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SUMMARY

Drop-out is a prevalent complication in the analysis of data from longitudinal studies, and remains an
active area of research for statisticians and other quantitative methodologists. This tutorial is designed
to synthesize and illustrate the broad array of techniques that are used to address outcome-related drop-
out, with emphasis on regression-based methods. We begin with a review of important assumptions
underlying likelihood-based and semi-parametric models, followed by an overview of models and meth-
ods used to draw inferences from incomplete longitudinal data. The majority of the tutorial is devoted
to detailed analysis of two studies with substantial rates of drop-out, designed to illustrate the use of
e�ective methods that are relatively easy to apply: in the �rst example, we use both semi-parametric and
fully parametric models to analyse repeated binary responses from a clinical trial of smoking cessation
interventions; in the second, pattern mixture models are used to analyse longitudinal CD4 counts from
an observational cohort study of HIV-infected women. In each example, we describe exploratory anal-
yses, model formulation, estimation methodology and interpretation of results. Analyses of incomplete
data requires making unveri�able assumptions, and these are discussed in detail within the context of
each application. Relevant SAS code is provided. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Longitudinal studies and the data they generate occupy a central place in public health and
clinical research. When undertaking con�rmatory or model-based analyses of longitudinal
data, investigators frequently are confronted with having to assess and address potential biases
introduced by missing data. Causes for missing data vary and depend in large measure on the
type of study being conducted, but include intermittent missed visits by study participants,
discontinued participation or other loss to follow-up (possibly initiated by either the participant
or the study investigators), lack of e�ectiveness of a treatment or intervention and mortality.
See Reference [1] for a comprehensive listing as it applies to clinical trials.
This paper is concerned speci�cally with drop-out in longitudinal studies, and focuses on

regression-based modes of analysis. New developments for handling drop-out have proliferated
in the literature; see References [2–9] for reviews. In the interest of maintaining focus, our
tutorial does not emphasize distinctions about reason for drop-out; however, several recent
papers have addressed this issue, particularly as it relates to treatment discontinuation versus
loss to follow-up [10–15].
In the data examples, our tutorial draws from two studies where drop-out is an important

issue: the HER Study (HERS) [16], a 7-year follow-up study of HIV-infected women and
those at high risk for HIV infection, and the Commit to Quit Study (CTQ) [17, 18], a longi-
tudinal clinical trial designed to assess the e�ect of vigorous exercise on smoking cessation
in women. In each of these, the goal is to draw inferences about one or more covariates on
a response variable of interest; drop-out poses a problem if those who drop out are system-
atically di�erent from those who do not, particularly if these di�erences cannot be explained
by observed response or covariate data. This notion is formalized in Section 3.
Our tutorial has four objectives:

1. To characterize various types of drop-out mechanisms (Sections 3 and 4).
2. To review likelihood-based and moment-based estimation methods in the absence of
missing data (Section 3) and in the presence of drop-out (Section 4).

3. To illustrate by example two methods for handling drop-out, pattern mixture models
and semi-parametric selection models, and to provide a detailed description of relevant
exploratory analyses, underlying assumptions for modelling (and sensitivities to violations
of these) and interpretation of model-based inferences (Section 5).

4. To provide software code that will enable readers to implement these methods, with
minor modi�cations.

We con�ne our attention to regression-based analyses in the presence of drop-out, but
certainly non-regression approaches can be used [2, 19]. Methods described herein are also
related to non-compliance and causal inference, in the sense that causal inference based on
counterfactuals or potential outcomes can be viewed as a missing data problem [20–24].
Although a complete treatment is beyond the scope of the tutorial, ideas from causal inference
do play a role in interpretation of treatment e�ects in the CTQ study.
The remainder of our tutorial is arranged in the following manner: Section 2 provides

descriptions of the HERS and CTQ studies; Section 3 introduces relevant notation, distin-
guishes full from observed data and brie�y reviews regression methods for longitudinal data;
Section 4 reviews Little and Rubin’s [25] missing data taxonomy, describes its specialization
to longitudinal data and provides an overview of methods for adjusting for drop-out in both

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:1455–1497



HANDLING DROP-OUTS IN LONGITUDINAL STUDIES 1457

the likelihood-based and semi-parametric modelling frameworks; Section 5 demonstrates the
application of these methods and Section 6 concludes with a discussion of other important
issues in this �eld of research.

2. TWO LONGITUDINAL STUDIES WITH DROP-OUT

2.1. Commit to quit study (CTQ)
The data for our �rst example come from CTQ, a randomized controlled clinical trial de-
signed to compare cognitive-behavioural smoking cessation plus supervised vigorous exercise
(hereafter referred to as ‘exercise’) and cognitive-behavioural smoking cessation plus equal
sta� contact time (hereafter ‘control’) among healthy but sedentary women [17, 18]. The study
enrolled 281 women and scheduled them to participate in 12 weekly sessions of a cognitive
behavioural programme tailored for women. Subjects in the exercise condition participated
in three sessions of vigorous exercise per week for the 12 weeks of the programme. Those
assigned to the control condition participated in three 45–60 min educational sessions per
week for the 12 weeks of the programme. As with many smoking cessation trials, the CTQ
study has a 4-week ‘run-in’ period prior to the target quit date, between the fourth and �fth
weeks. By week 12, only 93 of 134 (69 per cent) and 96 of 147 (65 per cent) had a 7-day
cessation recorded at week 12 in the exercise and contact control arms, respectively. Although
net drop-out rates are similar at the 12th week, drop-out in the contact control arm is higher
following the target quit date (week 4), whereas drop-out in the exercise arm is higher during
the period from weeks 5 to 12.
Drop-out is a notorious problem in smoking cessation studies, and both theoretical and

empirical research supports the notion that the act of dropping out is highly correlated both
with covariate information (e.g. number and duration of previous cessation attempts) and with
response history in the particular study; see Reference [26] for a review and Reference [27]
for an analysis of drop-out pattern from the CTQ study. Our analysis in Section 5.1 illustrates
the use of likelihood-based and semi-parametric regression to draw inference about treatment
e�ects when drop-out may depend on baseline covariates, longitudinal responses, or both.

2.2. HIV epidemiology research study (HERS)
The HERS is a CDC-sponsored 7-year longitudinal cohort study that enrolled 1310 women
in all, 871 of whom were HIV-positive. For full details related to study design and patient
recruitment, see Smith et al. [16]. Women were scheduled for follow-up every 6 months, at
which time a variety of clinical, behavioural and demographic information was collected. One
substudy of the HERS is concerned with studying the role of baseline patient characteristics
on variations in longitudinal CD4 cell count among women infected with HIV (for a more
detailed account, see Reference [28]). CD4 cell count is an important marker of disease
progression because HIV directly attacks this lymphocyte; it also is a useful surrogate marker
of treatment e�ects [29].
Attrition rate in the HERS, like many other long-term follow-up studies, is appreciable;

Table I shows, for the HERS, the number and proportion observed and dropped out at each
study visit following baseline. Moreover, it is quite plausible that drop-out is closely related
to CD4 counts that are missing because of drop-out; i.e. that the unobserved CD4 counts
among those who drop out are systematically lower than those who continue follow-up, even
after adjusting for observed covariates and CD4 counts. Under some speci�c but largely
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1458 J. W. HOGAN, J. ROY AND C. KORKONTZELOU

Table I. Patterns of observing CD4 in the HER Study, by visit. Missing data at each
visit is a combination of intermittent missingness and drop-out.

Visit In follow-up (proportion) CD4 observed (proportion) Dropped out

1 871 (1.00) 850 (0.98) 56
2 815 (0.94) 706 (0.81) 28
3 787 (0.90) 692 (0.79) 39
4 748 (0.86) 665 (0.76) 46
5 702 (0.81) 617 (0.71) 34
6 668 (0.77) 587 (0.67) 32
7 636 (0.73) 576 (0.66) 22
8 614 (0.70) 547 (0.63) 19
9 595 (0.68) 522 (0.60) 24
10 571 (0.66) 506 (0.58) 18
11 553 (0.63) 492 (0.56) 104
12 449 (0.52) 405 (0.46) 133

untestable assumptions, pattern mixture models can be used to model dependence between
missing responses and drop-out. Our analysis in Section 5.2 demonstrates the use of pattern
mixture modelling to estimate the e�ects of the following covariates on mean CD4 and on
change in CD4 over time: HIV-RNA (viral load), HIV symptom severity, antiviral treatment
status and number of years aware of HIV infection.

3. FULL-DATA REGRESSION MODELS FOR LONGITUDINAL RESPONSES

Since our focus is on regression-based approaches, a review of regression concepts and nota-
tion is needed. This section reviews basic regression for settings where data are fully observed.
Many of the models for incomplete data, described in Section 4, are extensions or generaliza-
tions of the regression models described here. We assume throughout that parameters indexing
the full-data distribution are of primary interest; however, this may not always be the case in
practice. For example, certain subpopulations such as treatment compliers or those surviving
to a speci�c time point may be of primary interest.
We assume that the full data consist of T serial observations taken on n individuals at a

�xed set of time points t1; : : : ; tT . The number and timing of measurements for the full data
is assumed to be equal for all subjects, although in practice this can typically be relaxed
without loss of generality for the methods we describe herein. Hence, for individual i, where
i=1; : : : ; n, full data consists of the vector Yi=(Yi1; : : : ; YiT )T.
The vector Yi also can be viewed as the realization of a stochastic process {Yi(t)} at

�xed time points t1; : : : ; tT , and is sometimes modelled this way [30, 31]. More generally, the
measurement times may be unequally spaced or even random variables themselves, possibly
depending on the response process itself [30]. The full-data regression techniques discussed
here apply in principle whenever the measurement times are independent of {Yi(t)}, but for
handling drop-out, irregular measurement times may introduce non-trivial complications. These
are discussed in Section 4.
In addition to the full Y data, denote the full collection of covariates as Vi=(V T

i1; : : : ; V
T
iT )

T,
where each Vit is a 1× S vector of covariates linked to Yit . We further partition Vi as
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Vi=(Xi;Wi) to distinguish covariates whose association with Yi is of direct interest (Xi)
from those of an auxiliary nature (Wi), because even when scienti�c interest is in f(y | x),
information on W may be useful in accounting for the e�ects of missing data. We assume that
Xi and Wi are always fully observed on all individuals. See References [32–36] for methods
to handle missing covariates in regression settings.
Turning now to regression models, the primary objective is to estimate E(Yit |Xi), the mean

of Y given X . As before, let Yi=(Yi1; : : : ; YiT )T. De�ne the associated T ×P matrix of co-
variates Xi=(X T

i1 ; : : : ; X
T
iT )

T, where Xit =(Xit1; : : : ; XitP) is the 1×P covariate vector associated
with Yit . Finally, de�ne the T × 1 mean vector �i=(�i1; : : : ; �iT )T =E(Yi |Xi). The covariates
Xit are assumed to be exogenous in the sense that they meet at least one of the following three
conditions [37]: (i) they are �xed by design (such as planned measurement times), (ii) they
are deterministic functions of baseline covariates or (iii) they are external to the measurement
process in the sense that response Yit is not predictive of covariates Xi; t+1. An example of a
covariate that violates (i) is a measurement time dictated by underlying condition, as when
sicker individuals may have more doctor visits and hence more frequently recorded outcomes;
condition (iii) would be violated by a covariate such as time-varying therapy used to treat
a condition measured by Y . In an HIV study, for example, if Xit is a binary indicator of
receiving antiviral therapy and Yit is the average number of HIV-1 RNA copies per ml of
plasma, then Xit may violate (iii) if it is preferentially given to those with greater viral burden.
Violations of the exogeneity condition can arise from multiple sources, including measurement
error and confounding; see References [38–41] for a detailed discussion.

3.1. Marginal models

Marginal regression models are speci�ed in terms of �i=E(Yi |Xi), which measures marginal
covariate e�ects. Semi-parametric methods that exploit connections to generalized linear mod-
els have become popular for �tting marginal models because they avoid having to specify
a multivariate joint distribution and because both continuous and discrete responses can be
handled in a uni�ed framework. A widely used estimation procedure for semi-parametric in-
ference from full data is generalized estimating equations, or GEE [42, 43], which requires
speci�cation of only the �rst two moments of Y as opposed to its entire distribution. The
mean of Y is assumed to be related to covariates through a smooth, monotone link function
g : RT → RT that is linear in covariates, i.e.

g(�i)= (g(�i1); : : : ; g(�iT ))T =Xi�

where � is a P× 1 vector of regression coe�cients. A consistent and semi-parametric estimator
of � is the solution to the P× 1 system of estimating equations

n∑
i=1

DT
i �

−1
i (Yi − �i)=0 (1)

where Di=Di(�)= (@�i=@�)T is a T ×P matrix of derivatives, �i=�i(�)= g−1(Xi�) is
the T × 1 mean vector, and �i=var(Yi |Xi) is symmetric, positive de�nite T ×T matrix
of variances and covariances. The variance matrix �i can be decomposed as �i(�; �; �)=
�Ai(�)1=2Ci(�)Ai(�)1=2, where Ai(�) is a T ×T diagonal matrix with elements a(�i1); : : : ; a(�iT )
(for some variance function a(·)), Ci=Ci(�) is a T ×T working correlation matrix, and � is
a scale parameter. Liang and Zeger [43] show that when data are fully observed, the solution
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to (1) is consistent and asymptotically normal even when Ci(�) is incorrectly speci�ed, so
long as the model for the mean is correct. For correctly speci�ed �i, (1) coincides with the
likelihood score equation for correlated multivariate normal data when identity link is used
(because DT

i =X T
i ).

It is also possible to estimate marginal regression models based on the likelihood of the joint
distribution f(yi1; : : : ; yiT | x). A fully likelihood-based inference for correlated data may be
desired if association parameters are of direct interest, or in the case where data are missing.
When data are missing, proper speci�cation of the likelihood—including covariances—takes
on added importance. Outside of the multivariate normal distribution, modelling association
structures can be unwieldy. For example, if responses are binary, one can potentially spec-
ify all associations up to order T (there are

∑T
j=2

(T
j

)
in all), although in many cases the

higher-order associations can reasonably be assumed to be zero [44]. See Reference [45] for
a comprehensive review. In our �rst example (Section 5.1), we use a model for the joint distri-
bution of repeated binary outcomes, where associations are modelled in terms of longitudinal
transition probabilities [46].

3.2. Random e�ects models

A likelihood-based alternative to specifying the full marginal distribution of Yi1; : : : ; YiT is to
structure correlation using individual-speci�c random e�ects. The usual approach is to specify
a regression model of responses conditionally on the random e�ects and assume that within
subject, the Yi1; : : : ; YiT are independent given random e�ects. Integrating out the random
e�ects yields marginal correlation between the Yit within subject. See References [47, 48] for
normal-error formulations, and Reference [49] for a more general review in the context of
longitudinal data.
At the �rst level of the model, the Yit’s are assumed to be independent, conditional on

subject-speci�c random e�ects �i. Typically the conditional mean will take the form

g{E(Yi | �i)}=Xi�+ Zi�i

where g :RT →RT is the (vector-valued) link function and Zi is a design matrix for the
subject-speci�c random e�ects. This representation of the conditional mean motivates the
term ‘mixed-e�ects model’ because the coe�cients quantify both population-level (�) and
individual-level (�i) e�ects. At the second level, the �i follow some distribution, typically
multivariate normal. The marginal joint distribution is obtained by integrating over �i,

f(yi1; : : : ; yiT )=
∫

f(yi1; : : : ; yiT | �i) dF(�i)

Note that the structure at the �rst level follows a generalized linear model conditional on
�. For example, when the response is normally distributed we may assume a normal error
linear regression model for the conditional distribution of Y given �. For binary responses we
may assume that a logistic regression model applies, conditional on �. Marginally, correlation
is induced through the shared random e�ects �. The marginal mean of Yi is obtained by
integrating the conditional mean over the distribution of the random e�ects, i.e.

�i=
∫

g−1(Xi�+ Zi�i) dF(�i)
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The parameters � have marginal interpretations only for certain link functions (e.g. identity
link); however in general, the marginal mean E(Yi |Xi) will no longer be related linearly to
Xi through g.

4. CHARACTERIZING DROP-OUT IN LONGITUDINAL STUDIES

Full-data models �t to incomplete data are inherently non-identi�able. Speci�cally, a full-data
distribution f�(y | x) cannot be identi�ed non-parametrically from an incomplete sample of
the Y ’s; strategies for modelling and estimation therefore rest on a number of assumptions
and restrictions. These can take a number of forms; for example, distributional or parametric
assumptions involve assigning a speci�c model to the full-data distribution f�(y | x), such as
multivariate normal. One can also impose structural assumptions on the full-data distribution.
In longitudinal data with drop-out, this can be used as a basis for extrapolating missing
data from observed data; for example, if xit =(1; t), then E{Yit | xit}= �0 + �1t is a structural
assumption because it speci�es the mean of both observed and missing responses.
Our focus in this section is on the use of assumptions about the missing data process and its

relation to covariates and to observed and unobserved responses in the full data. Speci�cally,
we apply Rubin’s [50] MCAR-MAR taxonomy to the case of longitudinal data with drop-
out (see also References [3, 8]). For longitudinal data, the formulation, interpretation and
implications of these assumptions are not always immediately obvious. In what follows, we
begin by stating our inferential objective in fairly general terms, then list speci�c assumptions
under which likelihood-based or moment-based inference can proceed. We do not attempt to
be comprehensive, but rather focus on those assumptions that tend to be qualitatively evaluable
in practical settings and that lead to analyses which are relatively easy to implement. More
comprehensive and technical accounts can be found in Chapters 8–10 of Little and Rubin [25],
who give an overview for continuous and discrete data problems; Little [3], who classi�es
modelling strategies for handling drop-out; Diggle and Kenward [8], who apply the MCAR-
MAR taxonomy to parametric models for longitudinal data; and Robins et al. [37], who focus
on semi-parametric analyses.
Recall that the full-data response vector is Yi=(Yi1; : : : ; YiT )T. To discuss missing data

generally, we introduce indicator variables Ri=(Ri1; : : : ; RiT )T; where Rit =1 if Yit is observed
and =0 otherwise. Associated with Yit is a T ×P matrix of covariates Xi=(X T

i1 ; : : : ; X
T
iT )

T, and
interest is in estimating parameters from the full-data distribution f�(y | x); in a regression
context, the objective is to model E(Yit |Xi). Finally, there may exist auxiliary measured
variables Wit =(Wit1; : : : ; WitQ)T that are not included in the regression model but can be used
to gain information about the missing data mechanism, missing response values or both.
Although are framing the problem in terms of discrete indicators for missing data, many
of the ideas apply more generally to continuous-time processes, e.g. Yi(t), Ri(t) and Wi(t).
However, the technical aspects of model �tting may be signi�cantly more complicated. See
Reference [51] for a comprehensive overview.

4.1. Missing completely at random

Working from Rubin [50] and from Little and Rubin [25, pp. 14–17], we distinguish the
following types of missing data mechanisms. Partition Yi into its observed and missing
components, such that Yi=(Y Ti;obs; Y

T
i;mis)

T. Throughout, we assume Xi is fully observed, and
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that the individuals with one or more measurements constitutes a random sample from the
population of interest (i.e. there are no Y vectors that are completely unobserved). Recall that
the full set of covariates Vi consists of model covariates Xi and auxiliary variables Wi, such
that Vi=(Xi;Wi).
De�nition MCAR (missing completely at random): Unobserved components of Y are

MCAR if the probability of non-response depends neither on V nor on Y ; i.e. if R� (Y; V ),
or equivalently f(r | v; y)=f(r).
An example of MCAR is when the number of follow-up visits di�ers by individual due to

staggered entry and administrative censoring at a �xed calendar time.
A slightly weaker assumption allows missingness to depend on model covariates X , but

requires that missingness is independent of Y , given X . Diggle and Kenward [8] consider
this to be a version of MCAR, while Little [3] to classify it separately as covariate-dependent
missingness. Since the missing data mechanism is allowed to depend on observed data, Little
[3] refers to this as covariate-dependent missingness. When inference is based on a model, the
key distinction is that if missingness depends on X , it may depend on a speci�c functional
form of X and hence the model must be correctly speci�ed. We adopt the term ‘covariate-
dependent MCAR’ and describe it here for completeness; however, because our focus is on
regression modelling, we only distinguish between MCAR and covariate-dependent MCAR
when it is necessary for clarity.
De�nition Covariate-dependent MCAR: An MCAR missingness process is is covariate-

dependent if the probability of non-response depends only on model covariates X , and con-
ditionally on X , does not depend on Y or W ; i.e. R� (Y;W ) |X , or equivalently f(r | v; y)=
f(r | x).
Covariate-dependent MCAR states that within levels of X , observed elements Yi;obs con-

stitute a random sample from the full-data vector Yi. It is an appropriate assumption, for
example, for analysing data from a multicentre study where centre indicator is a model co-
variate, drop-out rate di�ers by centre and drop-out within centre does not further depend on
excluded covariates, observed responses or missing responses.

4.2. Missing at random (MAR)

For longitudinal data, it is uncommon for drop-out and missingness to be independent of
responses. Conditional on model covariates X , MAR allows missingness to depend on ob-
servable Y values, auxiliary covariates W or both. The type of MAR being assumed may have
bearing on the choice of analysis because some analyses may require further assumptions. For
example, if missingness depends on auxiliary variables, then likelihood-based methods may
require the analyst to model or make assumptions about their marginal joint distribution.
In this subsection, we describe versions of MAR that allow dependence on Yobs and W , and
di�erentiate a sequential formulation of MAR that is used for semi-parametric inference.
De�nition Missing at random (MAR): Unobserved components of Y are MAR if the proba-

bility of non-response may depend on X , W and Yobs, but conditionally on these is independent
of Ymis. Speci�cally, R�Ymis | (X;W; Yobs), or equivalently f(r | x; w; y)=f(r | x; w; yobs).
Missingness will be MAR in a longitudinal study if, for example, among participants with

the same covariate pro�le, those who are observed to be sicker (via their values of Yobs) are
more likely to have missing values, so long as their missingness probability does not further
depend on their missing responses.
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The version of MAR that we have stated here is rather general because we allow miss-
ingness to depend on auxiliary covariates W . For likelihood-based inference this may present
complications if W is associated with responses, conditionally on model covariates X ; in
particular incorporation of information on W may require speci�cation of f(w) and subse-
quent integration over w. See References [52, 53] for examples, and Section 4.4.3 for further
discussion. By contrast, MAR mechanisms that depend on auxiliary covariates can be han-
dled using multiple imputation methods [54–57] and semi-parametric methods that employ
inverse weighting [37, 58] because the distribution of auxiliary covariates does not need to be
modelled.

4.3. Sequential MAR

Following Robins et al. [37], we describe a sequential version of MAR that is used to justify
semi-parametric inference using inverse probability weighted (IPW) estimators. We describe
its use for monotone missing data patterns, although it can also be used in more general
settings [58].
Under sequential MAR, drop-out at t may depend on observable data up to t, including

observed responses, model covariates and auxiliary covariates. It is helpful to de�ne variable
histories using script notation as follows:

Xit = {Xi1; : : : ; Xit}; Yit = {Yi1; : : : ; Yit}; Wit = {Wi1; : : : ; Wit}

Let Fit = {Xit ;Wit ;Yi; t−1} denote covariate history up to and including time t and response
history up to but not including time t. A monotone pattern of missingness is assumed such
that Ri1 = 1 and for t=2; : : : ; T , Rit =1 ⇒ Ri; t−1 = 1. Sequential MAR is de�ned as follows
[37, 59].
De�nition S-MAR (Sequential missingness at random):‡ Conditionally on past history

Fit and the full-data response vector Yi, drop-out at time t does not depend on current or
future response data Yit ; : : : ; YiT ; formally,

pr(Rit =0 |Ri; t−1 = 1;Fit ; Yi)=pr(Rit =0 |Ri; t−1 = 1;Fit)

S-MAR is analogous to the assumption of ‘non-informative censoring’ in survival analysis
(cf. Reference [60, p. 100]). Non-informative censoring is the condition under which standard
counting process statistics retain their martingale properties (e.g. logrank test, partial likelihood
score statistics, etc.), and holds if the hazard of an uncensored failure time S is equivalent
its crude hazard under censoring; i.e. if

pr(t6S6t + dt | S¿t)=pr(t6S6t + dt | S¿t; C¿t)

where C is a censoring time. This property essentially says that, given S¿t and C¿t, S and
C are independent given the past. The S-MAR assumption states that given Ri; t−1 = 1, the
future but potentially incomplete responses (Yit ; : : : ; YiT )T (analogous to S) are independent of
Rit (analogous to C), given the past.

‡This is Assumption 2a in Robins et al. [37].
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Even under monotone missingness, MAR and S-MAR are di�erent assumptions. Under
MAR, drop-out at t (Rit) can depend on elements of X , W and Yi;obs observed before, at,
and after t. Under S-MAR, drop-out at time t can depend only on those elements of X , W
and Yi;obs observed before t (or at t, for X and W ).

4.4. Modes of inference under MCAR and MAR

4.4.1. Likelihood-based inference. De�ne f (r |y; x) to be the distribution of missing data
indicators. Assuming a correctly speci�ed parametric full-data model f�(y | x), likelihood-
based inference for full-data parameter � can be based on the likelihood of the observed data.
This requires both the MAR assumption and a separable parameters assumption, meaning the
parameter spaces of � and  are non-overlapping. The combination of MAR and separable
parameters assumptions constitutes the ignorability condition, which derives its name from the
fact that the missing data model can be left unspeci�ed, or ignored. Speci�cally, if (i) one
is willing to assume a model for f�(y | x), (ii) � and  are separable and (iii) MAR holds
conditionally on X , then the joint distribution of Yobs and R—and hence the observed-data
likelihood contribution for an individual—factors over � and  as follows:

LOi (�;  )∝ f�;  (Yobs; i ; Ri; Xi)

=
∫

f�(Yobs; i ; Ymis; i |Xi)f (Ri |Yobs; i ; Ymis; i ; Xi) dYmis; i

=f (Ri |Yobs; i ; Xi)
∫

f�(Yobs; i ; Ymis; i |Xi) dYmis; i

=f (Ri |Yobs; i ; Xi)f�(Yobs; i |Xi)

Recall that � indexes the full-data model f�(y | x). The implication of ignorability is that
likelihood-based inference about � can be based on any function proportional in � to∏n

i=1 f�(Yobs;i|Xi). Reference [25] provides full details. Although this is an appealing con-
sequence of MAR, the form of the observed-data likelihood may not possess the simplicity
of the full-data likelihood and hence optimization may require specialized algorithms such as
EM [61].

4.4.2. Semi-parametric inference. Under MCAR or MAR, unbiased moment-based estimating
equations that use only observed response data are easily constructed. Let �i=diag(Ri1; : : : ;
RiT ) be the T ×T diagonal matrix with zeroes on the o�-diagonal, and let K(Xi; �) denote
a p×T matrix of weights that can be any function of Xi and �. Typically (e.g. for GEE),
this is chosen to be Ki=K(Xi; �)=Di(Xi; �) �(Xi; �)−1: Then the estimating equations for �,
based only on observed data, are

U1(�)=
n∑

i=1
K(Xi; �)�i{Yi − �i(Xi; �)}=0 (2)

MCAR implies that �i �Yi |Xi, so the expectation of each summand is zero, the estimating
equations are unbiased at the true value of �, and their solution �̂ is consistent for the true �.
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See Reference [37, Section 3] for general discussion, and Reference [43, Theorem 2] for
details on properties of �̂ when the weight function Ki is allowed to depend on covariance
parameters.
If missingness depends either on Yobs or W , it is no longer true that the estimating equations

(2) will yield a consistent estimator of � because of the dependence between �i and Yi. If
S-MAR holds, then consistent estimates of � can be obtained by solving a properly weighted
version of (2). The following two assumptions must hold in addition to S-MAR:

Assumption 1 (Non-zero probability of remaining in study)
Given past history Fit , the probability of being observed at t is bounded away from zero; i.e.
pr(Rit =1 |Ri; t−1 = 1;Fit)¿�¿0.

Assumption 2 (Correct speci�cation of drop-out model)
The functional form of the hazard of drop-out at t is known up to a vector � of parameters;
i.e. pr(Rit =0 |Ri; t−1 = 1;Fit)= �it(�); where � is a known function and � is an unknown
�nite-dimensional parameter.

Under monotone missingness, it follows immediately that the marginal response probabilities
are

	it(�)=pr(Rit =1 |Fit)=
t∏

j=1
{1− �it(�)}

Re-de�ne �i(�)=diag{Ri1=	i1(�); : : : ; RiT =	iT (�)}. If Assumptions 1 and 2 hold, and if drop-
out occurs according to S-MAR, then subject to some regularity conditions, the solution �̂ to
the weighted estimating equation

U2(�; �̂)=
n∑

i=1
K(Xi; �)�i(�̂){Yi − g−1(Xi; �)}=0 (3)

is consistent for �. In (3), �̂ is a consistent estimator of � under a correctly speci�ed model
�it(�) [37, Theorem 1].

4.4.3. Likelihood versus semi-parametric inference under MAR. There are several
comparisons worth making between semi-parametric estimation from (3) under S-MAR and
likelihood-based estimation under MAR, at least the way we have described them here. First,
the likelihood-based methods tend to treat longitudinal data as clustered data that happen to
be temporally aligned, assuming that Ymis �R | (Yobs; X ), regardless of where drop-out occurs,
whereas with semi-parametric inference from weighted estimating equations, the S-MAR as-
sumption conditions only on elements of Yobs realized prior to a �xed time. Second, the semi-
parametric approach uses auxiliary covariates Wi without having to make any assumptions
about their distribution or their relationship to either Yi or Xi. In principle, likelihood-based
methods can make use of auxiliary variables to help explain the missing data process, but in
general this requires the analyst to specify the joint distribution f(y; r; w | x) and then integrate
over w. For example, if the joint distribution is factored as

f ;�; 
(y; r; w | x)=f (r |y;w; x)f�(y |w; x)f
(w | x)

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:1455–1497



1466 J. W. HOGAN, J. ROY AND C. KORKONTZELOU

then even under ignorability, speci�cation of f�(y |w; x) and f
(w | x) is needed. An ex-
ception, mentioned in Section 4.2, is when W is independent of Y , given X , which im-
plies f�(y |w; x)=f�(y | x). In simple cases, where w has a small number of support points
(e.g. a single binary covariate), or where the distributional form of f(y; r; w | x) is known
with high con�dence, use of an auxiliary variable can be straightforward. Otherwise it can
involve extra modelling assumptions and non-trivial computation. The third and �nal point
is that under MAR, the likelihood-based approach requires correct speci�cation of the full-
data model f�(y | x), but no further modelling of the missing data mechanism is necessary.
The semi-parametric approach requires correct speci�cation of the full-data mean function
(e.g. g{E(Yi |Xi)}=Xi�), but also requires that the hazard of drop-out �it(�) be correctly
speci�ed. Hence, the need to specify �it(�) is the price the analyst must pay in order to avoid
making distributional assumptions about f�(y | x). We note here that an active area of research
concerns development of semi-parametric estimators that are ‘doubly robust’ in the sense that,
under some structural assumptions about the joint distribution of Y and R, consistent estimates
of � can be had if either E(Yi |Xi) or �it(�) is correctly speci�ed (see Reference [62, Section
1.2.6]).

4.5. Missingness not at random

Missingness and drop-out are not at random if the MAR or S-MAR assumptions are violated.
The majority of analytic approaches under MNAR are based on models for the joint distribu-
tion of the response and the drop-out mechanism, and can be classi�ed according to how the
joint distribution f(Y; R) is factored. We review selection models, mixture models and frailty
models, illustrating with examples to highlight model interpretation and key assumptions being
made for identi�cation.
These models and methods can be viewed in the broader context of jointly modelling

repeated measures and an event time, and in fact some of the models for dealing with drop-out
have been used to model jointly evolving processes such as CD4 trajectory and HIV-related
death [51, 53, 63–65] and multivariate correlated processes [31, 66].

4.5.1. Likelihood-based methods. Likelihood-based methods are common for handling drop-
out that is not MAR. (This is sometimes called informative drop-out, although the term
‘informative’ is imprecise. The term ‘non-ignorable’ is more precise because it refers to drop-
out processes that violate the ignorability condition de�ned in Section 4.4.1.). Our brief sur-
vey illustrates likelihood-based approaches by describing three modelling strategies: selection
modelling, where the joint distribution is factored as the product of the full-data model and a
selection model; mixture modelling, where the full data is modelled as a mixture over drop-out
times or patterns; and frailty models, where a latent frailty term captures dependence between
drop-out and the response process. The respective factorizations are listed here:

f(y; r | x) =f(y | x)f(r |y; x) (4)

f(y; r | x) =f(y | r; x)f(r | x) (5)

f(y; r | x) =
∫

f(y | �; x)f(r | �; x) dF(� | x) (6)

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:1455–1497



HANDLING DROP-OUTS IN LONGITUDINAL STUDIES 1467

Selection models [67] require the user to specify a model f�(y1; : : : ; yT ) for the full data
and a selection model that characterizes the drop-out probability as a function of covariates
and the full data y1; : : : ; yT . For longitudinal data with drop-out, it is convenient to specify
the selection model in terms of the hazard function associated with drop-out

�it =pr(Rit =0 |Ri; t−1 = 1; Yi1; : : : ; YiT )

A prototypical example is the model used by Diggle and Kenward [8], wherein the full-data
model follows a multivariate normal regression:

Yit =Xit�+ eit ; t=1; : : : ; T

with ei=(ei1; : : : ; eiT )T ∼ N(0;�): The companion selection model allows drop-out to depend
on covariates and on both observed and missing responses; for example,

logit(�it)= �t + Xit
+ Yi; t−1 1 + Yit 2

An appealing feature of this model is that it generalizes to longitudinal data, in a natural way,
the Little and Rubin MCAR-MAR taxonomy; i.e. Yit is missing when drop-out occurs at t,
so drop-out is MAR when  2 = 0 and MNAR otherwise.
The assumption of multivariate normality for f(y) is su�cient to identify  2, which can be

viewed as either a blessing or a curse. When subject matter justi�cation exists for assuming
normality, then it is sensible to use this knowledge to inform an otherwise unidenti�able
parameter [41]; however, these models must be applied with caution and if possible subject
to sensitivity analysis [68], because it is impossible to critique the assumption of normality
when responses are missing.
Identi�cation of parameters relies on two key features of this model: normality for the

response distribution and linear dependence between logit(�it) and (the possibly missing)
Yit in the selection model. It is not possible to distinguish between violations of these two
critical assumptions, which means parametric selection models need to be applied with caution.
Kenward [68] provides some practical strategies for examining sensitivity to normality. Other
authors have looked at local departures from MAR under the assumption that both the response
and selection models are correctly speci�ed [69].
Selection models in general require specialized numerical routines for maximising the like-

lihood, limiting practical utility for broad ranges of problems. Moreover, in spite of parametric
assumptions, it may still be the case that the likelihood is very �at with respect to parameters
like  2 that characterize outcome-dependent non-MAR selection, leading to numerical insta-
bilities. See References [8, 70] for discussion of estimation issues related to normal full-data
models; see References [71–74] for discussion of selection models with binary data. For set-
tings with multivariate repeated measures, see Reference [36]. The models described above
can be �t using OSWALD software [75] and in some circumstances using BUGS [76].
Mixture models treat the full-data distribution as a mixture over drop-out times or patterns,

and in that sense regard drop-out as a source of heterogeneity. Early examples of mixture
models for drop-out and missing data include Rubin [77] and Wu and Bailey [78, 79]. Little
coined the term ‘pattern mixture model’ for multivariate data where missingness can be cate-
gorized into distinct patterns. Applied to longitudinal studies, pattern-mixture models are well
suited to analyses where the number of drop-out times is small [80–83].
As an illustrative example, we refer to an application of pattern mixture models to longitu-

dinal data with drop-out by Little and Wang [82], who use the models to analyse longitudinal
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data from a depression study. The full data consist of Yi=(Yi1; : : : ; YiT )T, with drop-out lead-
ing to missingness at time T . Hence, the drop-out variable Ri is Bernoulli with parameter
 =pr(Ri=1). The mixture model is speci�ed in two parts; the �rst gives the conditional
distribution of Y given R, and the second speci�es the marginal distribution of R. For this
example, the conditional distribution f(y | r; x) follows:

(Yi |Ri= r) ∼ N(�(r);�(r))
where for pattern r ∈ {0; 1}, �(r) is a T × 1 mean vector and �(r) is the T ×T error variance
matrix. When R is Bernoulli as in our example, the marginal distribution of Yi is a mixture
of multivariate normal distributions with mean and variance given by

E(Y ) =  �(1) + (1−  )�(0)

var(Y ) =  (1−  )(�(1) − �(0))2 +  �(1) + (1−  )�(0)

It is immediately clear that pattern mixture models are under-identi�ed. If, as in our illus-
trative example, some data are missing at T , then there are no data to identify either the
T th component of �(0) or the T th row and column of �(0). Little [80, 81] and Molenberghs
et al. [84] discuss a variety of parameter constraints for identifying these parameters. For
the unstructured version of pattern mixture models, Rubin [77] and Daniels and Hogan [83]
propose methods for sensitivity analysis based on between-pattern di�erences in the mean and
variance–covariance parameters.
For longitudinal data, structuring the pattern-speci�c means as functions of time and other

covariates leads to natural and explicit extrapolations. For example, if we assume �(0)t =�(0)t,
and if data are available for at least two distinct values of t among those with R=0, then
�(0)t is identi�ed for t by virtue of this assumed structure (e.g. see References [85, 86]).
Identi�cation in the presence of covariates is considered in more detail in our application to
the CD4 data.
In most cases, mixture models inherently represent non-MAR mechanisms because drop-out

can be shown to depend on possibly missing Y ’s. Again referring to the mixture-of-normals
model above, some algebra shows that

logit{pr(Ri=1 |Yi1; : : : ; YiT )} ∝ det �(0) − det �(1) + {Yi − �(1)}T{�(1)}−1{Yi − �(1)}
−{Yi − �(0)}T{�(0)}−1{Yi − �(0)}

which is a linear function of Yit and Y 2it for all t, and all �rst-order cross-products YisYit for
all t �= s. Under the constraint that �(1) =�(0), logit of the selection probability is linear in
the Yit’s.
Frailty models use latent frailties or random e�ects to induce dependence between the

responses Y and the missing data indicators R. Some versions of frailty models also have
been referred to as ‘shared parameter models’ [87, 88], or models with ‘random-coe�cient-
dependent drop-out’ [3]. A key feature of these models is that they are speci�ed conditionally
on the frailty term as in (6), with the assumption that repeated measures are independent of
drop-out times conditional on the frailties.
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An early example is given by Wu and Carroll [89], who assume the full-data distribution
of the repeated measures follows a linear random e�ects model where, conditional on random
e�ects �,

Yit = �0i + �1it + eit

where the random e�ects (�0i ; �1i) follow a bivariate normal distribution N(�;�) and the errors
eit are iid N (0; �2). The hazard of drop-out depends not directly on Y ’s but on the random
e�ects; e.g.

logit �it =  0 +  1�0i +  2�1i

Thus, the conditional joint distribution of Y and R given � is structured as f(y | �)f(r | �),
and the marginal joint distribution is obtained by integrating against F(�).
Here we have loosely called � a frailty, though it may not conform to conventional formu-

lations; in particular, for the Wu and Carroll [89] model, � is technically a random coe�cient
in the response model and a covariate in the hazard model. Importantly, however, data from
both Y and R is used to identify the distribution of �. A more traditional parameteriza-
tion of a frailty model for joint distribution of repeated measures and drop-out is found in
Reference [90].
In some cases, the marginal joint distribution derived from a frailty model takes a closed

form as either a selection or mixture model; for example, Schluchter [91] assumes a trivariate
normal distribution for �0i ; �1i and log drop-out time. This can be viewed either as a frailty
model where drop-out time is independent of the repeated measures, conditional on � or
marginally as either a selection or mixture model. Other examples using multivariate normal
distributions include Mori et al. [92] and Wu and Bailey [78, 79].
A key property of these models is that identi�cation is driven by the frailty distribution,

which usually is assumed to be parametric (e.g. gamma, normal); this choice is usually arbi-
trary, and may a�ect validity of results. Another key assumption is conditional independence
between Y and R, given �. Under the assumption that other parts of the model speci�cation
are correct, this can be tested (e.g.) by including Y ’s in the selection model [93].

4.5.2. Semi-parametric methods. Theory and methodology for semi-parametric selection
models under MNAR drop-out is extensively developed in two recent papers by Robins et
al. [58, 94]. The underlying principle is to assume the selection (drop-out hazard) model can
be decomposed as

logit �it = h(Fit;  ) + q(Yit ; : : : ; YiT ; �)

where h and q are known up to their respective parameters  and �. The parameter  quan-
ti�es how hazard of drop-out depends on known information up to time t, and � quanti-
�es dependence upon possibly missing response data, conditionally on Fit . For example, if
q(Yit ; : : : ; YiT ; �)= �YiT , then � is the di�erence in log odds of drop-out per unit di�erence
in YiT , which may be missing for some individuals. Thus if � �=0, S-MAR is violated. See
References [58, 94] for discussion of sensitivity analysis strategies when � �=0.
Recently Fitzmaurice and Laird [86] proposed using GEE to �t semi-parametric mixture

models. The model speci�cation is very similar to parametric models, but only the �rst moment
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is speci�ed. Following the example from Reference [82], the semi-parametric approach would
specify

E(Yi |Xi; Ri= r)=Xi�(r)

where Xi is an ni × p covariate matrix, and �(r) is a p × 1 vector of regression parameters
for those with drop-out time r. An additional assumption is that var(Y |X; R) can depend on
drop-out time R only through the mean function. Once the drop-out-speci�c coe�cients have
been estimated, the e�ect on the marginal mean can be estimated using the weighted average

�̂=
∑
r
	̂r�̂(r)

where 	̂r is the sample proportion of drop-outs at time r. As with all mixture models that
are mixtures of regressions, when the identity link is used, then E(Yi |Xi)=Xi�, but this does
not hold for non-linear link functions such as logit and log. See Reference [86] for details.

4.5.3. Other approaches. Readers are referred to Wu et al. [2] for a review of semi-parametric
and non-parametric methods, to Yao et al. [19] and Glidden et al. [95] for estimating location-
scale models from incomplete repeated measures and to Lipsitz et al. [96] for discussion of
quantile regression under MAR.

5. WORKED EXAMPLES

5.1. Analysis of CTQ study using semi-parametric selection models

Our �rst illustration uses data from the smoking cessation trial described in Section 2 [18].
We present both a semi-parametric and a likelihood-based analysis of these data; the semi-
parametric analysis uses inverse probability weighting under S-MAR, and the likelihood-based
analysis uses marginalized transition models, recently introduced by Heagerty [46]. A more
detailed version of the semi-parametric analysis, including assessment of sensitivity to miss-
ingness not at random, can be found in Reference [97].
The CTQ study enrolled 281 healthy but sedentary women in clinical trial to investigate

the e�ect of vigorous exercise as an aid to smoking cessation; 134 were randomized to
behavioural therapy only, and 147 to behavioural therapy plus supervised vigorous exercise.
The response data consist of binary indicators of cessation status, recorded at baseline and
weekly thereafter for 12 weeks. Participants are expected to quit smoking prior to week 5,
de�ned as the target quit week. A number of covariates also was measured at baseline,
including physiologic measures such as body mass index, behavioural indicators such as stage
of change for cessation behaviour, nicotine dependence measures and variables related to prior
smoking history and attempts at cessation (Table II).
In the following analyses, we are interested in drawing inferences about assignment to

exercise (i.e. the intention-to-treat e�ect) for the full sample, assuming that smoking cessation
data had been available on every subject throughout the trial. For comparison to the regression
approaches, we include familiar ad hoc methods such as last value carried forward.
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Table II. Covariates included in selection model for CTQ analysis.

Covariate Description Unit of measure

Z1i Treatment group 1 = exercise; 0 = control
Z2it Cessation status at t − 1 (Yi;t−1) 1 = yes; 0 = no
Z3i Baseline smoking rate cigs/day (0–60)
Z4i Baseline nicotine dependence Fagerstrom score (1–10)
Z5i Baseline depression CESD score (0–49)
Z6i Baseline weight pounds
Z7i Duration of longest previous cessation days
Z8it ; : : : ; Z16;it Week indicators binary (0,1)
Z1i × (Z8it ; : : : ; Z16;it) Treatment×week
Z1i × Z3i Treatment× smoking rate
Z1i × Z4i Treatment× nicotine dependence
Z1i × Z5i Treatment× depression
Z1i × Z7i Treatment× longest prev. cessation
Z1i × Z2it Treatment× Yi; t−1

5.1.1. Exploratory analyses and ad hoc adjustments for missing data. Figure 1 shows two
important processes for the cessation study: the top and middle panels depict proportion quit
by week, strati�ed by treatment group. The di�erence between these is that the top panel uses
number observed as the denominator, whereas the bottom panel uses number randomized,
counting drop-outs as smokers. These plots characterize the true underlying cessation status
under two di�erent assumptions; the top panel gives a valid estimate under the MCAR as-
sumption (observed data is a random draw from the full data), and the bottom panel is valid
under the assumption that all drop-outs are quitters. Although neither of these assumptions
can be validated, MCAR can be tested (see Section 5.1.2 for details). As is typical in smok-
ing cessation trials, the proportion quit is nearly zero for the initial ‘run-in’ period (4 weeks
for this trial), then jumps abruptly at the target quit week. In both plots, the proportion quit
following the target quit week is appreciably higher among those randomized to exercise.
The bottom panel shows proportion remaining in follow-up as a function of week. Although

the drop-out proportion is similar at the end of the trial, the pattern of drop-out is noticeably
di�erent: the majority of drop-outs on the control arm drop-out directly following the quit
week. Approximately 20 per cent ( 29147 ) on the control arm but only 5 per cent ( 7

134 ) on
exercise dropped out before the target quit date (week 5); however, by the end of the trial,
31 per cent on exercise and 35 per cent on control had dropped out. There are several ways
to investigate the relationship between drop-out and observed smoking status. Perhaps the
simplest is to compare cessation rates between drop-outs and completers, shown in Figure 2
(top panel), which indicates substantial di�erences.
Various ad hoc approaches can be applied, but do not necessarily follow sound principles

for inference. For the sake of comparison, we present three of these, with treatment e�ect
de�ned in terms of the odds ratio for 7-day cessation at week 12: (i) completers-only analysis,
(ii) last value carried forward (LVCF) and (iii) all drop-outs counted as smokers. Analysis
(i) is valid under MCAR (only), but is ine�cient. Analysis (ii) is popular in the reporting
of clinical trials, but has two disadvantages: it is a single-imputation procedure, and hence
may lead to under-estimated standard errors [25], and it ignores all previous outcome data,
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Figure 1. Proportion quit (top and middle panels) and proportion remaining in the study (bottom panel),
by treatment group, for the smoking cessation trial. Top panel re�ects only observed responses at each

week; middle panel treats drop-outs as not quit.
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Figure 2. Cessation rate, strati�ed by study completion status, for each treatment arm
in the smoking cessation trial.

which leads to bias if missing smoking status depends on values other than the last one.
Analysis (iii) has face-validity for smoking cessation trials [98], but also ignores possible
uncertainties about the cessation behaviour of drop-outs. The results from these analyses are
reported in Table III, which shows—as expected—that estimated cessation rate is highest
when using the completers-only analysis and lowest when counting drop-outs as smokers.
Prevalence estimates under LVCF are indeed higher than under the ‘drop-outs as smokers’
analysis, suggesting that an appreciable number of participants drop-out following a week
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Table III. Analyses of smoking cessation data using ad hoc methods.

7-day cessation rate at week 12

Method Control Exercise Odds ratio (95 % c.i.)

Completers only 0.31 0.43 1.7 (0:9; 3:0)
Last value carried forward 0.24 0.32 1.6 (0:9; 2:7)
Count drop-outs as smokers 0.20 0.30 1.7 (1:0; 2:9)

of cessation. The �nding that cessation rates on exercise are higher is robust across these
analyses.

5.1.2. Semi-parametric regression under various missing data assumptions. In this section,
we describe regression-based estimation of weekly cessation rates and treatment e�ects under
both MCAR and S-MAR. For two candidate models of cessation rate as a function of week, we
show how to calculate weights for inverse probability weighting, give the weighted estimating
equations used for estimation, and �nally summarize the �ndings.
Response model speci�cation: The �rst candidate model for the mean response assumes

cessation probability is constant for the 4 week period leading up to the target quit week,
then allows weekly variations thereafter (9 parameters per treatment group×2 treatments=18
parameters total). The second model assumes weekly cessation rate within treatment group is
constant over time following the target quit week, thereby reducing the number of mean pa-
rameters from 18 to 4. The �rst model is speci�ed as follows. For i=1; : : : ; n and t=1; : : : ; 12,
let Yit denote cessation status at week t for participant i, where Yit =1 if the participant had
quit smoking for the previous 7 days, and Yit =0 if she had not. Treatment assignment is
denoted by Xi (=1 if exercise, = 0 if control). Our model is

logit{pr(Yit =1 |Xi)}= �t + �tXi; t=1; : : : ; 12 (7)

with the constraints �1 = · · · = �4 and �1 = · · · =�4 (constant cessation rate in each treatment
arm during the �rst 4 weeks of follow-up). An equivalent representation that makes the design
matrix more transparent is

logit{pr(Yit =1 |Xi)}= I(t64)(�4 + Xi�4) +
12∑
j=5

I(t= j)(�j + Xi�j)

The �t parameters are log odds ratios for contrasting treatment arms at each week; treatment-
arm-speci�c cessation rates at each week are easily obtained using the inverse logit function
pr(Yit =1 |Xi= x)= exp(�t + �tx)={1 + exp(�t + �tx)}.
The second model further constrains the parameters such that weekly cessation rate is

constant within treatment from weeks 5 to 12. This yields

logit{pr(Yit =1 |Xi)}= I(t64)(�∗0 + Xi�∗
0 ) + I(t¿4)(�∗1 + Xi�∗

1 ) (8)

so that prior to the target quit date, �∗0 and �∗0+�∗
0 quantify log odds of weekly cessation in the

control and exercise groups, respectively, with �∗1 and �∗1 +�∗
1 quantifying the same quantities
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Table IV. GEE-based estimates of intercept (�12) and log odds ratio for
treatment e�ect (�12) at week 12, using model (7) under MCAR, for

various working correlation structures.

Working correlation �̂12 (s.e.) �̂12 (s.e.)

Independence −0:79 (0.22) 0.51 (0.30)
Exchangeable −0:86 (0.22) 0.39 (0.30)
AR-1 −0:83 (0.22) 0.41 (0.30)
Unstructured −0:83 (0.22) 0.33 (0.30)

Table V. Number and proportion of transitions from status at t − 1 to t, from weeks
5 to 12, strati�ed by treatment. Row totals of proportions sum to one.

Status at t

Treatment Status at t − 1 Quit Not quit Dropped out Total

Exercise Quit 286 (0.92) 23 (0.07) 2 (0.01) 311
Not quit 54 (0.11) 450 (0.85) 28 (0.05) 532

Control Quit 195 (0.86) 32 (0.14) 2 (0.01) 229
Not quit 55 (0.09) 526 (0.89) 13 (0.02) 594

following the target quit date. Hence, �∗
1 is the log odds ratio that captures time-averaged

treatment e�ect over weeks 5 to 12.
For either model, semi-parametric analysis under MCAR can proceed by �tting the model to

observed data using GEE under the independence working correlation assumption, using robust
standard errors to adjust for within-subject correlation. When missing data are MCAR and
the mean model is correctly speci�ed, GEE will yield consistent estimates and standard errors
regardless of the assumed working correlation. Consistency is not guaranteed under MAR
however [43, 73], suggesting that for model (7)—which is nearly saturated in the week-by-
treatment means—a crude diagnostic for checking the MCAR assumption is to compare point
estimates of regression parameters under di�erent working correlations. Large deviations in
regression parameters indicates possible departures from MCAR (see Reference [99] for a
description of more formal checks of MCAR). Table IV shows point estimates and standard
errors for �12 and �12 when using GEE estimation under model (7); the point estimates vary
considerably depending on assumed covariance, suggesting that the MCAR assumption may
not be tenable.
Testing the MCAR null hypothesis: Formal tests of the MCAR null hypothesis under

monotone drop-out are relatively easy to construct, and for binary data are most naturally
formulated in terms of transition probabilities. In the CTQ study, at each week, participants
can be in one of three states: quit, not quit or dropped out. Since drop-out is a monotone
process, the last of these is an absorbing state. Table V shows transition rates by treatment,
aggregated over weeks 5–12.
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The MCAR null hypothesis can be stated and tested in terms of parameters from a re-
gression model of the transition probabilities. Speci�cally, let Rit =1 if subject i has ob-
served cessation status at time t, and =0 otherwise; denote the hazard of drop-out at t by
�it =pr(Rit =0 |Rit =1). Recall that under MCAR, �it can be a function of full-data model
covariates (in this case week and treatment), but conditional on these, must be independent
both of previous cessation outcomes and of excluded covariates. Consider testing the MCAR
null hypothesis under full-data model (8), where the covariates are the time variables I(t64)
and I(t¿4), treatment indicator Xi, and time-by-treatment interactions. Assume that, in ad-
dition to the model covariates, hazard of drop-out may possibly depend further on previous
cessation outcome Yi; t−1 according to the model

logit(�it)= I(t64)(
0 +  0Xi) + I(t¿4)(
1 +  1Xi) + �Yi; t−1; t=2; : : : ; 12 (9)

under which the MCAR null hypothesis is H0 : �=0 and can be tested against S-MAR al-
ternatives using output from a �tted logistic regression. For the CTQ data, �̂=−1:72 with
robust standard error (s.e.) 0.54; the Wald Z statistic is 3.21, strongly suggesting that MCAR
is violated. Naturally, the validity of this test requires that (9) is correctly speci�ed, and other
types of departures from MCAR are possible; however, (9) is reasonably consistent with the
empirical transition rates from Table V, and in our view provides su�cient cause to believe
MCAR does not hold.
Weight calculation for S-MAR analysis: Semi-parametric regression under S-MAR can be

implemented as a two-step procedure. The �rst step involves �tting a model for probability
of drop-out at each week, from which sampling weights are estimated, and the second step
involves �tting model (7) to the observed data, with each observation weighted by the in-
verse probabilities estimated in step 1. The inferences we describe under S-MAR also require
Assumptions 1 and 2.
Let Rit =1 if Yit is observed for participant i at time t, and Rit =0 otherwise. Denote the

hazard of drop-out as

�it =pr(Rit =0 |Ri; t−1 = 1; Zit)

where Zit =Z(Fit)= (Z1it ; : : : ; ZPit) is a P-dimensional vector of covariates drawn from the
individual’s data history. From the de�nition of Fit , Zit can include any variables observed
up to and including time t, with the exception of Yit . Most of the covariates available in this
study are measured only at baseline. Determining which variables to include in the model
is somewhat subjective and ideally is done in consultation with subject-matter experts. Our
colleagues suggested from prior experience that participants with poor prior history of smoking
cessation, or with long history of intensive smoking behaviour, may be more likely to drop-
out. Exploratory analyses can also be useful. A simple (but by no means comprehensive)
method to screen candidate variables is to compare covariate means between completers and
drop-outs.
We estimate the probabilities �it using logistic regression; in principle, any method that

leads to consistent estimates can be used. The model takes the form

logit(�it)=Zit
 (10)

The components of Zit are listed in Table II, and include week, treatment, previous cessation
outcome and a variety of individual-speci�c baseline covariates that are typically related to
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Figure 3. Box plots of inverse probability weights !̂it for t = 5; : : : ; 12.

success in smoking cessation programs (e.g. depression level, nicotine dependence, duration
of previous cessation attempts, etc.). Correct speci�cation of the selection model is a critical
component to semi-parametric regression under S-MAR because consistent estimates of the
regression parameters in the response model depend on the selection probabilities being con-
sistently estimated. Although the S-MAR null hypothesis cannot be tested, the selection model
itself can be critiqued under the assumption that S-MAR holds. Two aspects of model critique
are of particular importance: lack of �t and distribution of inverse probability weights (dis-
cussed below). For assessing lack of �t, standard methods such as Hosmer and Lemeshow’s
deciles of risk statistic [100] can be used. For our data, this statistic is 13.2; when referred
to chi-square distribution on 8 d.f., p=0:10, indicating satisfactory �t.
Once the selection model is �tted, we obtain the marginal probability that Rit =1 using

standard conditioning arguments:

�̂it =
1

1 + exp{Zit 
̂}

and 	̂it = p̂r(Rit =1 |Fit)=
∏t

j=1 (1− �̂it). For those observations with Rit =1, the inverse sam-
pling weights are !̂it =1=	̂it ; which can be interpreted as the number of data points being
represented by the observed Yit . Estimation of the response model under inverse weighting can
become unstable when the sampling probabilities 	̂it are very close to zero, leading to outsized
weights and attributing undue in�uence to individual observations; therefore, the distribution
of weights should be checked, with particular attention given to extremes in the right-hand
tail. Figure 3 shows box plots of !̂it at each time point. The variation in weights gets larger
with time, but most weights take values between 1 and 2 (the maximum is around 4). There-
fore, the estimated 	it are bounded well away from zero, with minimum value around 0.25,

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:1455–1497



1478 J. W. HOGAN, J. ROY AND C. KORKONTZELOU

and large sample inference can be expected to be stable. The in�uence of individuals with
large weights can be checked using DFBETA-type statistics [101]; see Reference [102] for
an illustration.
Estimating full-data regression model via inverse weighting: Once the selection model

has been �tted and critiqued, and the weight distribution has been examined, the parameter
estimates for model (7) are found as the root of the weighted estimating equations

U (�; �)=
n∑

i=1

T∑
j=1

Rit!̂itKit(X ∗
i ; �; �){Yit − �it(�; �)}=0

where �=(�4; : : : ; �12)T, �=(�4; : : : ; �12)T, Kit(X ∗
i ; �; �)=X ∗

i
T[�it(�; �){(1− �it(�; �)}]−1, and

X ∗
i is the 1×18 design matrix needed to parameterize the mean of (7).§ Estimates for the con-
strained model (8) follow similarly, using the same weights. Note that U (�; �) is a weighted
GEE under the working independence assumption; if drop-out is S-MAR, and the selection
model has been correctly speci�ed, it is possible to use other working variances and still
obtain consistent estimates [73]. Also, it is possible to use augmented estimating equations to
increase e�ciency [37, 58], but these cannot generally be implemented using standard software
and we do not consider them further.
There are several options for standard error estimation. Rotnitzky et al. [58] derive an

expression that will provide consistent estimates of standard errors; this requires �tting another
regression to the score residuals and carrying out some basic matrix computations; another
option is the bootstrap [103], wherein entire subject histories are drawn with replacement
(i.e. subject is the resampling unit) and the two-step procedure is applied to each bootstrap
sample. In a randomized trial, samples should be drawn separately within treatment arm.
A third option is to calculate standard errors from the simultaneous system of estimating
equations for both outcome and sampling weights. Since each of these options requires extra
programming on the part of the user, we recommend following the suggestion of Hern�an
et al. [39], treat the weights as known, and use robust standard error estimates applied to the
response model. This will tend to give conservative estimates of standard error.
A comparative summary of cessation rates and treatment e�ects is shown in Table VI.

Clearly the S-MAR estimates of cessation are adjusted downward, a manifestation of the as-
sociation between smoking status and eventual drop-out. For reporting success rates under
either treatment, the MCAR estimates clearly will be overly optimistic. The relative decrease
in estimated odds of cessation is about the same in both treatment arms; hence, the odds ratio
is the same under both S-MAR and MCAR. The odds ratio con�dence interval is slightly
more narrow under MAR, but it is worth pointing out that it was computed using a conserva-
tive standard error calculation. The added e�ciency gained when estimated weights are used
(as opposed to treating them as known) would be properly re�ected by the consistent estimator
described in Reference [58].

5.1.3. Likelihood-based analysis using marginalized transition models. There exist several
options for likelihood-based analysis of repeated binary data, including random e�ects regres-
sion models (e.g. logistic-normal [104–106]) and marginal models [44–46, 107]. A potential

§There are 12 − 4 + 1=9 parameters for each of two treatment arms because log odds of smoking is assumed
constant for the �rst 4 weeks.
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Table VI. Summary of treatment e�ect estimates from model (8) under MCAR and
S-MAR. OR = odds ratio.

Cessation rate for weeks 5–12

Assumption Method=model Loglik. (params.) Exercise Control OR (95% CI)

MCAR ∗GEE — 0.42 0.31 1.6 (1:0; 2:7)
S-MAR ∗GEE-IPW — 0.33 0.24 1.6 (1:0; 2:6)
MAR †MTM-1 −610:1 (5) 0.36 0.28 1.5 (0:9; 2:4)

†MTM-2 −585:7 (6) 0.35 0.27 1.4 (0:9; 2:3)
†MTM-3 −581:6 (8) 0.36 0.28 1.4 (0:9; 2:3)

∗Implemented using working independence assumption with robust standard errors.
†MTM-1 assumes lag 1 correlation only. MTM-2 assumes both lag 1 and lag 2 correlation. MTM-3
allows both lag-1 and lag-2 correlations to depend on time, specifying di�erent values at the target
quit date (week 5).

drawback to using random e�ects models for marginal inferences is the need to integrate over
the random e�ects distribution [49]. For direct comparison to the semi-parametric marginal
model, we opted to use a marginalized transition model, or MTM [46], which allows sepa-
rate speci�cation of the marginal mean and the serial correlation. Details on likelihood-based
estimation are found in Reference [46].
The MTM calls for specifying the marginal mean �it =E(Yit |Xit) and the conditional mean

�∗
it =E(Yit |Xit ; 	Y i;t−1). Parameters in the conditional mean quantify serial correlation. For the
marginal mean we use models (7) and (8). The serial correlation is speci�ed by assuming

logit �∗
it =�0 + �1tYi; t−1 + �2tYi; t−2

so that for l=1; 2, serial association at lag l is

�lt = log{odds(Yit =1 |Yi; t−l=1)=odds(Yit =1 |Yi; t−l=0)}
Three formulations of the serial correlation are considered:

MTM 1 �1t = �1

�2t =0
(lag-1 correlation only; constant for all t)

MTM 2 �1t = �1

�2t = �2
(lag-1 and lag-2 correlation; constant for all t)

MTM3 �1t = �1I(t �= 5) + �′1I(t=5)

�2t = �2I(t �= 5) + �′2I(t=5)
(serial correlation di�ers at week 5)

The justi�cation for including Model 3 is that transitions in smoking behaviour are likely to
be much di�erent at the target quit date, week 5. To avoid bias in standard error estimation, in
principle the correlation should be modelled with su�cient complexity. We considered models
where serial correlation depends on treatment, but the treatment e�ect was very weak and its
inclusion did not a�ect standard errors.
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Results from the �tted MTM appear in Table VI and in Figure 4. Comparing likelihoods
suggests that Model 3 is most appropriate. Estimated cessation probabilities lay roughly at
the mid-point between those obtained from GEE under MCAR and GEE-IPW under S-MAR;
the odds ratio for treatment e�ect, 1.4, is nearly the same as for the other two methods, but
the con�dence intervals are more narrow, as would be expected when specifying the full joint
distribution.

5.2. Analysis of HIV data from an observational cohort study

Our second illustration is based on the HIV data described in Section 2.2. The goal in this
analysis is to characterize changes in mean CD4 count over time as a function of baseline
covariates. We begin with some exploratory analyses, investigate several regression models
and compare the results in the context of each model’s assumptions about the reasons for
subject drop-out.

5.2.1. Exploratory analyses. For these analyses, we use data from the 871 women who were
HIV positive at baseline. We excluded 21 women from the analyses because they were missing
CD4 data at baseline. There was a substantial amount of missing data in this study. Table I
shows the number of subjects still in follow-up at each visit (i.e. who have not yet dropped
out), the number with CD4 count observed and the number that dropped out before the next
visit. For example, at visit 1 there were 850 subjects with CD4 count observed, and 52 of
them dropped out before the next visit. At visit 2,798 women remained in the study, but only
706 of them had an observed CD4 count. The other missing values resulted from intermittent
missingness, for reasons other than drop-out. (For our regression analysis, data from another
�ve women were excluded for missing one or more covariates.)
Figure 5 shows the mean CD4 count at each visit for observed data (horizontal marks),

which indicates a decrease over time for the �rst �ve visits, followed by a levelling o�. This
cannot necessarily be interpreted as the population trend for the women who were enrolled
at baseline because a substantial number of women dropped out of the study before the 12th
visit. Figure 5 also strati�es the mean at each visit by whether or not the subject drops out
at the next visit. In every case, the mean was lower for subjects who drop-out at the next
visit. That women with lower CD4 count are more likely to drop-out suggests that drop-out
depends at least on observed CD4 counts, and implies that model-based means are likely to
be quite di�erent from observed means. Handling intermittent missingness also is a concern,
which we address below.
The primary objective is to characterize covariate e�ects on the mean. We assume that for

the full data

E(Yit)=Xit�; t=1; : : : ; 12 (11)

where Yit is the square root of CD4 count at visit t and Xit is the vector of covariates at
visit t, which consists of: visit number (time); levels of HIV-1 RNA in the plasma (copies=ml);
HIV symptomatology (presence of HIV-related symptoms on a scale from 0–5); indicator of
antiretroviral therapy (ART) at baseline; and the number of years the subject was aware of her
HIV status at enrolment (range 0–8 years). In addition, we consider interactions between visit
and the baseline covariates. The square root transformation on CD4 is used as the response
to reduce skewness. Based on exploratory analyses, a linear time trend seems reasonable
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Figure 4. Fitted models under MCAR (top panel), S-MAR (middle panel) and MAR (bottom panel).
Points represent estimated cessation rates under model (7); lines represent rates from model (8).
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Figure 5. Sample mean of CD4 count at each visit. The horizontal lines are the overall means; the
closed diamonds are the means for subjects that do not drop out at the subsequent visit; the open

diamonds are the means for subjects that drop out at the subsequent visit.

(i.e. treating visit as a continuous covariate). Since the distribution of viral load tends to be
highly skewed, four indicator variables were created corresponding to viral load intervals. In
the next subsections, we apply regression models for estimating � that make progressively
weaker assumptions about missing data.

5.2.2. Analysis under the MCAR assumption. For purpose of illustration, we �t regression
model (11) under the assumption that all missingness is MCAR. The variance of Yit given
Xit is assumed to be a constant, �2. We use the ordinary least squares (OLS) method for
estimation, which provides consistent estimates of � under MCAR. Standard errors are ob-
tained using the sandwich estimator [43]. Although technically we have speci�ed only the
�rst two moments and not a full likelihood, the OLS estimator is equivalent to the maximum
likelihood estimator under the assumption that Yi ∼ N(Xi�; �2I). Estimates are obtained using
SAS PROC MIXED; results are given in Table VII under the MCAR heading.
The main �ndings from this model are that lower values of viral load are associated with

higher CD4 counts, but mean CD4 count tends to decline more rapidly for the group with the
lowest viral load; ART therapy at baseline also is associated with lower CD4 counts (probably
because those on therapy have more advanced HIV disease). The CD4 slope, however, is
signi�cantly greater for those on ART at baseline. Not surprisingly, mean CD4 count is lower
for those with longer awareness of their HIV status.

5.2.3. Analysis assuming ignorability. As previously indicated, the MCAR assumption is
probably implausible for these data. One way to weaken the MCAR is to use likelihood-
based inference. We specify the distribution for the response using a random e�ects model,
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wherein we assume that each woman has individual-speci�c intercept and slope (random
e�ects), which are normally distributed and may be correlated. We also assume the within-
subject errors are normally distributed but uncorrelated given the random e�ects. As we show
here, the marginal likelihood of the full data follows a multivariate normal distribution.
At the �rst level, we assume that conditional on random e�ects �i, the full data follows

Yi ∼ N(Xi�+ Zi�i; �2I)

where Yi is the 12-by-1 vector of fully observed (square root) CD4 counts, Xi is the �xed
e�ects design matrix, Zi is a 12×2 design matrix whose �rst column is a vector of ones
and second column is the measurement times, �i is the 2×1 vector consisting of individual-
speci�c deviations from the population intercept and slope. At the second level, we assume
that �i ∼ N(0;
), where 
 is a 2-by-2 variance matrix. The marginal distribution of Y given
X is a normal mixture of normal distributions; therefore

Yi ∼ N(Xi�; Zi
ZTi + �2I)

and E(Yit |Xit) retains the form given in (11).
Consistent estimates of the parameters from this model can be obtained by maximizing the

observed data likelihood under ignorability (MAR plus the separable parameters assumption),
treating both drop-outs and intermittently missing values as arising from the same mecha-
nism. By specifying a distribution for the response (e.g. normal) and basing inference on the
observed data likelihood, we admit a more plausible assumption about the missing data than
the previous analysis, but at the expense of having to justify the distributional assumptions.
Estimates from this model also were obtained using SAS PROC MIXED; with results given
in Table VII under the MAR heading.
The primary di�erence between the results from the models under the MCAR and MAR

assumptions is that the estimated slope coe�cient—which is average rate of change per visit
among those with covariate values equal to zero or equal to the reference category—has
changed drastically from 0.03 (s.e. 0.17) to –0.69 (s.e. 0.19). Therefore, by accounting for
the fact that drop-out may be related to observed values of CD4 count, we now conclude
that CD4 count decreases over time for this population, because none of the interaction terms
exceeds 0.69. This shift in estimated slope makes intuitive sense given in Figure 5, where it
is clear that subjects who drop-out consistently have lower CD4 counts, on average. Under
the MCAR assumption, subjects who drop-out sooner contribute fewer observations to the
population estimate of the slope, which results in the slope estimate being largely determined
by those that remain in the study the longest. By contrast, the random e�ects model estimates
the population slope as a weighted average of individual-speci�c slopes, which themselves are
averages of individual-speci�c OLS slope estimates and the MCAR population slope estimate
[47]. We therefore would expect the slope estimates from the analysis assuming MCAR to
overestimate of the rate of change in CD4 count over time. This is manifestation of selection
bias, where sicker patients are getting ‘selected’ out of the sample.
As expected, the coe�cients of the interaction terms between viral load and time are quite a

bit di�erent under models that do not require MCAR. Under the MAR assumption, the change
in CD4 count over time was estimated to decline the most for subjects with the highest viral
load (¿30 000copies=ml) at baseline. This is the opposite of what was found under the MCAR
assumption, where those with least viral load (0–500copies=ml) at baseline were estimated to
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Table VII. Results from random e�ects models for HIV data under various assumptions
about the missing data.

MCAR MAR PMM (2 cat) PMM (3 cat)
Covariate est (se) est (se) est (se) est (se)

Intercept 14.25 (0.83) 15.11 (0.77) 15.73 (0.86) 15.92 (0.85)
Time (visit) 0.03 (0.17) −0:69 (0.19) −0:79 (0.15) −0:87 (0.16)
Viral load
0–500 11.31 (0.82) 10.62 (0.77) 9.99 (0.89) 9.70 (0.88)
500–5k 7.61 (0.79) 6.91 (0.73) 6.22 (0.83) 6.05 (0.84)
5k–30k 3.30 (0.90) 2.98 (0.83) 2.9 (0.92) 2.76 (0.91)
¿ 30k ref ref ref ref

HIV symptoms −0:01 (0.21) −0:04 (0.2) −0:04 (0.19) −0:05 (0.19)
Art at baseline −4:63 (0.41) −4:49 (0.39) −4:26 (0.39) −4:31 (0.39)
Years aware of HIV −0:37 (0.10) −0:39 (0.09) −0:40 (0.09) −0:39 (0.09)
Time*viral load
0–500 −0:47 (0.16) 0.26 (0.19) 0.37 (0.16) 0.60 (0.17)
500–5k −0:33 (0.16) 0.25 (0.19) 0.24 (0.15) 0.27 (0.15)
5k–30k −0:05 (0.18) 0.20 (0.20) 0.17 (0.16) 0.14 (0.16)
¿ 30k ref ref ref ref

Time*HIV symptoms −0:03 (0.03) −0:03 (0.03) −0:02 (0.03) −0:01 (0.03)
Time*art at baseline 0.22 (0.06) 0.14 (0.06) 0.13 (0.07) 0.17 (0.08)
Time*years aware of HIV 0.02 (0.01) 0.04 (0.01) 0.04 (0.02) 0.03 (0.02)

have the steepest decline in CD4 count. Again, the di�erence in the estimates is a result of
selection bias being ignored in the MCAR analysis: because subjects with higher viral load
tend to have lower CD4 counts, and those with lower CD4 drop-out earlier, we expect biases
due to the MCAR assumption to be most pronounced for the subpopulation of subjects with
the highest viral load.

5.2.4. A pattern mixture model analysis. The foregoing analyses are only valid under MCAR
and MAR, respectively. However, it is not hard to imagine that propensity for drop-out may
be related to an individual’s unobserved CD4 count, even after conditioning on their previous
CD4 counts and baseline covariates. For example, consider two subjects who had the same
CD4 and covariates at baseline. Imagine that one subject had a substantial decline in CD4
during the 6 months between visits and the other subject’s CD4 stayed relatively stable. The
subject whose CD4 declined may be more likely to drop-out of the study, although this cannot
be con�rmed from observed data. To allow for the possibility that missing data are MNAR
we use a pattern mixture model.
As described in Section 5, pattern mixture models assume that the distribution of Y is a

mixture over the patterns of missing data. As can be seen from the sample sizes listed in
Table I, one challenge with these data is the number of subjects in a given pattern may be
quite small; for example, only 19 subjects dropped out after the eighth visit. With small drop-
out strata, it may not be practical to assume unique coe�cients for every drop-out pattern.
As a result, we group the drop-out times, and assume that the distribution of Y is a mixture
over groups of drop-out times.
The �rst challenge is to determine how the drop-out times should be grouped. To investigate

this, we �t a linear mixed model with all of the covariates interacted with drop-out indicators.
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This led to separate estimates of the covariate e�ects for every drop-out time. We then created
the plots for each covariate, where the vertical axis represented the value of the coe�cient and
the horizontal axis represented the drop-out times. The idea is to use these plots to identify
natural groupings for the patterns. For example, if the estimated coe�cients are relatively
constant for the �rst three drop-out times, but increase at the fourth drop-out time, then the
�rst three drop-out times would be grouped together. Upon inspection, grouping the drop-out
times into the following three categories seemed reasonable: pattern 1 if the subject’s �nal
visit was between visit 1 and visit 5; pattern 2 if the subject’s �nal visit was between visit 6
and visit 10; pattern 3 if the subject’s �nal visit was after visit 10 (includes completers). This
method for choosing groups is subjective, and therefore sensitivity of the results to di�erent
groupings is examined.
We �t a pattern-mixture model with unique coe�cients for each of the three groups of drop-

out times. Speci�cally, let Gi= j if subject i’s drop-out time was in pattern j ( j=1; 2; 3).
We assume

[Yi |Xi; �i; Ri; Gi= j] ∼ N(Xi�( j) + Zi�i; �2I)

where Xi; Zi and �i were de�ned previously, �( j) is the vector of regression coe�cients for
the jth grouped pattern. At the second level we assume

[�i |Ri; Gi= j] ∼ N(0;
)
Note that in addition to assuming normality within pattern, this model makes several structural
assumptions. First, the conditional distribution of Y is assumed to depend on the drop-out time
R only through the drop-out category (or pattern) G. That is, Y is independent of R within pat-
tern. Second, intermittent missingness is assumed to be MAR, given G (within pattern). Third,
we assume var(Yi |Xi; �i; Ri; Gi)=var(Yi |Xi; �i) and var(�i |Xi; Ri; Gi)=var(�i |Xi), which
means variances are constant across patterns (this assumption can easily be relaxed). Fourth,
an important identifying assumption implicit in the above model is that covariate e�ects are
the same for missing and observed data within drop-out pattern G; i.e.

E(Yobs; i |Gi; �i; Xi)=E(Ymis; i |Gi; �i; Xi)

which clearly is an untestable assumption. It should be noted that while these four assumptions
are strong, they can be viewed as more general than the MAR assumptions. In particular, the
constraint �(1) = �(2) = �(3) =� yields the standard random e�ects model for which likelihood-
based inferences assume MAR. A �fth and �nal assumption is a structural one concerning
covariate distributions. The structure of the mean allows E(Y |X; �;G) to depend on drop-
out group G, but we assume covariates are equally distributed across G, or equivalently that
pr(Gi= j |Xi)=pr(Gi= j). This facilitates averaging regression coe�cients over pattern to
obtain marginal covariate e�ects.
Table VIII shows the estimated coe�cients and standard errors for each drop-out group. In

addition, p-values for Wald tests of the hypothesis that each of the covariates have a constant
e�ect across patterns are presented in Table VIII. Note that this test can be viewed as a test of
the MAR null hypothesis, but only under the (untestable) assumption that the pattern mixture
model is correctly speci�ed. All of the coe�cients do vary signi�cantly across patterns, except
for the coe�cient of HIV symptomatology. The estimated main e�ect of time was negative
for each pattern, but decreased in magnitude as the drop-out time increases. Lower levels of
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Table VIII. Estimates and standard errors of coe�cients from the 3 category pattern
mixture model. The 3 patterns consist of subjects whose last visit was from 1 to 5,
6 to 10 and 11 to 12, respectively. P-values for tests of equality of the coe�cients

across groups are given.

Pattern 1 Pattern 2 Pattern 3
Covariate est (se) est (se) est (se) p-value

Intercept 14.66 (1.23) 17.05 (1.91) 16.14 (1.20) ¡0.001
Time −2:53 (0.40) −1:68 (0.32) −0:10 (0.19) ¡0.001
Viral load
0–500 10.29 (1.41) 8.82 (2.01) 9.67 (1.22)
500–5k 5.83 (1.16) 3.62 (1.64) 6.63 (1.20) ¡0.001
5k–30k 1.34 (1.35) 0.87 (1.90) 3.67 (1.29)
¿ 30k ref ref ref

HIV symptoms −0:08 (0.36) −0:90 (0.52) 0.14 (0.24) 0.33
Art at baseline −3:12 (0.94) −4:52 (1.03) −4:71 (0.46) ¡0.001
Years aware of HIV −0:42 (0.21) −0:07 (0.21) −0:45 (0.11) ¡0.001
Time*viral load
0–500 2.89 (0.48) 1.12 (0.34) −0:35 (0.18)
500–5k 1.44 (0.39) 0.89 (0.31) −0:29 (0.18) ¡0.001
5k–30k 0.57 (0.39) 0.48 (0.34) −0:09 (0.19)
¿ 30k ref ref ref

Time*HIV symptoms 0.09 (0.10) 0.09 (0.10) −0:06 (0.03) 0.05
Time*art at baseline 0.09 (0.27) −0:07 (0.20) 0.25 (0.06) ¡0.001
Time*years aware of HIV 0.01 (0.06) 0.03 (0.04) 0.04 (0.01) 0.03

viral load at baseline were associated with increases in CD4 count over time for subjects that
dropped out before visit 11, but were associated with decreases in CD4 count over time for
subjects whose last visit was 11 or 12.
While the estimates in Table VIII provide a great deal of insight into the di�erences between

subjects that drop-out at di�erent times, inference about the CD4 count that is unconditional on
drop-out times are generally of interest. We therefore calculated the estimated marginal e�ect
of the covariates by taking a weighted average of the conditional e�ects over the distribution
of drop-out times

�̂=
3∑

j=1
�̂( j)	̂j

where �̂( j) are the MLEs of �( j) from the pattern mixture model (Table VIII), and 	̂j is the
estimated proportion of subjects with Gi= j. The results are given in Table VII under the
PMM (3 cat) heading.
The estimated main e�ect of time is −0:87 (s.e. 0.16), which is larger in magnitude than

the estimate under MAR, and substantially di�erent than the estimate under MCAR (standard
errors are calculated using the delta method; see Reference [85]). The primary di�erence
between the MAR and pattern mixture analyses is that MAR model assumes the slope of
CD4 count over time is the same across patterns; however, from Table VIII it is clear that
subjects who dropped out early tended to have a sharper decline in CD4 count over time. As
a result, the slope under MAR may be overestimated. Similarly, the mixture model estimates
show a larger di�erence in the slope of CD4 count within viral load categories. In fact, the
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Figure 6. Plot of the predicted means (lines) of CD4 count versus the observed means (points), strati�ed
by drop-out categories, at each visit.

slope for the group with the lowest viral load is signi�cantly di�erent (larger) than the slope
for the other viral load groups.

5.2.5. Model diagnostics. We checked the assumptions and �t of the pattern mixture model
by (i) looking at the sensitivity of inference to the grouping of drop-out times; (ii) seeing
how well the predicted means of CD4 count match the observed means for each drop-out
category; (iii) looking at residual plots to identify outliers and departures from the model.
To investigate the sensitivity of inferences to the choice of these speci�c drop-out categories,

we �t a model with two drop-out categories (pattern 1 if last visit prior to visit 11, pattern 2
otherwise). That is, we assumed the marginal distribution of Y is a mixture over these two
patterns. The results, after marginalizing over the distribution of the patterns, are given in
Table VII under the PMM (2 cat) heading. Comparing the results from the two and three
category models, we see that most of the estimates and standard errors are quite similar.
The primary di�erence is for the estimates of the e�ect of the interaction between time and
viral load categories. Both the Bayesian information criterion (BIC) and Akaike’s information
criterion (AIC) are larger for the model with three categories.
We next investigated how well the model-based visit-speci�c means �t with the observed

data, within pattern. Model-based means were calculated as the sample average of the visit-
speci�c predicted values among all subjects in a given pattern. Figure 6 compares these
predicted means to the corresponding sample means from the observed data. For subjects in
the second drop-out category, the sample means are slightly higher than predicted by the
model for visits 7–9. Overall, though, the predicted and sample means corresponded quite
well with one another.
Finally, a plot of the residuals against the predicted values at each visit is given in Figure 7.

The residuals generally seem to be randomly dispersed about zero with constant variance. From
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Figure 7. For 3-category pattern mixture model, plot of the residuals against the
predicted values at each visit.

the plot we did identify a potential outlier at visit 10 (the residual has value of about 30).
We removed this subject from the data and �tted the models again, but this subject’s data
had little impact on the estimates and standard errors.

6. DISCUSSION

Drop-out and missing data are important issues in longitudinal data analysis, and despite a
�urry of recent research activity on methods for handling drop-out, it is clear that no single
methods is �exible enough to handle all—or even most—instances of drop-out. In our tutorial,
we have focused on three key issues: terminology and assumptions, a review of methods and

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:1455–1497
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models and detailed illustrations of two methodologies. The �rst four sections of our tutorial
are designed to give readers a context within which to engage the still evolving literature on
methods for drop-out and missing data; the �fth section (with the applications) can be used
as a template for implementing various popular and �exible methods; here we illustrated use
of inverse probability weighting, joint likelihood analysis for repeated binary responses and
pattern mixture models. In short, it is our hope to have put some modern and powerful tools
into the hands of practitioners.
Since this tutorial is by nature introductory, there are a number of important issues that

either have not been included here or have been discussed only super�cially. Perhaps foremost
among these is sensitivity analysis, for the simple reason that models of outcome-related drop-
out rest heavily on assumptions cannot be empirically critiqued. In fact the design, execution
and interpretation of sensible sensitivity analyses is gaining momentum as a research area
in its own right. Readers are referred to References [77, 82, 83, 108] for methodology related
to pattern-mixture models. Other key references include References [69, 109]. Information on
sensitivity analysis in semi-parametric models can be found in References [13, 94].
Properly handling death as a cause of drop-out is among the more vexing issues in an

analysis of longitudinal data. Most methods for drop-out assume that subjects who drop-out
could have been measured after their drop-out time, which seems implausible when drop-
out results from death. Two possible approaches have been outlined by Rubin and Frangakis
[110] and Robins et al. [111], who essentially envision inferences about the subpopulation of
individuals who would survive, or who have non-zero probability of surviving, to a certain
time t. Again because of the introductory nature of our tutorial, we have sidestepped the issue
in our analysis of the HIV data in Section 5, but it remains an important one to resolve.
A third topic that appears to be drawing attention of methodologists is multiple-cause drop-

out. In our examples, we have treated all drop-outs the same, but in practice participants may
have di�erent reasons for dropping out; these types of drop-out may be related to outcomes in
di�erent ways (or not at all). A simple example is when some subjects have outcome-related
drop-out and others do not [85, 89]; in other cases, drop-out may be related to treatment for
some and to outcome for others [13].
Finally, there does not appear to exist a uni�ed terminology for describing drop-out mech-

anisms in longitudinal studies. Clearly the framework of Rubin [50] forms the basis for
classifying missing data mechanisms, but its application to longitudinal data is not straight-
forward. We have attempted to draw what we view as a key distinction between sequential
MAR, which seems naturally suited to stochastic process formulations, and MAR, which is a
multivariate version of de�nitions given in References [25, 50]. To get a sense of the various
ways MAR is de�ned for longitudinal data, readers are directed to papers by Diggle and
Kenward [8], Little [3], Robins et al. [37], Fleming and Harrington [52, p. 100] and Gill and
Robins [59].
A substantial portion of information for decision making in public health and clinical

medicine derives from longitudinal studies of various types, including clinical trials and co-
hort studies, and drop-out tends to be more the rule than the exception. Failure to handle it
correctly leaves the results susceptible to selection biases, which in turn may lead to erro-
neous conclusions and poorly informed decisions. Applied with care, the methods reviewed
and illustrated here can help analysts and decision makers appreciate the nature of possible
selection biases, to correct them to some degree, but perhaps most importantly to understand
the limitations of the information contained in their data.
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APPENDIX A: SMOKING CESSATION EXAMPLE

This appendix includes data excerpts and sample code for the models �t in our case studies.
For simplicity, the sample code for the CTQ study ignores data from the �rst 4 weeks
(although our data analysis includes those observations).

A.1. Data excerpt

ID: identification number for each subject
WEEK: variable indicating the week number
R: missing data indicator (1 = observed, 0 = missing)
TX: treatment indicator (1 = exercise, 0 = control)
QUIT: smoking status indicator (1 = quit, 0 = not quit)
WEIGHT: baseline weight in pounds
FAGER: baseline nicotine dependence score (Fagerstrom Index)
RATE: baseline average number of cigarettes smoked per day
CESD: baseline depression score (CESD scale)
MAXQUIT: the longest interval in days of previous quit attempt

SUBJECT:=001
id tx week quit r weight fager brate bcesd maxquit

001 0 1 0 1 238 8 60 32 57
001 0 2 0 1 238 8 60 32 57
001 0 3 0 1 238 8 60 32 57
001 0 4 0 1 238 8 60 32 57
001 0 5 1 1 238 8 60 32 57
001 0 6 1 1 238 8 60 32 57
001 0 7 1 1 238 8 60 32 57
001 0 8 1 1 238 8 60 32 57
001 0 9 1 1 238 8 60 32 57
001 0 10 1 1 238 8 60 32 57
001 0 11 1 1 238 8 60 32 57
001 0 12 1 1 238 8 60 32 57

SUBJECT:= 003
id tx week quit r weight fager brate bcesd maxquit

003 1 1 0 1 199 7 20 6 15
003 1 2 0 1 199 7 20 6 15
003 1 3 0 1 199 7 20 6 15
003 1 4 0 1 199 7 20 6 15
003 1 5 1 1 199 7 20 6 15
003 1 6 1 1 199 7 20 6 15
003 1 7 . 0 199 7 20 6 15

A.2. Sample SAS code for semi-parametric regression analysis

/* DATA STORED LOCALLY IN FILE DATA.SAS7BDAT */
libname sss ’’;

/* RESTRICT ANALYSIS TO DATA FROM WEEKS 5 TO 12 */
data model; set sss.data; if WEEK ge 5; N=1;

/* LOGISTIC REGRESSION MODEL FOR ESTIMATING WEIGHTS */
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proc genmod data=model;
class ID WEEK;
model R/N = WEEK TX TX*WEEK QUITPR BRATE TX*BRATE WEIGHT FAGER TX*FAGER

BCESD TX*BCESD MAXQUIT TX*MAXQUIT / link=logit dist=bin obstats;
make ’obstats’ out=stats;

/* DATA STEP FOR COMPUTING WEIGHTS
PRED: MARGINAL PROBABILITY OF BEING OBSERVED AT T
OBSER: CUMULATIVE PROBABILITY OF BEING OBSERVED AT T
W: INVERSE OF THE CUMULATIVE PROBABILITY (WEIGHT) */

proc sort data=stats; by ID WEEK;
data weight; set stats; by ID WEEK;
if first.ID then do; OBSER = 1; end;
retain ID OBSER;
OBSER = OBSER * PRED;
W = 1 / OBSER;

/* UNWEIGHTED GEE (ASSUMES MCAR) */
proc genmod data=model;
class ID WEEK;
model QUIT/N = TX / link = logit dist = bin;
repeated subject = ID / withinsubject = WEEK type = ind;

/* WEIGHTED GEE (ASSUMES MAR) */
proc genmod data=weight;
class ID WEEK;
scwgt W;
model QUIT/N = TX / link = logit dist = bin;
repeated subject = ID / withinsubject = WEEK type = ind;

APPENDIX B: HIV COHORT EXAMPLE

B.1. Data excerpt

ID: Participant ID number
TIME: Visit number (6 month intervals)
CD4SQRT: Square root of CD4 cell count
D: Drop-out pattern (1, 2, 3)
VLCATB: Viral load at baseline
SYMPTOMB: Number of HIV-related symptoms at baseline (0 to 5)
ART6B: Indicator of receiving antiviral treatment in

6 months prior to enrolment (0 = no, 1 = yes)
AWAREYRB: Number of years aware of HIV infection at baseline
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SUBJECT ID:=1
time cd4sqrt d vlcatb symptomb art6b awareyrb
0 18.9499 1 >30k 2 0 3
1 15.3362 1 >30k 2 0 3
2 14.9097 1 >30k 2 0 3

SUBJECT ID:=2
time cd4sqrt d vlcatb symptomb art6b awareyrb
0 29.4444 3 500-5k 0 0 1
1 22.9456 3 500-5k 0 0 1
2 29.4856 3 500-5k 0 0 1
3 22.2998 3 500-5k 0 0 1
4 21.1660 3 500-5k 0 0 1
5 17.8606 3 500-5k 0 0 1
6 17.6593 3 500-5k 0 0 1
7 18.9989 3 500-5k 0 0 1
8 26.0707 3 500-5k 0 0 1
9 25.9230 3 500-5k 0 0 1
10 26.8384 3 500-5k 0 0 1

B.2. SAS code
/* DATA STORED LOCALLY IN DROP-OUT.SAS7BDAT */
libname sss ’’;
data dropout; set sss.dropout;

/* REGRESSION MODEL UNDER MCAR ASSUMPTION
ESTIMATION METHOD EQUIVALENT TO GEE UNDER WORKING INDEPENDENCE
ROBUST S.E. IMPLEMENTED USING ’EMPIRICAL’ OPTION */

proc mixed data=dropout empirical noclprint;
class id vlcatb;
model cd4sqrt = time symptomb art6b awareyrb vlcatb time*symptomb

time*art6b time*awareyrb time*vlcatb / s;
repeated / subject=id;

/* REGRESSION MODEL UNDER MAR ASSUMPTION
ESTIMATION METHOD IS MAXIMUM LIKELIHOOD UNDER M.V. NORMAL MODEL
VARIANCE MATRIX STRUCTURED USING RANDOM INTERCEPT AND SLOPE */

proc mixed data=dropout empirical noclprint;
class id vlcatb;
model cd4sqrt = time symptomb art6b awareyrb vlcatb time*symptomb

time*art6b time*awareyrb time*vlcatb / s;
random intercept time / subject=id type=un g gcorr;

/* REGRESSION MODEL USING PATTERN MIXTURE APPROACH (3 CATEGORIES) */
/* STEP 1: USE PROC MIXED TO ESTIMATE WITHIN-PATTERN REGRESSION

COEFFICIENTS FROM MODEL OF [Y | D, X] */
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proc mixed data=dropout empirical noclprint;
ods output SolutionF=esti1; ods output CovB=COVB1;
class id vlcatb d;
model cd4sqrt = d time*d d*vlcatb d*symptomb d*art6b d*awareyrb

d*time*vlcatb d*time*symptomb
d*time*art6b d*time*awareyrb / noint s covb;

random intercept time / subject=id type=un;

/* RETAIN REQUIRED COLUMNS OF COV(BETAHAT)
FROM MODEL OF (Y | D, X) FOR READING INTO PROC IML */

data COVB1; set COVB1; keep Col1-Col48;

/* STEP 2: USE PROC IML TO CALCULATE MARGINALIZED REGRESSION PARAMETERS
AND STANDARD ERRORS (USE DELTA METHOD FOR S.E.) */

proc iml;

/* BETAHAT = REGRESSION PARAMS FROM PROC MIXED ABOVE */
use esti1; read all var{Estimate} into betahat;

/* V_BETA = COV(BETAHAT) */
use COVB1; read all var _num_ into V_beta;

/* PIHAT = OBSERVED PROPORTIONS FOR EACH DROP-OUT CATEGORY (USER-SUPPLIED)
V_PI = COV(PIHAT) */

pihat = { 199 109 537 }‘ / 845;
V_pi = ( diag(pihat) - pihat * pihat‘ ) / 845;

/* CONSTRUCT VARIANCE/COVARIANCE MATRIX FOR BETAHAT AND PIHAT */
p = nrow(betahat); q = nrow(pihat); z = shape(0, q, p);
Vhat1 = V_beta || z‘; Vhat2 = z || V_pi; Vhat = Vhat1 // Vhat2;

/* COMPUTE MARGINAL COVARIATE EFFECTS BY AVERAGING OVER PATTERN.
FUNCTION I(K) GENERATES IDENTITY MATRIX OF DIMENSION K
OPERATOR @ IS KRONECKER PRODUCT
OPERATOR || (//) IS HORIZONTAL (VERTICAL) CONCATENATION
OPERATOR ## IS ELEMENT-WISE EXPONENTIATION */

Imat = I( int(p/q) );
e1 = {1 0 0}; e1mat = Imat @ e1;
e2 = {0 1 0}; e2mat = Imat @ e2;
e3 = {0 0 1}; e3mat = Imat @ e3;
beta_m = ( (pihat[1]*e1mat) + (pihat[2]*e2mat) + (pihat[3]*e3mat) )*betahat;

/* CONSTRUCT JACOBIAN MATRIX FOR DELTA METHOD CALCULATION
LET THETA = (BETA, PI) WHERE

BETA = COEFFICIENT VECTOR FROM [Y | D, X] MODEL
PI = VECTOR OF DROP-OUT PROBABILITIES */
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dth_db = (pihat[1] * e1mat) + (pihat[2] * e2mat) + (pihat[3] * e3mat);
dth_dp1 = e1mat * betahat; dth_dp2 = e2mat*betahat; dth_dp3 = e3mat * betahat;
Jac = dth_db || dth_dp1 || dth_dp2 || dth_dp3;

/* COMPUTE STANDARD ERRORS FOR MARGINAL COVARIATE EFFECTS */
V_beta_m = Jac * Vhat * Jac‘;
se_beta_m = ( vecdiag( V_beta_m ) )##(0.5);
results = beta_m || se_beta_m; print results;
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