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Introduction
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The BIG Biostat Picture

Intro Biostatistics: a bit of everything...

• Data summaries (means, medians...)

• EDA (Exploratory data analysis)

• CDA (Confirmatory data analysis): 1-sample inference

. hypothesis testing

. significance

. power

• CDA: 2-sample inference

. means

. proportions

• Intro to linear regression
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The BIG Biostat Picture

Intro to Regression: continuous response variables

• Simple linear regression

• Transformation(s) – both Y and X

• Residuals

• Multiple regression

• Confounding & Interaction

• Diagnostics

• Dummy variables

• ANOVA, ANCOVA

• Repeated measures

3 P. Heagerty, VA/UW Summer 2005



'

&

$

%

The BIG Biostat Picture

This course: survival outcomes

• Survival Data – censoring

• Estimation of Survival Curves (Kaplan-Meier)

• Comparing Survival Curves (log rank test)

• Regression for Survival Data: Cox Regression

. Single binary predictor, X

. Multiple predictors, X1, X2, . . .

. Regression for adjustment

. Regression for prediction
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Regression Review

5 P. Heagerty, VA/UW Summer 2005



'

&

$

%

Example: VA Lung Cancer Trial

• A randomized trial

• Outcome = survival

• Treatment =

• Other covariates =

• Primary question:

. Q: Is treatment associated with improved survival?

• Secondary question(s):
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Data Analysis

“In an analysis, the basic questions to consider are the degree of

association between risk for disease and the factors under study, the

extent to which the observed associations may result from bias,
confounding, and/or chance, and the extent to which they may be

described as causal.” (Breslow and Day (1980) Vol. I )
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Data Analysis

• Role of Statistics:

. Quantify systematic variation

. Treatment effect

. Dose-response

. Quantify random variation

. Adjust for confounders and selection factors

. Stratification

. Regression modeling

. Account in inferences for “chance” (unexplained) variation

. Standard errors, p-values and confidence intervals
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Causal Inference Concepts

Potential Outcomes or “counterfactuals”

• Imagine the response for subject i if treated: Yi(1)

• Imagine the response for subject i if not treated: Yi(0)

? In practice we can only observe one of these outcomes.

? To treat patient i I would like to know both of these outcomes, or

the causal effect of treatment for subject i:

∆i = Yi(1)− Yi(0)
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Causal Inference Concepts

• In a randomized study we can get an unbiased estimate of the
average causal effect.

Treatment Potential Outcomes

Subject Assignment Tx=1 Tx=0

1 0 Y1(0)

2 1 Y2(1)

3 1 Y3(1)

4 0 Y4(0)

5 1 Y5(1)

6 0 Y6(0)

7 0 Y7(0)

8 1 Y8(1)

Y 1 Y 0
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Example: Surgery for Back Pain

• Outcome = Pain Scale, 0-10 points (high is worse)
• Treatment = Surgery (Tx=1) or Conservative (Tx=0)

Baseline Potential Outcomes

Subject Status Tx=1 Tx=0 ∆

1 S 7 9 -2

2 S 6 9 -3

3 S 5 8 -3

4 S 3 7 -4

5 NS 3 6 -3

6 NS 2 5 -3

7 NS 3 4 -1

8 NS 2 4 -2

µ(1) = 3.9 µ(0) = 6.5 ∆ = −2.6

• Conclusion?
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Causal Inference Concepts

Estimation

(1) Because we randomize Y 1 is an unbiased estimate of the average

response for the population if everyone was treated, µ(1). That is,

E
[
Y 1

]
= µ(1) =

1
N

N∑

i=1

Yi(1)

(2) Because we randomize Y (0) is an unbiased estimate of the average

response for the population if everyone was not treated, µ(0). That is,

E
[
Y 0

]
= µ(0) =

1
N

N∑

i=1

Yi(0)
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Causal Inference Concepts

(3) This implies that we can estimate the average causal effect:

∆̂ = Y 1 − Y 0

E
[
∆̂

]
= E

[
Y 1

]− E
[
Y 0

]

=
1
N

N∑

i=1

Yi(1)− 1
N

N∑

i=1

Yi(0)

=
1
N

N∑

i=1

[Yi(1)− Yi(0)] =
1
N

N∑

i=1

∆i

= average causal effect , ∆
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Example: Surgery for Back Pain

• Outcome = Pain Scale, 0-10 points (high is worse)
• Treatment = Surgery (Tx=1) or Conservative (Tx=0)

Treatment Potential Outcomes

Subject Assignment Tx=1 Tx=0

1 0 9

2 1 6

3 1 5

4 0 7

5 1 3

6 0 5

7 0 4

8 1 2

Y 1 = 4.0 Y 0 = 6.25

• Conclusion? ∆̂ = −2.25
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Causal Inference Concepts

Estimation

• We can estimate average causal effects when there is nothing

(else) that systematically differs between the exposed and the

unexposed.

• Randomization guarantees “no unmeasured confounding”.

• There is no single “effect” of exposure since for each individual we

have a possibly different exposure effect, ∆i.

• Different populations (ie. young age, old age) may have different

average causal effects.

Observational Studies

Q: Can we estimate causal effects based on observational data?
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Causal Inference and Observational Data

• The difficulty with observational data is that “exposure” is not

randomly assigned. This implies that the average outcome among

those exposed may not be equal to the average outcome that

would be observed if everyone were exposed (ie. selection bias).

• Examples:

. CD4 cell count among subjects treated with AZT.

. Carpal tunnel symptoms for subjects treated with surgery.

. Other?

Q: What can we do in these situations?

A: Control for factors via stratification or regression adjustment.
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Example: Surgery for Back Pain

• Observed Data

Baseline Potential Outcomes

Subject Status Tx=1 Tx=0 Tx Received

1 S 7 1

2 S 6 1

3 S 5 1

4 S 7 0

5 NS 6 0

6 NS 5 0

7 NS 3 1

8 NS 4 0

Y 1 = 5.25 Y 0 = 5.5 ∆̂ = −0.25

• Conclusion?
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Example: Surgery for Back Pain

• Stratify on Baseline:

Baseline Potential Outcomes

Subject Status Tx=1 Tx=0 Tx Received

1 S 7 1

2 S 6 1

3 S 5 1

4 S 7 0

Y 1 = 6.0 Y 0 = 7.0 ∆̂S = −1.0

5 NS 6 0

6 NS 5 0

7 NS 3 1

8 NS 4 0

Y 1 = 3.0 Y 0 = 5.0 ∆̂NS = −2.0

∆̂ = -1.5

• Conclusion?
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Confounding

“A confounding variable is a variable that is associated with both the

disease and the exposure variable.” Rosner (1995)

“Confounding is the distortion of a disease/exposure association

brought about by the association of other factors with both disease

and exposure, the latter associations with disease being causal.”

Breslow & Day (1980)

“If any factor either increasing or decreasing the risk of a disease

besides the characteristic or exposure under study is unequally

distributed in the groups that are being compared with regard to the

disease, this itself will give rise to differences in disease frequency in

the compared groups. Such distortion, termed confounding, leads to

an invalid comparison.” Lilienfeld & Stolley (1994)
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Counfounding

• Criteria for a Confounding Factor

(direct quote from Rothman and Greenland, 1998):

1. A confounding factor must be a risk factor for the disease.

2. A confounding factor must be associated with the exposure

under study in the source population (the population at risk

from which the cases are derived).

3. A counfounding factor must not be affected by the exposure or

the disease. In particular, it cannot be an intermediate step in

the causal path between the exposure and the disease.
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Causal Diagrams and the Assessment of Confounding
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Choosing Confounders for Statistical Adjustment

• Choice should be based on a priori considerations

• Study design/protocol specifies particular “exposure” × disease

association under investigation

• Confounders selected/measured based on their role as known risk

factors for the disease

. Best not to select confounders by examination of (internal)

study data

. Selection on basis of statistical significance of association with

disease leaves residual confounding effect

. Selection on basis of resulting change in exposure/disease

effect measure destroys opportunity for correct inferences
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Choosing Confounders for Statistical Adjustment

• Report results of several planned analyses of primary association:

. Unadjusted

. Adjusted for primary set of covariates (known risk factors)

. Adjusted for primary and secondary set of covariates (known

and suspected risk factors)
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Example: VA Lung Cancer Trial

Q: Can we use linear regression to compare treatment and control

groups?

Outcome:

Model(s):
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Example: VA Lung Cancer Trial

Q: Can we use logistic regression to compare treatment and control

groups?

Outcome:

Model(s):
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Summary

• Regression methods allow inference regarding “exposures” for a

variety of outcomes.

• Regression can be used to adjust for confounding variables.

• There is no single effect of the exposure – only average effects.

• Linear regression – continuous outcome; means; differences in

means.

• Logistic regression – binary outcome; log odds; log odds ratios.

• ? Cox regression – censored survival; hazard; hazard ratios.
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