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/ Bio & Notes \
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Course Notes & Slides \

o UW Biostat 571 = Ph.D. applied core sequence
Winter 2000, 2001, 2002, 2003, 2007

o UM Epi 766 = Longitudinal Data Analysis / Epi
Summer 2000 (Summer 2004 with VA /UW Biostat/Epi)

o Second Seattle Symposium (with S. Zeger)
Fall 2000

o RAND short course;: NICHD short course
Fall 2002; Fall 2003

o UW Biostat 540 = M.S. applied core sequence
Spring 2005, 2006, 2007, 2008
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Introduction

Objectives:

estimation.

\_

e Appreciate breadth of applications.

e Understand that correlation interacts with covariate design to

impact standard errors.

e Understand that variance/covariance model is useful for efficiency of

/
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/ Biostat 571 — Overview ' \

* | We will study methods (ie. theory & practice) for data with non

I.1.d. errors:

Part | — Generalized linear models | approz (2 weeks)

o Review independent data with non-constant variance.

o Extend linear model by

e replace linear model for u = E(Y) by linear model
for g(p).

e replace constant variance assumption with mean-variance
relationship.

\o replace normal distribution with exponential family. /
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/ol\/lodels for multinomial outcomes (ie. the simplest

“multivariate” response).

o Models / methods for “extra variation” = overdispersion.

\

/
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Motivation \

Coronary artery disease (CAD) is the leading cause of death in
men and women in the US.

The “reference test” for CAD diagnosis is coronary contrast
angiography. This test is invasive.

“Stress’ tests are a common method used for CAD diagnosis.
This involves stimulation of the heart and imaging of the heart.

Stimulation = exercise,
pharmacologic stressors
Imaging = echocardiography (ECHO),

single photon emission computed

tomography (SPECT) /
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/ Meta-analysis \

e Many studies have investigated the accuracy of stress tests for the
diagnosis of CAD.

e | Systematic Reviews of Diagnostic Accuracy

> Cochrane Methods Group — provides guidelines.

> Goals include:
1. Provide an overall summary of diagnostic accuracy
(sensitivity, specificity).
2. Compare different tests.
3. Characterize systematic variation in accuracy (ie.
subgroups of patients defined by gender, age, ...).
4. Characterize random study-to-study variation.

\_ /
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/ Data \

e Data extracted for (2) pharmacologic stressors:

> Dobutamine: increases myocardial demand by increasing heart

rate and contractility (like exercise)

> Persantine: vasodilator of the epicardial coronary arteries.

Leads to a “steal” of blood flow away from diseased areas.

e \We have combined ECHO and SPECT imaging for plots.

° Data:

> Sensitivity, specificity, and covariates from study ¢.
> (Yi1, Ni1), (Yio, Nio), and X ;.
N;1 = # of diseased subjects in study 2.
Y;1 = # of diseased subjects that test positive.

N;o = # of non-diseased subjects in study <.
\ Y,0o = # of non-diseased subjects that test positive. /

Heagerty, Bio/Stat 571




10

/ Diagnostic Accuracy

~

e Consider a single cross sectional sample, a binary test, and a

binary disease variable.

T+ T—
D ni1 n10 np
D no1 100 Ny
nr4 nt_— N

/
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/ Diagnostic Accuracy

Predictive probabilities:

Accuracy summaries:

P[D | T+]

PD| T

P[T+ | D]

P[T— | D]

/
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Sensitivity for Dobutamine
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Specificity for Dobutamine
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Severity
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e Define a positive test: T+ = 1(Y > ¢).
e [wo error rates for decisions.

e Test “makers’ and test “takers’.
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Accuracy Summaries

\_

Sensitivity:
P| Test Positive | Diseased |
Specificity:
P| Test Negative | non-Diseased |
1 — P[ Test Positive | non-Diseased |
ROC Curve:

> Used when a positive test is defined by Z > ¢ for a continuous

test, Z, and a “threshold” value, c.

> points | FP(c), TP(c) | Vcé€ (—o0,+0)

/
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/ Using Generalized Linear Models \

e Compare the test modalities (echo, spect) x (dob, per).

e Analysis of sensitivity using binomial logistic regression.

#

# cad.roc.regn.q

#

# ____________________________________________________________
#

# PURPOSE: run regression for the CAD data.
#

# DATE: 00/10/25

#

# AUTHOR: P. Heagerty

#

# =======================

#

# Variables: (In column order of appearance)
#

# Y1 number of true-positive tests

ﬂ

N1 number of diseased subjects 4’///
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///;VDOBUTAMINE 1 if stimulant was dobutamine; O if persantine ‘\\\\

# ECHO 1 if image modality was echo; O if spect

# YEAR year of the study (minus 1999)

# AGE average age in the study (minus 50)

# VERIFY 1 if no verification differential;

# 0 if verification (bias)

# QUALITY 1 = 1low quality; 2 = medium quality; 3 = high quality
# DEF50 1 = use of 50% stenoisis for CAD definition; O = use of 75/,
# PERCAD percent of study population with CAD

#

# =======================

#

data <- read.table("cad.roc.data")
#
cad.data <- data.frame(

y = datal,1],

n = datal,2],

dob = datal,3],
echo = datal,4] )

#

fit0 <- glm( cbind( y, n-y ) ~ dob * echo,
family=binomial,
data=cad.data )

\\\iimmary( fit0, cor=F ) 4’///
#
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///;;ti <- glm( cbind( y, n-y ) ~ dob * echo,

summary( fitl, cor=F )
#

#

# end-of-file...

family=quasi (
link="logit",

variance="mu(1-mu)" ),

data=cad.data )

/
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/ Binomial Regression Analysis

Call: glm(formula = cbind(y, n - y) ~ dob * echo,
family = binomial, data = cad.data)

Coefficients:
Value Std. Error t value
(Intercept) 2.1682444 0.07203410 30.100250
dob -0.6595936 0.12349252 -5.341162
echo -1.2863032 0.09082285 -14.162771
dob:echo 1.1734438 0.14343752 8.180871

(Dispersion Parameter for Binomial family taken to be 1 )
Null Deviance: 616.8647 on 114 degrees of freedom
Residual Deviance: 398.8679 on 111 degrees of freedom

\_

/
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/ Quasilikelihood Regression Analysis \

Coefficients:

(Intercept) 2.1682444
dob -0.6595936

echo -1.2863032
dob:echo 1.1734438

\_

Call: glm(formula = cbind(y, n - y)

Value Std. Error

0.1383072
0.2371087
0.1743821
0.2754036

“ dob * echo,
family = quasi(link = "logit",

variance = "mu(l-mu)"), data = cad.data)

t value
15.677013
-2.781820
-7.376349

4.260816

(Dispersion Parameter for Quasi-likelihood family taken to be 3.686494 )
Null Deviance: 616.8647 on 114 degrees of freedom
Residual Deviance: 398.8679 on 111 degrees of freedom

/
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/ Statistical Issues

e Which (if any) of these analyses is valid?

>

e How to interpret the resulting parameter estimates?

>

e Are there other statistical approaches that may be more
“appropriate” ?

>

e How to summarize the components of variability?

>

e Should we jointly consider sensitivity and specificity?

\ >

/
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/ Biostat 571 — Overview '

Part Il — General LM for Correlated Continuous Data

approzimately (4 weeks)

o Extend the linear model by considering a covariance structure for

response vectors.
e Longitudinal data (repeated measures)
e C(Clustered data

e Multivariate response (MANOVA)

e Time-series and spatial data

\_

/
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/ Biostat 571 — Overview ' \

o Semi-parametric methods
e Weighted least squares
e Empirical (“sandwich”) variance estimates & efficiency
e Specification and estimation of covariances

e Inference

o Classical methods (ANOVA techniques).

\_ /
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/

o Methods based on multivariate Gaussian

Maximum likelihood (ML) and restricted ML (REML)

Linear mixed models
Prediction of random effects (empirical Bayes)
Longitudinal data analysis

Model checking (diagnostics)

/
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/ Beta-carotene Phase |l Data \

Motivation:

e Beta-carotene is (was?) one of the most commonly used
compounds in clinical trials of chemopreventive agents for various

cancers.

e In 1992 a phase |l study was conducted to examine the
pharmokinetics of long-term, high-dose beta-carotene regimens.

e Interest is in the long-term dynamics of beta-carotene and the
impact on alpha-tocopherol (vitamin E).

\_ /
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/

Beta-carotene Phase |l Data \

e Several time aspects are of interest:
1.
2.

How long before stable plasma levels are obtained?

Is the time course different depending on the dose of
beta-carotene?

Do changes in beta-carotene correlate with changes in vitamin
E?

/
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Data: \

The response variables are plasma concentration of beta-carotene
and vitamine E.

A total of 46 subjects were measured monthly for 3 months prior
to randomization. Subjects were randomized to placebo, 15, 30,
45, or 60 mg/day for 9 months. Subjects were followed for an
additional 3 months.

Baseline patient factors include:
AGE - age at randomization
MALE
WEIGHT
BMI - body mass index
CHOLESTEROL - serum cholesterol at randomization
BODYFAT - % bodyfat at randomization /
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/ Biostat 571 — Overview ' \

Part Ill - GLMs for Correlated Categorical Data

approzimately (4 weeks)

o Extend the GLM by considering a covariance structure for response

vectors.
e Longitudinal data (repeated measures)
e C(lustered data & “multilevel” data
e Multivariate response

e Time-series and spatial data

o Semi-parametric methods

e Generalized estimating equations (GEE) /
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e Empirical (“sandwich™) variance estimates & efficiency \
e Specification and estimation of covariances

e Inference

\_ /
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/

o Likelihood based methods for categorical (binary) data
e Multivariate likelihoods for binary data
e Generalized linear mixed models (GLMMs)
e Prediction of random effects (empirical Bayes)
e Clustered & Longitudinal data analysis

e Model checking (diagnostics)

o Missing data issues!

o Additional topics?

\_

/
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/

The BIG Picture '

e Generalized linear models

o Models for the mean response
o Univariate response / independent

e Multinomial models

o Models for the mean response (transformed)
o Univariate response / independent

e Overdispersed GLMs

\_

o Models for the mean response
o Models for the variance
o Univariate response / independent

/
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/ The BIG Picture '

e General Linear Model for Correlated Data
o Models for the mean response (continuous)
o Models for the covariance
o Vector response / dependent within

e Linear Mixed Model
o Models for the mean response (continuous)
o Models for the covariance (hierarchical)
o Vector response / dependent within

/
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/

The BIG Picture '

e Marginal GLM / GEE

o Models for the mean response (discrete,continuous)
o Models for the correlation
o Vector response / dependent within

e GLMM

\_

o Models for the conditional mean

response (discrete,continuous)
o Models for the heterogeneity (hierarchical)
o Vector response / dependent within

/
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/

The BIG Picture '

SEMI-PARAMETRIC

PARAMETRIC

Overdispersion

Quasilikelihood
Est. Eq.
cov(B)=A"'B A~!

beta-binomial

poisson-gamma

likelihood / Bayes

Continuous Resp. /

linear model

WLS
Est. Eq.
cov(B) —A'B A™!

multiv. normal

LMM
likelihood / Bayes

Discrete Response /

GLM

GEE
Est. Eq.

AN

cov(iB) =A"'B A~

multiv. dist.
GLMM
likelihood / Bayes

\_

/
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/ Longitudinal Data I

“The basic statistical problem is that variables from a

given individual are correlated over time.” (generic)

Q: So what?

e (-) ignoring dependence can lead to invalid inference.
)

e (-) often limited information regarding dependence.

(
(
e (+) can observe change for individuals over time.
e () variety of statistical approaches that are available.

\_

\

/
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/ Longitudinal Data I \

“... need to account for the dependence.” (generic)

Q: How?

1. Choice of Model
2. Choice of Estimator

3. Choice of Summaries

\_ /
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/ Dependent Data and Proper Variance Estimates I \

Let X;; = 0 denote placebo assignment and X;; = 1 denote active
treatment.

(1) Consider (Y;;l,Y;'Q) with (Xﬂ,XZ'Q) = (O, 0) for:=1:n and
(X«L'l,XZ'Q) — (1, 1) for 1 = (n—l— 1) : 2n

1 n 2
flo = %ZZYLJ

i=1 j=1
1 2n 2
R PRt
i=n+1 j=1
R R L. 5
var(fin — j1o) = —10°(1+p)}

\_ /
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Scenario 1

control
time 1 time 2

treatment
time 1l time 2

subject

ID = 101
ID = 102
ID = 103
ID = 104
ID = 105
ID = 106

30-1

Yi1 Y19
Yo1 Ys o
Y31 ER

Yi1 Y0
Y51 Y52
Ys.1 Ys.2
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/

var(fiy — fio)

Dependent Data and Proper Variance Estimates I \

(2) | Consider (Y;1, Y;2) with (X1, X52) = (0,1) for i =1 : n and
(Xil,Xz'Q) = (1,0) for ¢ = (n—l— 1) 1 2n

1 2n )
o <\; Yii + i_;_l }/z'2/>
1

%< ;E2+Z;1E1/>

{o*(1- p)}

/
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Scenario 2

subject control treatment
timel time2 | timel time?2

ID =101 | Yi: Yio
ID =102 | Y2, Yoo
ID =103 | Y33 Y39
ID = 104 Yio Yiq

ID = 105 Y5 o Y51

ID = 106 Y5 2 Ys.1

37-1 Heacertv. Bio/Stat 571
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/ Dependent Data and Proper Variance Estimates I

If we simply had 2n independent observations on treatment (X = 1)
and 2n independent observations on control then we'd obtain

o2 o2

var(fiy — fig) = o T o
1
p— —0'2
n

Q: What is the impact of dependence relative to the situation where

all (2n + 2n) observations are independent?
(1) = positive dependence, p > 0, results in a loss of precision.

(2) = positive dependence, p > 0, results in an improvement in

\precision!

\

/
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/T herefore:

e Dependent data impacts proper statements of precision.

\

e Dependent data may increase or decrease standard errors depending

on the design.

/
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Consider the situation where subjects report both the number of
attempts and the number of successes: (Y;, IV;).

Examples:

live born (Y;) in a litter (IV;)
condoms used (Y;) in sexual encounters (IV;)
SAEs (Y;) among total surgeries (IV;)

Q: How to combine these data from 7 = 1 : m subjects to estimate a

common rate (proportion) of successes?

\_

/ Weighted Estimation I \

/
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/

Proposal 1:

Proposal 2:

Simple Example:

Data

Weighted Estimation I

(1,10) (2,100)

— (2+1)/(110) = 0.030
- %{1/10-F2/100}:=(1051

/
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/ Weighted Estimation I \

Note: | Each of these estimators, p1, and ps, can be viewed as

weighted estimators of the form:

. Yi
o = {zwi M} /S
1 1
We obtain p; by letting w; = N;, corresponding to equal weight given
each to binary outcome, Y;;, Y; = Zjvzl Yi;.

We obtain ps by letting w; = 1, corresponding to equal weight given
to each subject.

Q: What's optimal?

\_ /
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/ Weighted Estimation I

A: Whatever weights are closest to 1/variance of Y;/N; (stat theory

called “Gauss-Markov").

e If subjects are perfectly homogeneous then
V(Y;) = Nip(1 - p)

and p; Is best.

e If subjects are heterogeneous then, for example
V(Y;) = Nip(1 = p){1 + (N; — 1)p}

and an estimator closer to ps Is best.

\_

\

/
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/S ummary

e Dependent data are common (and interesting!).

e Inference must account for the dependence.

e Consideration as to the choice of weighting will depend on the

variance/covariance of the response variables.

Reading

o DHLZ Chapter 1 — examples of longitudinal studies.

\_

/
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