Advanced GLMs: Analysis of Correlated Data

- Patrick J. Heagerty PhD
- Department of Biostatistics
- University of Washington

Bio & Notes

- Patrick J. Heagerty
 - Professor, University of Washington
 - Collaborative roles = CBS, VA ERIC, NIAMS MCRC, KL2
 - Books:

Diggle, Heagerty, Liang & Zeger "Analysis of Longitudinal Data" Oxford, 2002.

van Belle, Fisher, Heagerty & Lumley "Biostatistics" Wiley, 2004. (introductory chapter on LDA)

• Course Notes & Slides

- UW Biostat 571 = Ph.D. applied core sequence
 Winter 2000, 2001, 2002, 2003, 2007
- UM Epi 766 = Longitudinal Data Analysis / Epi
 Summer 2000 (Summer 2004 with VA/UW Biostat/Epi)
- Second Seattle Symposium (with S. Zeger)
 Fall 2000
- RAND short course; NICHD short course
 Fall 2002; Fall 2003
- UW Biostat 540 = M.S. applied core sequence
 Spring 2005, 2006, 2007, 2008

Introduction

Objectives:

- Appreciate breadth of applications.
- Understand that correlation interacts with covariate design to impact standard errors.
- Understand that variance/covariance model is useful for efficiency of estimation.

Biostat 571 – Overview

* We will study methods (ie. theory & practice) for data with non i.i.d. errors:

Part I – Generalized linear models | approx (2 weeks)

- Review independent data with <u>non-constant</u> <u>variance</u>.
- Extend linear model by
 - replace linear model for $\mu = E(Y)$ by linear model for $g(\mu)$.
 - replace constant variance assumption with mean-variance relationship.
 - replace normal distribution with exponential family.

- Models for multinomial outcomes (ie. the simplest "multivariate" response).
- Models / methods for "extra variation" = overdispersion.

Motivation

- Coronary artery disease (CAD) is the leading cause of death in men and women in the US.
- The "reference test" for CAD diagnosis is coronary contrast angiography. This test is invasive.
- "Stress" tests are a common method used for CAD diagnosis.
 This involves <u>stimulation</u> of the heart and imaging of the heart.

```
Stimulation = exercise,

pharmacologic stressors

lmaging = echocardiography (ECHO),

single photon emission computed
tomography (SPECT)
```

Meta-analysis

- Many studies have investigated the accuracy of stress tests for the diagnosis of CAD.
- Systematic Reviews of Diagnostic Accuracy
 - Cochrane Methods Group provides guidelines.
 - Goals include:
 - 1. Provide an overall summary of diagnostic accuracy (sensitivity, specificity).
 - 2. Compare different tests.
 - 3. Characterize **systematic** variation in accuracy (ie. subgroups of patients defined by gender, age, ...).
 - 4. Characterize **random** study-to-study variation.

Data

- Data extracted for (2) pharmacologic stressors:
 - Dobutamine: increases myocardial demand by increasing heart rate and contractility (like exercise)
 - Persantine: vasodilator of the epicardial coronary arteries.
 Leads to a "steal" of blood flow away from diseased areas.
- We have combined ECHO and SPECT imaging for plots.
- Data:
 - \triangleright Sensitivity, specificity, and covariates from study i.
 - $ightharpoonup (Y_{i1},N_{i1})$, (Y_{i0},N_{i0}) , and $oldsymbol{X}_i$.

 $N_{i1} = \#$ of diseased subjects in study i.

 $Y_{i1} = \#$ of diseased subjects that test positive.

 $N_{i0} = \#$ of non-diseased subjects in study i.

 $Y_{i0} = \#$ of non-diseased subjects that test positive.

Diagnostic Accuracy

• Consider a single cross sectional sample, a binary test, and a binary disease variable.

	T+	T-	
D	n_{11}	n_{10}	n_D
\overline{D}	n_{01}	n_{00}	$n_{\overline{D}}$
	n_{T+}	n_{T-}	N

Diagnostic Accuracy

Predictive probabilities:

$$P[D \mid T+]$$

$$P[\overline{D} \mid T-]$$

Accuracy summaries:

$$P[T+\mid D]$$

$$P[T-\mid \overline{D}]$$

Sensitivity for Dobutamine

Specificity for Dobutamine

- Define a positive test: $T+=\mathbf{1}(Y>c)$.
- Two error rates for decisions.
- Test "makers" and test "takers".

Accuracy Summaries

Sensitivity:

```
P[ Test Positive | Diseased ]
```

• Specificity:

```
P[ Test Negative | non-Diseased ] 1 - P[ Test Positive | non-Diseased ]
```

- ROC Curve:
 - Used when a positive test is defined by Z>c for a continuous test, Z, and a "threshold" value, c.
 - ightharpoonup points $[FP(c), TP(c)] \forall c \in (-\infty, +\infty)$

Using Generalized Linear Models

- Compare the test modalities (echo, spect) \times (dob, per).
- Analysis of sensitivity using binomial logistic regression.

```
cad.roc.regn.q
# PURPOSE: run regression for the CAD data.
# DATE: 00/10/25
# AUTHOR: P. Heagerty
# Variables:
              (In column order of appearance)
# Y1
               number of true-positive tests
# N1
               number of diseased subjects
```

```
# DOBUTAMINE
               1 if stimulant was dobutamine; 0 if persantine
# ECHO
               1 if image modality was echo; 0 if spect
# YEAR
               year of the study (minus 1999)
# AGE
               average age in the study (minus 50)
               1 if no verification differential;
# VERIFY
                 0 if verification (bias)
# QUALITY
               1 = low quality; 2 = medium quality; 3 = high quality
# DEF50
               1 = use of 50% stenoisis for CAD definition; 0 = use of 75%
               percent of study population with CAD
# PERCAD
           ______
data <- read.table("cad.roc.data")</pre>
cad.data <- data.frame(</pre>
                         y = data[,1],
                        n = data[,2],
                         dob = data[,3],
                         echo = data[,4] )
fit0 <- glm( cbind( y, n-y ) ~ dob * echo,
                               family=binomial,
                               data=cad.data )
summary( fit0, cor=F )
```

```
fit1 <- glm( cbind( y, n-y ) ~ dob * echo,</pre>
                                 family=quasi(
                                              link="logit",
                                              variance="mu(1-mu)" ),
                                 data=cad.data )
summary( fit1, cor=F )
# end-of-file...
```

Binomial Regression Analysis

Quasilikelihood Regression Analysis

Statistical Issues

- Which (if any) of these analyses is valid?
 - ▶ A:
- How to interpret the resulting parameter estimates?
 - ▶ A:
- Are there other statistical approaches that may be more "appropriate"?
 - ▶ A:
- How to summarize the components of variability?
 - ▶ A:
- Should we jointly consider sensitivity and specificity?
 - ▶ A:

Biostat 571 – Overview

Part II – General LM for Correlated Continuous Data approximately (4 weeks)

- Extend the linear model by considering a <u>covariance</u> structure for response <u>vectors</u>.
 - Longitudinal data (repeated measures)
 - Clustered data
 - Multivariate response (MANOVA)
 - Time-series and spatial data

Biostat 571 – Overview

- Semi-parametric methods
 - Weighted least squares
 - Empirical ("sandwich") variance estimates & efficiency
 - Specification and estimation of covariances
 - Inference
- Classical methods (ANOVA techniques).

- Methods based on multivariate Gaussian
 - Maximum likelihood (ML) and restricted ML (REML)
 - Linear mixed models
 - Prediction of random effects (empirical Bayes)
 - Longitudinal data analysis
 - Model checking (diagnostics)

Beta-carotene Phase II Data

Motivation:

- Beta-carotene is (was?) one of the most commonly used compounds in clinical trials of chemopreventive agents for various cancers.
- In 1992 a phase II study was conducted to examine the pharmokinetics of long-term, high-dose beta-carotene regimens.
- Interest is in the long-term dynamics of beta-carotene and the impact on alpha-tocopherol (vitamin E).

Beta-carotene Phase II Data

- Several time aspects are of interest:
 - 1. How long before stable plasma levels are obtained?
 - 2. Is the time course different depending on the dose of beta-carotene?
 - 3. Do changes in beta-carotene correlate with changes in vitamin E?

Data:

- The response variables are plasma concentration of beta-carotene and vitamine E.
- A total of 46 subjects were measured monthly for 3 months prior to randomization. Subjects were randomized to placebo, 15, 30, 45, or 60 mg/day for 9 months. Subjects were followed for an additional 3 months.
- Baseline patient factors include:

AGE - age at randomization

MALE

WEIGHT

BMI - body mass index

CHOLESTEROL - serum cholesterol at randomization

BODYFAT - % bodyfat at randomization

Dose = 15

Dose = 15

Heagerty, Bio/Stat 571

Biostat 571 – Overview

Part III – GLMs for Correlated Categorical Data approximately (4 weeks)

- Extend the GLM by considering a <u>covariance</u> structure for response <u>vectors</u>.
 - Longitudinal data (repeated measures)
 - Clustered data & "multilevel" data
 - Multivariate response
 - Time-series and spatial data
- Semi-parametric methods
 - Generalized estimating equations (GEE)

- Empirical ("sandwich") variance estimates & efficiency
- Specification and estimation of covariances
- Inference

- Likelihood based methods for categorical (binary) data
 - Multivariate likelihoods for binary data
 - Generalized linear mixed models (GLMMs)
 - Prediction of random effects (empirical Bayes)
 - Clustered & Longitudinal data analysis
 - Model checking (diagnostics)
- Missing data issues!
- Additional topics?

Generalized linear models

- Models for the mean response
- Univariate response / independent

Multinomial models

- Models for the mean response (transformed)
- Univariate response / independent

Overdispersed GLMs

- Models for the mean response
- Models for the variance
- Univariate response / independent

General Linear Model for Correlated Data

- Models for the mean response (continuous)
- Models for the covariance
- Vector response / dependent within

Linear Mixed Model

- Models for the mean response (continuous)
- Models for the covariance (hierarchical)
- Vector response / dependent within

Marginal GLM / GEE

- Models for the mean response (discrete, continuous)
- Models for the correlation
- Vector response / dependent within

GLMM

- Models for the conditional mean response (discrete,continuous)
- Models for the heterogeneity (hierarchical)
- Vector response / dependent within

	SEMI-PARAMETRIC	PARAMETRIC	
Overdispersion	Quasilikelihood	beta-binomial	
	Est. Eq.	poisson-gamma	
	$cov(\widehat{oldsymbol{eta}}) = oldsymbol{A}^{-1}oldsymbol{B}^{-1}$	likelihood / Bayes	
Continuous Resp. /	WLS	multiv. normal	
linear model	Est. Eq.	LMM	
	$cov(\widehat{oldsymbol{eta}}) = oldsymbol{A}^{-1}oldsymbol{B}^{-1}$	likelihood / Bayes	
Discrete Response /	GEE	multiv. dist.	
GLM	Est. Eq.	GLMM	
	$cov(\widehat{oldsymbol{eta}}) = oldsymbol{A}^{-1}oldsymbol{B}^{-1}$	likelihood / Bayes	

Longitudinal Data

"The basic statistical problem is that variables from a given individual are correlated over time." (generic)

Q: So what?

- (-) ignoring dependence can lead to invalid inference.
- (-) often limited information regarding dependence.
- (+) can observe **change** for individuals over time.
- (+) variety of statistical approaches that are available.

Longitudinal Data

"... need to account for the dependence." (generic)

Q: <u>How?</u>

- 1. Choice of Model
- 2. Choice of Estimator
- 3. Choice of Summaries

Dependent Data and Proper Variance Estimates

Let $X_{ij} = 0$ denote placebo assignment and $X_{ij} = 1$ denote active treatment.

Consider (Y_{i1}, Y_{i2}) with $(X_{i1}, X_{i2}) = (0, 0)$ for i = 1 : n and $(X_{i1}, X_{i2}) = (1, 1)$ for i = (n + 1) : 2n

$$\hat{\mu}_0 = \frac{1}{2n} \sum_{i=1}^n \sum_{j=1}^2 Y_{ij}$$

$$\hat{\mu}_1 = \frac{1}{2n} \sum_{i=n+1}^{2n} \sum_{j=1}^2 Y_{ij}$$

$$\text{var}(\hat{\mu}_1 - \hat{\mu}_0) = \frac{1}{n} \{ \sigma^2 (1 + \rho) \}$$

Scenario 1

subject	control		treatment	
	time 1	time 2	time 1	time 2
ID 101	T.C.	V Z		
ID = 101	$Y_{1,1}$	$Y_{1,2}$		
ID = 102	$Y_{2,1}$	$Y_{2,2}$		
ID = 103	$Y_{3,1}$	$Y_{3,2}$		
ID = 104			$Y_{4,1}$	$Y_{4,2}$
ID = 105			$Y_{5,1}$	$Y_{5,2}$
ID = 106			$Y_{6,1}$	$Y_{6,2}$

Dependent Data and Proper Variance Estimates

Consider (Y_{i1}, Y_{i2}) with $(X_{i1}, X_{i2}) = (0, 1)$ for i = 1 : n and $(X_{i1}, X_{i2}) = (1, 0)$ for i = (n + 1) : 2n

$$\hat{\mu}_{0} = \frac{1}{2n} \left\{ \sum_{i=1}^{n} Y_{i1} + \sum_{i=n+1}^{2n} Y_{i2} \right\}$$

$$\hat{\mu}_{1} = \frac{1}{2n} \left\{ \sum_{i=1}^{n} Y_{i2} + \sum_{i=n+1}^{2n} Y_{i1} \right\}$$

$$\operatorname{var}(\hat{\mu}_1 - \hat{\mu}_0) = \frac{1}{n} \{ \sigma^2 (1 - \rho) \}$$

Scenario 2

subject	control		treatment	
	time 1	time 2	time 1	time 2
ID = 101 ID = 102 ID = 103 ID = 104 ID = 105 ID = 106	$Y_{1,1} \ Y_{2,1} \ Y_{3,1}$	$Y_{4,2} \ Y_{5,2} \ Y_{6,2}$	$Y_{4,1} \ Y_{5,1} \ Y_{6,1}$	$Y_{1,2} \ Y_{2,2} \ Y_{3,2}$

Dependent Data and Proper Variance Estimates

If we simply had 2n independent observations on treatment (X=1) and 2n independent observations on control then we'd obtain

$$\operatorname{var}(\hat{\mu}_1 - \hat{\mu}_0) = \frac{\sigma^2}{2n} + \frac{\sigma^2}{2n}$$
$$= \frac{1}{n}\sigma^2$$

Q: What is the impact of <u>dependence</u> relative to the situation where all (2n + 2n) observations are independent?

- (1) \Rightarrow positive dependence, $\rho > 0$, results in a loss of precision.
- (2) \Rightarrow positive dependence, $\rho > 0$, results in an improvement in precision!

Therefore:

- Dependent data impacts proper statements of precision.
- Dependent data may increase or decrease standard errors depending on the design.

Consider the situation where subjects report both the number of attempts and the number of successes: (Y_i, N_i) .

Examples:

live born (Y_i) in a litter (N_i) condoms used (Y_i) in sexual encounters (N_i) SAEs (Y_i) among total surgeries (N_i)

Q: How to combine these data from i=1:m subjects to estimate a common rate (proportion) of successes?

Proposal 1:

$$\hat{p}_1 = \sum_i Y_i / \sum_i N_i$$

Proposal 2:

$$\hat{p}_2 = \frac{1}{m} \sum_i Y_i / N_i$$

Simple Example:

Data :
$$(1,10)$$
 $(2,100)$

$$\hat{p}_1 = (2+1)/(110) = 0.030$$

$$\hat{p}_2 = \frac{1}{2}\{1/10 + 2/100\} = 0.051$$

Note: Each of these estimators, \hat{p}_1 , and \hat{p}_2 , can be viewed as weighted estimators of the form:

$$\hat{p}_w = \left\{ \sum_i w_i \, \frac{Y_i}{N_i} \right\} / \sum_i w_i$$

We obtain \hat{p}_1 by letting $w_i = N_i$, corresponding to equal weight given each to binary outcome, $Y_{ij}, Y_i = \sum_{j=1}^{N_i} Y_{ij}$.

We obtain \hat{p}_2 by letting $w_i=1$, corresponding to equal weight given to each subject.

Q: What's optimal?

A: Whatever weights are closest to 1/variance of Y_i/N_i (stat theory called "Gauss-Markov").

If subjects are perfectly homogeneous then

$$V(Y_i) = N_i p(1-p)$$

and \hat{p}_1 is best.

• If subjects are heterogeneous then, for example

$$V(Y_i) = N_i p(1-p) \{1 + (N_i - 1)\rho\}$$

and an estimator closer to \hat{p}_2 is best.

Summary

- Dependent data are common (and interesting!).
- Inference must account for the dependence.
- Consideration as to the choice of weighting will depend on the variance/covariance of the response variables.

Reading

○ DHLZ Chapter 1 — examples of longitudinal studies.