posterior 

mean expected Posterior ranks (Rk) School LS mean response ranks 
number response (Sk) (Rk) Meana SD 

17 1 1 1 1.5 0.8 
12 2 2 2 2.4 1.5 
10 3 3 3 4.2 2.1 
1 4 4 4 5.0 2.0 
3 5 5 5 5.4 2.2 
5 6 6 6 6.5 3.0 
2 7 7 7 7.8 3.0 

18 8 14 14 12.9 3.0 
14 9 8 8 8.8 3.5 
9 10 9 9 10.2 3.5 
8 11 12 12 12.3 3.0 

13 12 11 11 11.7 3.4 
15 13 13 13 12.5 3.1 
6 14 10 10 10.7 4.1 
4 15 15 15 13.2 3.0 

16 16 16 16 14.8 2.7 
11 17 18 18 15.8 2.4 
7 18 17 17 15.2 2.8 

"a Ties in the posterior means are due to rounding. The mean rank is 9.5. 

for VRQ = 110 (not shown). In this data set, these changes in ranking are 
small compared to the big impact of using a Bayes versus a least squares 
approach. We conjecture that the same qualitative results will hold for 
posterior modal ranks. 

Perhaps more important than the comparison of columns 3 and 4 (i.e., 
ranks of posterior means versus ranks of posterior mean ranks) is the 
message conveyed by examining the posterior mean and SDs of the ranks. 
For VRQ = 85 there are essentially three groups of indistinguishable 
schools: schools 18, 10, 2, 16, and 11 with mean rank between 3.2 and 5.9, 
schools 9, 5, 14, 8, 15, 1, 13, and 17 with mean rank close to (K + 1)/2 = 9.5, 
and schools 6, 3, 4, and 12 with mean rank between 11.3 and 16.7. For 
VRO = 110, schools 17 and 12 stand out as being clearly superior. 

To illustrate these relations, we plot the posterior expected rank (plus or 
minus two posterior standard deviations) versus the ranks of the posterior 
and least squares means for VRO = 85 (Figures 1 and 2) and VRQ = 110 
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FIGURE 4. Plot of the posterior mean 
rank plus or minus 2 standard devia- 
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(Figures 3 and 4). Figures 1 and 3 illustrate three features of using posterior 
expected rank instead of the rank of the posterior mean. The shrinkage of 
the posterior expected ranks to 9.5 is seen through a slope less than one in 
the trend line through the plotted points. Nonmonotonicity in the plotted 
points shows that the ranked posterior expected ranks (Rl ) will not coin- 
cide with the ranked posterior means (Sk). The standard errors of the Rk 
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depend on the PikS (formula 3) and will generally be smallest for high- or 
low-ranking schools (as with a binomial-type variance). Figures 3 and 4 
show the same general features exaggerated by the differences between 
least squares and posterior means. 

Because the posterior variances and covariances influence the ranks, it 
can be important to inflate them to account for uncertainty in the marginal 
maximum likelihood estimate of the fixed effects and variance components. 
The variance adjustments do influence the ranks somewhat in the school 
example and can have more dramatic effects in data sets with an estimated 
prior variance that is small relative to the sampling variance. The adjust- 
ment has its most dramatic effect on the estimated posterior SD of the rank. 
For example, the SD of .8 for school 17 in Table 3 jumps to 3.0, and the 
posterior mean goes from 1.5 to 2.7. 

Even with the adjustments for using estimates of the prior, the posterior 
distributions used in the school effectiveness example fail to incorporate 
correlation among the Ok and departures from the Gaussian distribution 
(e.g., skewness) induced by estimation. The correlation can be handled 
with little additional computation, and the bootstrap (see Laird & Louis, 
1987) provides one approach for inducing departures from the Gaussian 
posterior. The theoretical and empirical effect of these modifications re- 
mains to be determined. 

Our results promote the concept that ranking procedures should be 
based on the posterior distribution of the ranks, which conveys more infor- 
mation than integer ranks of parameters. Further research into methods for 
producing valid confidence intervals for ranks in the empirical Bayes setting 
is desirable. 

APPENDIX A 
Equality of the least squares, modal, and expected ranks 

Theorem A. If 01, .. , Ok are independent and stochastically ordered, then 

Rk= R, = Sk 

Proof: Let 0k " Gk and Gk = 1 - Gk. Without loss of generality take Gk > 
Gk+1. 

Then, it is easy to show that for k < m: 
1 

Pmk < 
2 

Pk < im for all j * k or m. 
Therefore, 

Rlm=>mEPm=+P.m+ Pkm m 
i jk or m 

>Prm+ Pkm+ Pjk 
j*k or m 

= Rk + (Pkm - Pmk) > Ik. 
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Because this is true for any (m, k) pair, it follows that R* = Sk. To show Rk = Sk, 
consider the case where K = 3 and compare the ranks Rk -k to R, = 1, R2 = 3, 
R3 = 2. We have: 

pr(Rk k) + pr(R1 = 1, RZ = 3, R3 = 2) 

= jgi(s) f{G2(t)g3(t) + G3(t)g2(t)}dt ds 

fgi(s)[1- G2(s)G3(s)]ds 

and 

pr(Rk = k) gi(s) G2(t)g3(t)dt ds 

>f gl(s) 
f 

3(t)g3(t)dtds 

=fg,(s)[1 
- 

G3(s)]ds 
> g(s)[1 - 2(G 3(t)]dt 

So pr(Rk - k) > pr(Ri = 1, R2 = 3, R3 = 2). In this manner we can prove for a 
general K that Rk k is the mode. All we need show is that if rk > rk +1, then 

pr(R1 = r, .. ,Rk = k, Rk+1 = rk+1, , RK = rK) 
< pr(R1 = rT, ...,Rk = Tk+1, Rk+I rk,.. . ,RK = rK) 

A sequence of single exchanges shows that Rk k is the mode. 

Corr.: If TrI = 2 = "Tk, then Rk = Rk = Sk 

Proof: If the Ts are equal, the Gaussian distributions are stochastically ordered. 

APPENDIX B 
Variance and covariance of the Rk 

Again using the assumption of independent Oks, we produce the posterior vari- 
ance of Rk and the covariance of Ri and Rk. 

We have 

Theorem: 
.K 

V(Rk) =  k( - Pik) + 2 E (Cik - PIk) 
j=1 j<1 
K 

cov(Rk, Rm) = , (Cmj - Pjk Pjm) j=1 

where 

Cjik = P(k -< min(Oj, 01)) 
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and 

Ckmj = P(j >- max(Ok, 0m)) 

= Ckmj computed under (- Lk, -- m, - [j). 

Note that Cjjk = Pk, CIkk = Plk, and Ckjk = Pjk 

Proof: 
K 

V(Rk) = V(Ijk) + 2 cOV(Ijk, Ilk) 
j=1 j<1 

K 

= k(1 - Pk) + 2 E [pr(Ok - min(Oj, 01)) - Pjk PjI], j=1 j<1 

and 

RkR, lik) Im) 
K 

Eljk Ijm + > Ijk II.m 
j=l1 j 1 

So, 
K 

E(Rk Rm) = P(0j ? max(Ok, 8m)) + Pk PIm 
j=1 j#1 

K 

= C;,*k + Pk PIm. 
j=1 j*1 

And 

cov(Rk, Rm) = E(Rk Rm) - E(Rk)E(Rm) 

= 
> 

C +*k 
EPik PIm 

Pjk) P-n) 
j=1 j / 

Substitutes of the relations among C, C*, and the Ps produces the covariance. 
When the Os are correlated, similar, but more complicated, expressions result. 

APPENDIX C 

Extending the Laird-Ware approach 

The approach in Laird and Ware (1982) can be extended in a straightforward 
way to account for posterior correlation between schools. Doing so, we find that 

abk) 
and k 4 *j 

are jointly multivariate normal, with covariance matrix 

E Vk Ck11 
C k Vi *I 
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Where 
c•,j = v,,' -' -V 

This implies multivariate normality for the Oks, with the same means pLk, but 

T2 = (1X)VZ (k 
and 

"T•i = cov(0k, 0jdata) 
- (1X)C* 1 

This approach accommodates uncertainty about (at, P), but not U2 and I. Ac- 
counting for this latter uncertainty will be important for small to modest K. Whereas 
(8) dampens the differences in posterior variance and covariance, this adjustment 
would increase the posterior variance and covariance as a function of the distance 
between the individual-school estimated parameters and (&, P). Because using the 
Laird-Ware method to account for estimating U2 and I is very difficult, we suggest 
instead an approximate multivariate 8-method. 

Approximate Multiviarate 8-method 

We wish to approximate the posterior distribution of a linear functional of a mul- 
tivariate parameter. Our approximation uses naive empirical Bayes (no account of 
having estimated the fixed effects and variance components) to produce the multi- 
variate posterior distribution. Then, this distribution produces the naive univariate 
distribution of the functional, and the method in Morris (1983) provides the adjust- 
ment. There are two approximations in this approach: Adjustments are made after 
applying the functional, and the Morris method produces a Gaussian distribution, 
even though the true distribution is not Gaussian (see Laird & Louis, 1987). 

Specifically, we start with (7) using MML estimates of fixed effects and variance 
components as the naive estimates. Then, let 

2 

bk=1- Tk 

and (1X)o( X) 

Uk= (lX)Dk(X 
We now apply the Morris procedure to the univariate problem, with prior mean 1, 
shrinkage factor bk, and sampling variance Uo2. Thus, the adjusted posterior variance 
is: 

u"bk 2A2 b2 
2i(1-kbk+ 2(1 - b) +-K +K K"- 3' 

where 

with, from (6)(1X)Bk: B = V -1 

with, from (6): Bk = Vk-1. 
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Other approximations could be used. One defines bk to be compatible with the 
relation between the prior and posterior means, and then proceeds as above. 
Another employs the Laird and Ware (1982) method for accounting for estimating 
the fixed effects and continues as before, dropping the middle term in the adjusted 
posterior variance. Further investigation is required to compare these methods to 
each other and to either a quadrature or Monte-Carlo computation of the moments. 
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