Applied Survival Analysis
VA/UW Summer Epidemiology
Seattle, 2005

Lecture: M-Th 2:00pm – 4:30pm

Instructor:
Patrick J. Heagerty, PhD
Associate Professor
Department of Biostatistics

Office:
F667 (F-wing, 6th floor)

Phone:
(206) 616-2720

e-mail:
heagerty@u.washington.edu
Course Objectives:
This course introduces the principles and methods of statistical inference that are commonly used for the epidemiologic analysis of survival data. The major topics covered are: Kaplan-Meier and log-rank methods; and Cox regression.

Upon entering this course the student is expected to be able to:

- (optional) use a statistical package (STATA) to enter data and calculate summary statistics.
- perform two-sample hypothesis tests for binary data (proportions).
- compute and interpret confidence intervals for one-sample and two-sample situations.
- perform “multivariable” linear regression and interpret model coefficients, compute confidence intervals for model coefficients, and test hypotheses using the partial F test.

Upon completing this course students can expect to be able to:

- compute and interpret the product limit estimate (Kaplan-Meier) estimate of survival and associated confidence intervals.
- perform and interpret the log-rank test for differences between survival curves with right censored survival data.
- perform Cox regression to estimate proportional hazards model coefficients, interpret coefficient estimates and confidence intervals, and test hypotheses that one or more coefficients in the regression model are zero.
- interpret and critique the results of application of these statistical techniques as found in the health sciences literature.
Lectures:
Lecture notes will be distributed prior to the course, and made available on the course web page.

Exercise Sets:
Daily exercise sets will be assigned. Exercises are designed to provide practice using the methods that are discussed in the lecture.

Text:
Survival Analysis, D.G. Kleinbaum, Springer. (optional)

Statistical Computing:
STATA (student version available – see web page) either version 7.0 or 8.0 should be adequate.

Computer Lab:
Access is provided to the PCs in the Micro Computing Laboratory in the Health Sciences Library. The lab is accessible whenever the library is open, except the lab closes one-half hour earlier than the library.

Course Web Page:
A course web page will be maintained to provide access to data sets and other course materials.

Office Hours:
Patrick Heagerty:
 ● Tuesday 4:30am - 5:30am, F-667
 ● Wednesday 4:30am - 5:30am, F-667
 ○ other times by appointment
<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Reading</th>
<th>Exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 6/20</td>
<td>Introduction / Motivation / Regression</td>
<td>K: chapter 1, 2</td>
<td>STATA exercises</td>
</tr>
<tr>
<td></td>
<td>Survival Data / Kaplan-Meier Estimation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu 6/21</td>
<td>Testing Survival Curves</td>
<td>K: chapter 3, 4</td>
<td>STATA exercises</td>
</tr>
<tr>
<td></td>
<td>Hazard Functions / Cox Regn Intro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 6/22</td>
<td>Cox Regression: Multiple predictors</td>
<td>K: chapter 5</td>
<td>STATA exercises</td>
</tr>
<tr>
<td></td>
<td>Choosing covariates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th 6/23</td>
<td>Model Checking / Stratification</td>
<td>K: chapter 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Case study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>