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Summary. Longitudinal study designs in biomedical research are motivated by the need or
desire of a researcher to assess the change over time of an outcome and what risk factors may
be associated with the outcome. The outcome is measured repeatedly over time for every
individual in the study, and risk factors may be measured repeatedly over time or they may be
static. For example, many clinical studies involving chronic obstructive pulmonary disease
(COPD) use pulmonary function as a primary outcome and measure it repeatedly over time for
each individual. There are many issues, both practical and theoretical, which make the analysis
of longitudinal data complicated. Fortunately, advances in statistical theory and computer tech-
nology over the past two decades have made techniques for the analysis of longitudinal data
more readily available for data analysts.

The aim of this paper is to provide a discussion of the important features of longitudinal data
and review two popular modern statistical techniques used in biomedical research for the analy-
sis of longitudinal data: the general linear mixed model, and generalized estimating equations.
Examples are provided, using the study of pulmonary function in cystic fibrosis research. Pediatr
Pulmonol. 2000; 30:330–344. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Longitudinal study designs in biomedical research are
motivated by the need or desire of a researcher to assess
the change over time of an outcome. In a longitudinal
study design, the outcome is measured repeatedly over
time for every individual in the study. In addition, asso-
ciated risk factors may be measured repeatedly over time
or they may be static. Compared to cross-sectional study
designs, longitudinal study designs can be more efficient,
less costly, and more robust to model selection, and they
can have increased statistical power.1,2

In the past decade, an unscientific observation by the
author indicates an increase in the medical literature of
the reported use of longitudinal studies in clinical re-
search. There are many reasons why there may be an
increase in the use of longitudinal study designs in bio-
medical research. Two important reasons are advances in
statistical theory and computer technology, which have
made statistical techniques for the analysis of longitudi-
nal data available to statisticians. Longitudinal study de-
signs have a long history in many scientific disciplines.
As a result, longitudinal study design terminology is not
standardized. Helms1 provides an excellent summary of

longitudinal design terminology. For example, the
phrases “longitudinal study design” and “repeated mea-
sures design” are often used synonymously. As another
example, in survey research, longitudinal cohort studies
are usually referred to as panel studies to distinguish
them from studies of birth “cohorts.”3 Duncan and
Kalton4 identified four types of longitudinal study de-
signs in survey research: panel survey, repeated survey,
rotating panel survey, and split panel survey. However,
this paper will not explore longitudinal study designs in
survey research.

There are several classes of longitudinal study designs,
including prospective (cohort or follow-up) designs, ret-
rospective (case-control) designs, observational designs,
and experimental designs. The prospective longitudinal
study design is used to collect data on subjects going
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forward in time. Usually, subjects are selected with and
without risk factors, and then they are followed over time
to repeatedly measure a defined outcome variable. The
retrospective longitudinal study design does just the op-
posite, i.e., it is used to collect data on subjects going
backwards in time where the outcome variable for both
cases (those already known to have disease based on their
outcome) and controls (those already known to not have
the disease) is repeatedly collected backwards in time.

Though the discussion thus far has used time as the
longitudinal metameter, it should be noted that other
variables may also be used. For example, in a longitudi-
nal study of pulmonary function in children, height may
be used as the longitudinal metameter, with interest being
in evaluating how pulmonary function changes with
changing height. Another example would be a dose re-
sponse study of a cholesterol-reducing drug, where re-
peated measures of cholesterol are made on each indi-
vidual. Of main interest would be how cholesterol
changes with changing dose.

There are many issues, both practical and theoretical,
which make the analysis of longitudinal data compli-
cated. Such issues include, but are not limited to, corre-
lation between repeated outcome measurements, missing
data, irregularly timed data, mixture of static and time-
varying covariates, and availability of software for model
fitting. In addition, there are specific issues of concern
for the biomedical researcher who is not a statistician:
statistical methods must address factors such as ease of
use; incorporation of biological assumptions and treat-
ment modalities; and strength of interpretation. The aim
of this paper is to provide a review of the state-of-the-art
of techniques for statistically analyzing longitudinal data
in biomedical research. A preponderance of mathemati-
cal detail are eschewed so that important concepts can be
highlighted. Though the emphasis of this paper is on
biomedical research, much of the paper’s discussion is
applicable to studies other than biomedical research. Ex-
amples are provided, using the study of pulmonary func-
tion in cystic fibrosis (CF) research.

CONSIDERATIONS IN THE ANALYSIS OF
LONGITUDINAL DATA IN CLINICAL STUDIES

As stated above, there are many issues, both practical
and theoretical, which make the analysis of longitudinal

data complicated. These issues include, but are not lim-
ited to, correlation between repeated outcome measure-
ments, irregularly timed data, missing data, mixture of
static and time-varying covariates, and availability of
software for model fitting.

Correlation Between Outcome Measurements

An extremely important fact regarding measurements
repeated on an individual is that the measurements are
typically correlated. Though it could happen that re-
peated measurements on an individual may not be cor-
related, it is unlikely that repeated measurements on the
same individual will actually be independent. If correla-
tion is ignored, it can negatively impact parameter esti-
mation, hypothesis testing, and efficiency of study de-
sign.

In standard univariate regression analyses,5 a funda-
mental assumption is that the values of the outcome are
independent, whether there is one observation per indi-
vidual or repeated observations per individual. A simple
example illustrates what can happen when correlation
between observations are ignored in the univariate case:
suppose Yi, i 4 1, . . . , n, arecorrelated normally dis-
tributed observations, with meanm, and variances2. As-
sume all pairwise correlations are equal tor (e.g., re-
peated measurements of a healthy individual’s weight
over a short period of time). Suppose we want to con-
struct a 95% confidence interval for the meanm. Let’s
isolate our attention to the upper 95% confidence limit:

Y 5 1.96Fs2

n
$1 + ~n − 1!r%G1/2

,

where

Y =
1

n (
i = 1

k

Yi.

If we were to ignore the correlation and assumed that the
Yis are instead independent, i.e., assumer 4 0, then the
upper 95% confidence interval is given by

Y 5 1.96Fs2

n G
1/2

.

If the correlation is ignored, the computed confidence
interval could be much smaller than the nominal level,
hypothesis tests can have a much higher Type I error, and
statistical power can be lower than planned.

Before the availability of more appropriate longitudi-
nal data analysis techniques, a common method of per-
forming regression analyses for repeated measures was
to perform regression analyses, say a simple linear

Abbreviations

ANOVA Analysis of variance
CF Cystic fibrosis
COPD Chronic obstructive pulmonary disease
FH Helms-McCarroll approximate F statistic
FEV1 Forced expired volume in 1 sec
GEE Generalized estimating equation
MAR Missing at random
MCAR Missing completely at random
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model, for each individual using the same number of
parameters and then aggregate the parameters, e.g., tak-
ing the average of the individual slopes to obtain a mea-
sure of group behavior. Accordingly, each separate indi-
vidual regression analysis would be conducted under the
fundamental assumption that the values of the outcomes
were independent, i.e., the regression analyses would ig-
nore correlations. As demonstrated in the univariate ex-
ample above, ignoring correlations between observations
leads to bias in even the simplest cases.

The correlation matrix and/or covariance matrix be-
tween observations play an important role in the analysis
of longitudinal data. Let’s consider a straightforward ex-
ample: the Cystic Fibrosis Foundation National Patient
Registry6 contains yearly data on over 21,000 registered
CF patients in the United States. The Registry contains
approximately 85% of all diagnosed cases of cystic fi-
brosis in the United States and more than 90% of all
deaths.7 Specifically, let’s consider the 2,982 registered
pediatric patients (ages between 6–18) and 2,105 regis-
tered adult patients (ages between 18–45) who had FEV1

measurements for each of the 7 years from January 1,
1989 to December 31, 1995 (complete data). Tables 1a
and b present the estimated correlation matrices for per-
cent predicted FEV1 in pediatric patients and adults (7
rows and 7 columns). The correlations contain the esti-
mated correlation coefficients between pairs of percent
predicted FEV1 measurements on the same individual in
two different years.

In Table 1a, the correlations just below the main di-
agonal consisting of 1.00 represent correlations between
successive adjacent years of data. For example, the cor-

relation between 1989 and 1990 percent predicted FEV1

is 0.71, and the correlation between 1994 and 1995 is
0.91. Similarly, the correlations just below the diagonal
representing adjacent years are correlations for percent
predicted FEV1 which are 2 years apart. In general, all
correlations are moderate to large, and their magnitudes
demonstrate why the correlations should not be ignored.
In addition, it appears that the correlations along a di-
agonal increase with time, i.e., the more recent years of
FEV1 appear to be more correlated than the earlier years
for these data. The latter observation suggests that a pos-
sible correlation pattern could be modeled which would
enhance accuracy and precision in the longitudinal analy-
ses of these data.

On the other hand, correlations for adults are larger
than correlations for pediatrics. Also, in contrast to the
pediatric correlations, the adult correlations do not ex-
hibit the same pattern of behavior. The adult correlations
along the diagonals have more of a tendency to either
decrease over time or rise and fall over time. Though a
correlation pattern may exist for the adult patients, the
pattern is less clear than for the pediatric patients.

Modern longitudinal statistical methods, such as the
general linear mixed model8–10 and generalized estimat-
ing equations,11 use the correlation (or covariance) be-
tween observations in modeling longitudinal data. Grady
and Helms12 provide techniques for selecting appropriate
covariance matrices in the analysis of longitudinal data.
Adjusting for correlation between observations is one
reason that modern longitudinal data analysis techniques
are more appropriate than some previous methods of
analyses.

Data Collection Schedule

It is customary in a longitudinal study design to ad-
dress the scheduling for collecting repeated measure-
ments. Helms1 provides us with two very good defini-
tions regarding data collection scheduling in a
longitudinal study:

a) A longitudinal study has aregularly timed scheduleif
measurements are scheduled at equal intervals of the
longitudinal metameter. A longitudinal study has
regularly timed dataif measurements are actually ob-
tained at regular intervals of the longitudinal metame-
ter.

b) A longitudinal study has aconsistently timed schedule
if every subject has the same schedule, i.e., is sched-
uled to be evaluated at the same set of longitudinal
metameter values, whether or not the schedule is
regularly timed. A longitudinal study hasconsistently
timed dataif every subject isevaluatedat the same set
of longitudinal metameter values.

TABLE 1b—Adult Patients, National Cystic Fibrosis
Patient Registry 1989–1995, Correlation Matrix for Percent
Predicted FEV 1

1989 1990 1991 1992 1993 1994 1995

1989 1.00
1990 0.84 1.00
1991 0.80 0.83 1.00
1992 0.79 0.83 0.83 1.00
1993 0.74 0.78 0.78 0.83 1.00
1994 0.72 0.76 0.76 0.83 0.83 1.00
1995 0.68 0.71 0.71 0.78 0.78 0.89 1.00

TABLE 1a—Pediatric Patients, National Cystic Fibrosis
Patient Registry 1989–1995, Correlation Matrix for Percent
Predicted FEV 1

1989 1990 1991 1992 1993 1994 1995

1989 1.00
1990 0.71 1.00
1991 0.67 0.74 1.00
1992 0.67 0.72 0.76 1.00
1993 0.65 0.70 0.73 0.81 1.00
1994 0.66 0.72 0.75 0.80 0.84 1.00
1995 0.65 0.70 0.72 0.78 0.81 0.91 1.00
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In the study of many chronic diseases, one may plan
on having a regularly timed scheduled, but the actual data
collection isirregularly timed.For example, in a longi-
tudinal study of pulmonary function in cystic fibrosis
with a regularly timed schedule, say at the end of each
month for 6 months, cystic fibrosis patients may have
unexpected pulmonary exacerbations during the month
which may require measurements sometime during the
month in addition to at the end of the month. A further
example is that patients may miss the window of oppor-
tunity of pulmonary measurement and have to be re-
scheduled for some other time.

Observe that a longitudinal study can have a consis-
tently timed schedule, but the schedule can be irregularly
timed. For example, if data were scheduled to be col-
lected at months 1, 3, and 6, then the study would have
a consistently timed schedule but the schedule would
also be irregularly timed.

Missing Data

Because longitudinal studies are rarely complete due
to patient attrition, mistimed visits, premature study ter-
mination, death, and other factors, missing data in lon-
gitudinal studies can be a difficult problem to overcome.
Missing data makes sense only in the context of a regular
or consistently timed data collection schedule. Missing
data can be classified into two broad categories: ran-
domly missing data, and nonrandomly missing data.
Randomly missing data can be further broken down into
“missing completely at random” (MCAR) or “missing at
random” (MAR). Nonrandomly missing data are often
referred to as informatively missing data.

Little and Rubin13 provide a formal way of classifying
missing values: Let Y* be the vector containing the com-
plete set of observations which would have been ob-
tained in the case of no missing values. Let Y(o) denote
the vector of actual, observed measurements and Y(m)

denote the vector of missing observations which would
have been observed but were not, so that Y*4 (Y(o),
Y(m)) can be represented as the partitioned vector of Y(o)

and Y(m). Let R denote a set of indicator random vari-
ables which delineate which observations in Y* are ac-
tually observed, i.e., elements of Y(o), and which are
missing, i.e., elements of Y(m). Then, using probabilistic
arguments, randomly missing (MCAR and MAR) and
nonrandomly missing (informatively missing) can be
classified as follows:

1) MCAR means that R is independent of both Y(o),
Y(m);

2) MAR means that R is independent of Y(m);
3) nonrandomly missing means that R is dependent on

Y(m).

Statistical analysis with randomly missing data has
been shown to provide a more tractable solution than

with nonrandomly missing data. Though there are several
methods in the statistics literature for addressing ran-
domly missing data in longitudinal studies, there appear
to be essentially two general approaches:14 using gener-
alized least-squares, and using the test statistics of
Wald.15 However, there is no general consensus on how
to analyze longitudinal data with missing values. In ad-
dition, since nonrandomly missing data can be even more
of a problem than randomly missing data, there simply
are no unified approaches to addressing the problem.
Woolson et al.14 support the latter statement: “Little
work has been done on the problem of nonrandomly
missing longitudinal data by way of formal modeling of
the incompleteness, although models do exist for han-
dling special types of completeness such as censoring or
truncation of data beyond a certain time period.” Rem-
edies for addressing both randomly and nonrandomly
missing data will be active areas of research in the sta-
tistical community for years to come.

Static and Time-Varying Covariates

In most longitudinal studies, there is an interest in
assessing the relationship between the outcome variable
and selected covariates (the word “covariates” is used
synonymously with independent variables, predictor
variables, explanatory variables, and risk factors). In
cross-sectional studies, only static variables such as race
and gender, and variables measured at a single point in
time such as age, height, and weight, can be covariates.
However, longitudinal studies allow for the effect of co-
variates as they change over time, in addition to the use
of static covariates.

For example, consider a longitudinal study of pulmo-
nary function in CF. Variables such as age and weight are
obvious time-varying covariates. However, other less ob-
vious time-varying covariates may includePseudomonas
aeruginosastatus,Hemophilus influenzaestatus, or nor-
mal flora status. With the ability to use time-varying
covariates, CF researchers can more accurately assess the
relationship between pulmonary function and time-
varying covariates of interest, instead of forcing the time-
varying covariate to be static (e.g., using the last ob-
served measure to determine normal flora status).

STATISTICAL METHODS USED IN THE ANALYSIS
OF LONGITUDINAL DATA

Though there are several statistical methods which
may be used in the analysis of longitudinal data, the
primary focus of this paper is to highlight two modern
methods which are receiving considerable attention in
both the statistical and subject-matter literature: thegen-
eral linear mixed modeland generalized estimating
equations.
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Both thegeneral linear mixed model(mixed model)
andgeneralized estimating equations(GEE) are part of a
broader class of techniques called generalized linear
models.11,16,17There are three basic extensions of gen-
eralized linear models, each reflecting the interpretation
of the regression parameters for dependent outcomes
which are correlated:

Random effects models (mixed model, subject-specific
models);

Marginal models (population-average models);
Conditional models.

Both random effect models and marginal models can be
referred to as unconditional models. An unconditional
model simply means that the expected outcome is mod-
eled as a (linear) function of time and other covariates
which represent both within- and between-subject ef-
fects. Conditional models, on the other hand, can be de-
scribed as (linear) models where the outcome appears on
the right side of the regression equation (as a predictor)
as well as the left side of the regression equation, i.e., the
mean or probability of the outcome variable is condi-
tional on the other values of the outcome (in many set-
tings, the conditioning is on the prior value(s) of the
outcome). Conditional models are outside the scope of
this paper, but the interested reader is directed to Rosner
and Munoz18 and Rosner et al.19 for further reading.

Random effects models (mixed models) are regression
models which are particularly suited for analyzing cor-
related outcomes which are continuous. The mixed
model provides estimation and hypothesis testing for si-
multaneously modeling both population effects (fixed ef-
fects) and random effects (subject-specific effects). Mar-
ginal models are particularly relevant when the main
focus of a study is investigating the effects of covariates
on the population mean. GEE is a method of estimation
in marginal models (GEE isnot a model, but an estima-
tion technique) with correlated outcomes. GEE can be
applied to marginal models where the outcome is either
continuous or categorical.

For readers without a matrix algebra and/or calculus
background, the definitions and assumptions below may
be skipped. Instead, the reader may use the Appendix for
a more specific and less complex presentation of the
mixed model, which may help to facilitate their under-
standing of this complex modeling technique.

General Linear Mixed Model

Thegeneral linear mixed model,referred to henceforth
as the mixed model, is a multivariate regression method
that helps to generalize the analysis of variance
(ANOVA) and general linear regression methods. The
mixed model9 is a general statistical technique for ana-
lyzing longitudinal data, but can also be used to analyze

cross-sectional data. The mixed model is a statistical
method for modeling continuous outcome measures as a
function of fixed (population) effects, while simulta-
neously modeling individual subject parameters as ran-
dom effects. The mixed model can accommodate both
time-dependent covariates and static covariates.

Mixed model statistical methods are not especially
new. Seminal theoretical papers published by Harville20

and Laird and Ware9 helped to popularize the use of
mixed models in practice. Although many papers, both
theoretical and applied, subsequently appeared in the sta-
tistical literature,21–27 most statistical textbooks do not
yet include discussions of mixed models.

We present an abbreviated discussion of general defi-
nitions and assumptions used in the formulation of the
general linear mixed model.

Definitions and Assumptions

The following discussion provides the general defini-
tion and notation of the general linear mixed model for
the analysis of incomplete longitudinal data. The mixed
model, which contains both fixed and random effects, is
given by

Yi 4 Xib + Zidi + ei, i 4 1, . . . , k,

where Yi is an ni × 1 vector of ni observations on the i-th
subject;b is a p × 1vector of unknown, fixed, population
parameters; Xi is an ni × p known, constant design matrix
for the i-th subject; di is a q × 1 vector of unknown,
random individual parameters. The random parameters
are subject-specific, but the vector size is the same from
subject to subject; Zi is an ni × q known, constant design
matrix for the i-th subject corresponding to the random
effects di; and ei is an ni × 1 vector of random error terms.

For i 4 1, . . . , k, it isassumed that the random subject
parameters, di, have independent, multivariate normal
distributions with mean vector zero and covariance D,
denoted di ∼ NID(0, D), where D is an unknown, posi-
tive-definite matrix. Similarly, it is assumed that the vec-
tors of random error terms, ei, have independent, multi-
variate normal distributions with mean vector zero and
covariances2Ii, denoted ei ∼ NID(0, s2Ii), where Ii is an
ni × ni identity matrix, ands2 is the scalar within-subject
variance parameter. It should be noted that the covari-
ance of ei could be expressed more generally usings2Wi,
where Wi is a known, ni × ni positive-definite matrix. The
random subject parameters, di, are assumed to be inde-
pendent of the vector of random error terms, ei. The
correlation between the individual random effects is ob-
tained as a function D.

From the above definitions, it can easily be shown that
E(Yi) 4 Xib and Var(Yi) 4 Vi 4 ZiDZ8i + s2Ii, where
Vi is the ni × ni positive-definite, symmetric covariance
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matrix of Yi. The covariance matrix Vi can be viewed in
a couple of ways when attempting to model it. Since Vi

is ni × ni, then there are ni(ni − 1)/2 parameters which
require estimating. However, taking advantage of the
writing of Vi as a function of D, Vi 4 ZiDZ8i + s2Ii,
allows the flexibility of reducing the number of param-
eters to [q(q − 1)/2] + 1. Also, since each subject is
allowed to have unique fixed effect and random effect
design matrices Xi and Zi, the mixed model can accom-
modate time-dependent covariates and missing and mis-
timed observations.

Maximum likelihood estimators of the parameters (re-
stricted or unrestricted) in the mixed model generally do
not have explicit solutions. Hence, complex iterative
computer algorithms are usually required to derive esti-
mates that maximize the likelihood of the observed data.
Two frequently used algorithms are the EM (expectation
and maximization) algorithm and the Newton-Raphson
algorithm. Detailed discussions of these iterative com-
puter algorithms are beyond the scope of this paper, and
we refer the interested reader to Lindstrom and Bates.28

The introduction of SAS Proc MIXED29 has greatly fa-
cilitated the implementation of the mixed model for gen-
eral practitioners.

Generalized Estimating Equations

Generalized estimating equations (GEEs) are an ap-
proach11,30–32which specifies only the marginal distri-
bution of the outcome variables. GEE is an estimation
technique which estimates a common scale parameter
and a working correlation matrix of the outcome vari-
ables, treating them as nuisance parameters. GEE can be
used for both discrete and continuous outcomes, but is
mostly used for discrete outcomes and even then, most
real-life applications are correlated binary outcomes.

In specifying only the marginal distribution of the out-
come variable, GEE will produce estimates of population
parameters only (modeling of population mean only).
Hence, GEE cannot be used in settings where subject-
specific estimation and hypothesis testing are required. In
contrast, the mixed model does provide subject-specific
as well as population estimation and hypothesis testing
for continuous outcome measures.

We present an abbreviated discussion of general defi-
nitions and assumptions used in the formulation of the
GEE.

Definitions and Assumptions

The following discussion provides the general defini-
tion and notation of the generalized estimating equation
(GEE) approach to the analysis of incomplete longitudi-
nal data.

Suppose Y1, Y2, . . . , Yk are independent vectors with

meansm1, m2, . . . , mk. For the j-th element of the i-th
subject, let

E~Yij ! = mij ,

g~mij ! = hij = xij
Tb,

Var~Yij ! = fh~mij !,

were g[ is called the link function, h[ is the variance
function,hij the linear predictor, andf the scale or dis-
persion parameter. The GEE can be formed by the fol-
lowing:

(
i = 1

k

Di
TSi

−1 ~Yi − mi! = 0,

where

Di =
­mi

­b

andSi 4 Var(Yi). The diagonals ofSi are determined by
Var(Yij) 4 fh(mij ). To determine the off-diagonal ele-
ments first,Si 4 fAiCiAi, where Ai 4 diag(√h(mij )) and
Ci 4 Corr(Yi).

In solving the GEE, the correlation matrix is assumed
to be parameterized by an s × 1 vectorr. An estimate of
r is plugged into the equation and estimation then pro-
ceeds. The assumed correlation structure is called the
working correlation matrix, denoted by Ri. In all likeli-
hood, the working correlation matrix Ri may not be iden-
tical to the true correlation matrix Ci. Thus, GEE is
solved by

(
i = 1

k

Di
TVi

−1 ~Yi − mi! = 0

where Vi 4 AiRiAi.
Using GEE, the estimate ofb is “nearly efficient

relative to the maximum likelihood estimates ofb in
many practical situations, provided that Var(Yi) has been
reasonably approximated,”11 and the estimate ofb con-
verges in probability to the true value “even if the co-
variance structure of Yi is incorrectly specified.”11 In
other words, good estimates of population parameters
can be achieved even when the within-subject variances
are only roughly approximated. The use of GEE by the
practitioner is aided by software such as SAS Proc Gen-
mod.33

EXAMPLE OF LONGITUDINAL ANALYSES, USING
PULMONARY FUNCTION IN CYSTIC
FIBROSIS RESEARCH

We will examine the application of the mixed model
and issues arising in the analysis of complex longitudinal

Longitudinal Data Analysis 335



data, using data collected on cystic fibrosis subjects.
Since GEE and the mixed model give quite similar re-
sults for the population estimates in this example, only
the mixed model will be discussed for the sake of clarity
and simplicity.

Cystic fibrosis (CF) is the most common lethal auto-
somal recessive genetic disease among Caucasians. The
clinical course of CF varies widely; however, although
CF affects multiple organs, the majority of morbidity and
mortality in these patients is the result of pulmonary
complications. CF is a chronic obstructive pulmonary
disease which is both studied and treated within a longi-
tudinal framework. Collecting spirometric data longitu-
dinally on CF subjects has been the norm for many years.
However, many of the major results assessing the rela-
tionship between CF pulmonary function outcomes such
as forced expired volume in 1 sec (FEV1), forced vital
capacity (FVC), and maximum mid-expired flow
(MMEF) and possible predictor variables (genotype,
pancreatic status, age, gender, and a host of others) have
been based on cross-sectional analyses.34–36

Longitudinal pulmonary function data from CF pa-
tients typically have undesirable characteristics from a
statistical viewpoint. Longitudinal CF data are oftenir-
regularly timed,i.e., obtained at irregular time intervals.
The subjects often miss scheduled visits; the available
data areincomplete.When a visit is missed for reasons
related to the underlying disease process, the data are
said to beinformatively censored;a patient who dies
before the scheduled end of data collection produces an
extreme form of informatively censored data. Most lon-
gitudinal CF data have all of these characteristics; any
one is sufficient to defeat traditional statistical methods,
leading to incorrect statistical analyses in most cases.
This may explain the prevalence of cross-sectional analy-
ses in much CF research.

Some studies of non-CF populations comparing cross-
sectional analyses with longitudinal analysis of the same
data have shown conflicting conclusions.37–42 For in-
stance, some studies39,40have apparently shown the rate
of decline in FEV1 to be significantly greater when using
cross-sectional analysis than longitudinal analysis. Other
studies,41,42 however, found the rate of decline in FEV1

greater using longitudinal analysis than cross-sectional
analysis. Pattishall et al.,41 studying cross-sectional and
longitudinal estimates of lung growth in children, found
noncomparability of cross-sectional and longitudinal
analysis. They concluded that longitudinal studies should
be compared with longitudinally collected data, and
cross-sectional studies should be compared with data col-
lected cross-sectionally. In addition, van Pelt et al.40 pre-
sented evidence that reference equations based on cross-
sectional studies may overestimate longitudinal change;
that, in turn, can lead to underestimating the effects of
exposure. Longitudinal studies generally have more sta-

tistical power than cross-sectional studies and are more
robust to model selection.2

This CF example also discusses the implications of
using cross-sectional methods in the design of controlled
clinical trials in cystic fibrosis research when longitudi-
nal data are available. By way of this example, the dif-
ferences in interpretations one could potentially get from
using cross-sectional methods as compared to longitudi-
nal methods of analyses in cystic fibrosis are highlighted.

Issues in CF Research

Several controlled clinical trials per year are con-
ducted on CF subjects by both academic researchers and
pharmaceutical companies. Because of the consequences
of disease progression in CF, it is important that any
controlled clinical trial in CF research have an appropri-
ate study design, statistical analyses, power computation,
and sample size determination. As with any controlled
clinical trial, a study design which has less power than it
should to assess change in CF pulmonary function can
seriously undermine study results. In addition, an inap-
propriate statistical analysis to assess rate of change in
pulmonary function in CF subjects can lead to erroneous
conclusions regarding the rate of change.

Cross-sectional data analysis techniques have not been
issues of concern for CF researchers. Traditional statis-
tical analysis techniques for assessing change in CF pul-
monary function have been readily available for many
years. These techniques include the use oft-tests37 and
general linear regression models.36,37 Statistical power
and sample size computations for the cross-sectional
techniques, though at times challenging, have also been
available. Statistical software to perform cross-sectional
analysis has facilitated the use of cross-sectional methods
in CF research.

For CF investigators, general statistical techniques for
assessing the relationship between longitudinal pulmo-
nary function outcomes and predictor variables of inter-
est have been lacking. Any general statistical technique
for analyzing these relationships has to have features
needed by the CF researcher: ease of manipulation, mod-
eling of fixed population effects and random subject ef-
fects, the incorporation of biological assumptions and
treatment modalities, adjustment for correlated observa-
tions (within-subject), and proper handling of irregularly
timed and missing observations. In addition, to properly
design a controlled clinical trial in CF patients, the in-
vestigator must be able to compute power and sample
size based on the available longitudinal analysis tech-
nique.

Fortunately for CF researchers, the general linear
mixed model has the desirable features discussed previ-
ously. Applications of the mixed model are increasingly
appearing in the literature,43–45and the mixed model was
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used as the statistical technique of choice in proposed
clinical trials involving the longitudinal analysis of pul-
monary function data (this is the author’s personal ob-
servation as a member of the Clinical Research Commit-
tee of the Cystic Fibrosis Foundation46).

Data Analysis Using FEV 1 Percent
Predicted Values

Longitudinal FEV1 data were available from clinical
follow-up of 47 adult CF patients (23 female, 24 male)
seen at the University of North Carolina pulmonary
clinic. Complementary data for some of the patients were
obtained from other institutions where they had been
followed for long-term care. Pediatric measurements (10
< age < 19 years; 10–18) were obtained in a subset of 19
patients, including some data from a subset of patients
from other institutions. All subjects were pancreatic in-
sufficient as adults, and all were homozygous for the
most common CF mutation,DF508. From 4 to 97 (me-
dian4 27) measurements were documented per subject.

Figure 1 is a scatter plot of the 1,401 FEV1 percent
predicted values for the 47 homozygousDF508 CF pa-
tients. The solid circles in Figure 2 represent the last
FEV1 percent predicted value for each patient. Observe
that these last values are recorded for each patient after
age 18. The values will be used to demonstrate the results
of performing a longitudinal analysis vs. a cross-
sectional analysis for this group of CF patients. Ideally, it

would be helpful to have a unique plot symbol for each
of the 47 subjects in Figure 1 so that the reader could get
a better view of the individual’s longitudinal data. Un-
fortunately, such a plot would be very crowded and of
dubious value. However, Figure 1 does provide the
reader with a sense of the complexities facing the CF
researcher in analyzing longitudinal pulmonary function
outcomes.

Figure 2 is a plot of the linear regression line resulting
from a cross-sectional simple linear regression analysis
of the 47 last FEV1 percent predicted values for each
patient. Figure 2 also presents the scatter plot of the 47
last FEV1 percent predicted values for each patient.
Table 2 provides the parameter estimates, standard errors
(SE), andP-values of the intercept and slope resulting
from the cross-sectional analysis. The estimate of the
model variance is also given. The reader should note that
the intercept is centered at age4 25 so that the intercept
estimate will be meaningful, i.e., 25 is subtracted from all
ages before performing estimation.

Figure 3 is a plot of the population regression line
(thick line) and the individual regression lines (thin lines)
resulting from a mixed model analysis using the 1,401
FEV1 percent predicted values for the 47 patients (see
Appendix for details). Table 3 provides parameter esti-
mates, SE, andP-values of the population intercept and
slope obtained from the mixed model analysis. The esti-
mate of the within-subject variance is also given. The
intercept is centered at age4 20.

Fig. 1. Longitudinal and cross-sectional adult cystic fibrosis data, 47 subjects and 1,401 observations. *, percent predicted values
(1,401 observations); d, last percent predicted value for each patient.
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The estimate of the slope of the population regression
line from the mixed model is over 10 times that of the
estimate of the slope from the cross-sectional analysis. In
addition, the conclusion from the cross-sectional analysis
is that there is no statistically significant rate of decline in
FEV1 percent predicted over time for this group of adult
CF subjects. In contrast, using a mixed model analysis,
there is a statistically significant rate of decline in FEV1

percent predicted over time for this group. Just as im-
portant, interpretation of the magnitude of rates of de-
cline from both the cross-sectional and longitudinal
analyses would affect the planning of a controlled clini-
cal trial.

Figure 4 is a plot of the linear regression line resulting
from a cross-sectional linear regression analysis for the
23 female and 24 male patients. Table 4 provides param-
eter estimates, SE, andP-values of the population inter-
cepts and slopes obtained from the cross-sectional analy-
sis. For this analysis, there are no significant differences
between males and females in the intercept or slope. Note
that the estimates of the slopes for females (1.1) and
males (−0.9) are in opposite directions. Even though the
slopes are not statistically different than zero, interpreta-
tion of the estimates of rates of decline for males and

females would affect the planning of a controlled clinical
trial.

Figure 5 is a plot of the population regression lines
(thick dashed and solid lines) and the individual regres-
sion lines (thin dashed and solid lines) resulting from the
mixed model analysis using the 1,401 FEV1 percent pre-
dicted values for the 23 female and 24 male patients.
Table 5 provides parameter estimates, SE, andP-values
of the population intercept and slope obtained from the
mixed model analysis. The estimate of the within-subject
variance is also given. For this analysis, there are no
significant differences between males and females in the
intercepts or slopes.

A note of caution should be sounded here. The previ-
ous analyses are not presented as an exhaustive or com-
plete modeling (curvilinear or nonlinear) of FEV1 per-
cent predicted. Although other covariates such as
genotype, pancreatic status, gender, and/or polynomial
age may be considered when assessing the relation be-
tween age and FEV1, we have limited our analyses to two
examples: one using a simple linear mixed model with
age (in years) as the time-varying covariate, and the sec-
ond using both gender and age. In addition, only patients
who survived to adulthood were included in this analysis,
so that parameter estimates are affected by survival bias
and do not represent the whole CF population.

POWER AND SAMPLE SIZE CONSIDERATIONS

This section illustrates how very different statistical
power and sample size computations may be obtained

Fig. 2. Cross-sectional analysis regression line and scatter plot, N = 47 subjects with cystic fibrosis. d, last FEV, percent predicted
value for each patient.

TABLE 2—Cross-Sectional Regression Model for FEV 1,
Percent Predicted, Intercept Estimated at Age = 25 Years

Parameter Estimate SE P-value

Intercept 49 3.7 0.0001
Age −0.2 0.7 0.75
s2 485
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using cross-sectional vs. longitudinal methods for a
chronic lung disease like cystic fibrosis.

General Framework

Since cystic fibrosis is a deadly, chronic pulmonary
disease, it is very important to design the most effective
and most powerful controlled clinical trials possible. To
do this, the use of longitudinal statistical methods will
have to become a mainstay in the design of controlled
clinical trials in CF research.

In practice, when designing a controlled clinical trial,
the CF researcher will know the approximate number of
subjects he/she can reasonably expect to obtain (con-
straints may be due to budget concerns or subject avail-
ability) and know a minimum number of measurement
occasions he/she can expect. What remains is for the
investigator to compute the statistical power associated
with the respective sample size to detect a difference of
sufficient importance. To compute statistical power, sev-
eral assumptions must be made. The assumptions should
be well-stated for the acceptance of the statistical power
computations.

A general framework for computing statistical power
can be given as follows:

1) The outcome variable or efficacy variable of interest
should be clearly stated.

2) It is assumed that a rough estimate of a (minimal)
clinically significant difference to detect can be pro-
vided. Where this estimate is obtained, it should be
stated clearly.

3) It is assumed that an estimate of the relevant variance
can be provided. Where this estimate is obtained, it
should also be made clear.

4) It is assumed that the statistical procedure for hypoth-
esis testing has been determined and is clearly com-
municated.

5) It is assumed that a specified sample size is provided
and a Type I error level,a, is specified.

From the above assumptions, a statement of statistical
power can be made. Similarly, sample size computations
can be placed in the same general framework by chang-
ing the phrase “sample size” in item 5 above to “power.”

In computing statistical power or sample size for a
planned controlled clinical trial, estimates are needed
which have been derived from a similar study design or
at least from procedures which have similar assumptions.
For a planned longitudinal controlled clinical trial in CF
research, estimates should be derived from a longitudinal
analysis. In addition to estimates of the relevant variance
and difference to detect, the computation of statistical
power for longitudinal designs typically requires an es-
timate of the correlation between successive measure-

Fig. 3. Mixed model analysis. Population and individual regression lines, 47 subjects with cystic fibrosis and 1,401 observations.

TABLE 3—Mixed Model Regression Model for FEV 1,
Percent Predicted, Intercept Estimated at Age = 20 Years

Parameter Estimate SE P-value

Intercept 62 3.4 !0.0001
Age −2 0.34 !0.0001
s2 114
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ments for an individual. The National Cystic Fibrosis
Patient Registry6 provides an excellent source of data for
obtaining initial estimates needed in computing statistical
power for longitudinal study designs in CF research.

Since general statistical techniques for the analysis of
complex longitudinal data have been lacking for the CF
researcher, computation of statistical power and sample
size have also been lacking. Appropriate methods for
computing statistical power for the classic general linear
multivariate model (repeated measures design with no
missing observations) are discussed by Muller et al.47

Muller et al.47 also provide free computer software (us-
ing the Interactive Matrix Language software in SAS48),
with very good documentation for computing statistical
power for the classic general linear multivariate model.

For appropriate statistical power computations in the
mixed model, Helms1 discusses using the Helms-
McCarroll approximate F statistic, denoted FH. The ap-
proximate power is expressed as a function of the fixed
effect regression parameters,b, the random effect vari-
ance matrix, D, the within-subject error variance,s2, and

both fixed effect and random effect design matrices, X
and Z.

Example of Power Analysis

Suppose CF researchers wanted to propose a con-
trolled clinical trial aimed at alleviating the rate of de-
cline in percent predicted FEV1, using the group of adult
CF subjects discussed in the previous section. Consider
for the moment the estimation results in Table 2 (cross-
sectional analysis). Since the effect size (slope with re-
spect to age) is small and the variance is large, a larger
number of CF subjects would be required to have ad-
equate power to detect a clinically meaningful effect in a
proposed cross-sectional design. The power we have to
detect the observed slope of −0.2 (%/year) using a two-
sided t-test with level of significancea 4 0.05 is ap-
proximately 0.5. The sample size needed to detect the
observed slope with a power of 0.8,a 4 0.05, is ap-
proximately 100 subjects. The approximate sample size
needed for a power of 0.9 is approximately 130. Hence,
in the planning of a controlled clinical trial using cross-
sectional analyses, we would have to double or nearly
triple our sample size simply to have reasonable power to
detect the observed slope of −0.2 (%/year).

Now consider the estimation results in Table 3 (lon-
gitudinal analysis with the mixed model). In a proposed
longitudinal study design where the mixed model is used,
since the effect size (slope with respect to age) is large
and the variance is small, improved statistical power is

Fig. 4. Cross-sectional analysis. Regression lines and scatter plot by gender in 47 subjects.

TABLE 4—Cross-Sectional Regression Model for FEV 1,
Percent Predicted, Gender and Age Included as
Covariates, Intercept Estimated at Age = 25 Years

Parameter Estimate SE P-value

Intercept 50 4.9 0.0001
Gender −4 7.2 0.5590
Age 1.1 1.03 0.2763
Gender* age −2.0 1.32 0.1392
s2 460
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achieved. The power we have to detect the observed
slope of −2 (%/year) using a one-sided F-test with level
of significancea 4 0.05 is approximately 0.99 (see
Helms1 for more details). Presently, computing sample
size using the mixed model is not fully developed and
will be omitted here.

It is clear that for this cystic fibrosis example, we have
more statistical power, and estimation results are more
useful using longitudinal rather than cross-sectional
methods. In a study with human subjects it is often less
expensive to measure each subject several times than to
get an equal number of single measurements from a
greater number of subjects.1,49 Hence, we might expect
greater cost savings in using longitudinal methods in the
design of controlled clinical trials in CF research based
on these results.

Finally, it is noted that both the cross-sectional and
longitudinal methods demonstrate large power (>0.95)
for detecting the observed differences in rates of decline
between males and females.

CONCLUSIONS

This paper has presented an overview of some of the
fundamental concepts involved in the analysis of com-
plex longitudinal data. Two of the most commonly used
statistical methods for the analysis of longitudinal data
were highlighted: thegeneral linear mixed model(mixed
model) and the method ofgeneralized estimating equa-
tions(GEEs). An example using pulmonary function data
in cystic fibrosis research was used to illustrate the ap-
plication of the mixed model.

The mixed model and GEE are both very advanced
and complex statistical techniques. A comparison of the
mixed model and GEE can be found in Park.50 Though a
detailed discussion of this comparison is beyond the
scope of this paper, Park50 demonstrates that results from
GEE can differ from that of the mixed model when there
are missing observations and/or the covariance matrix is
structured. Also, both the mixed model and GEE are
lacking in accessible techniques for performing assess-
ment of goodness-of-fit, model assumptions such as nor-
mality (in the case of the mixed model), and other re-
gression diagnostics. However, active research in the
statistical literature provides encouragement that these
limitations will be remedied in the near future.

The example given in this paper involved using simple
linear models, and therefore the full complexity of the
procedures was understated for the sake of clarity and
simplicity. It is important that the reader who is inexpe-
rienced and/or not trained in the use of advanced longi-

Fig. 5. Mixed model analysis. Population and individual regression lines by gender, 47 subjects with cystic fibrosis and 1,401
observations.

TABLE 5—Mixed Model Regression Model for FEV 1,
Percent Predicted, Gender and Age Included as
Covariates, Intercept Estimated at Age = 20 Years

Parameter Estimate SE P-value

Intercept 65 4.9 0.0001
Gender −4 7.0 0.5290
Age −1.8 0.53 0.0017
Gender* age −0.5 0.71 0.4361
s2 108
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tudinal statistical methods enlists the services of a trained
statistician in attempting to apply the mixed model and/
or GEE to complex longitudinal data.

In the near future, longitudinal data analysis tech-
niques will be used to reevaluate some of the most fun-
damental assumptions about the relationship between
correlated outcomes and predictor variables of interest,
including treatment modalities for clinical trial partici-
pants. In addition, longitudinal data analysis techniques
will be used to reevaluate the estimation of parameters
used in sample size and statistical power determinations,
with obvious implications for the future design of many
observational studies and clinical trials.

At present, it is clear that in order to develop more
effective and more powerful observational studies and
controlled clinical trials, longitudinal statistical methods
should be used more often. The examples described in
this paper illustrate how a cross-sectional analysis of pul-
monary function outcomes obtained from CF subjects
should be considered inadequate, when the study design
and/or data collection are longitudinal.

Often, there is a lag between the development of ad-
vanced statistical techniques and their widespread use.
Such has been the case in the development and applica-
tion of advanced longitudinal statistical techniques such
as the mixed model and GEE. Now that the statistical
methodology exists and the computer software is readily
available to accommodate longitudinal designs of obser-
vational studies and controlled clinical trials, it is impor-
tant that these methods are employed when appropriate.
Researchers and practitioners are encouraged to exploit
the advances in general statistical methods for the analy-
sis of complex longitudinal outcomes in designing more
efficient and more powerful observational studies and
controlled clinical trials.
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APPENDIX: EXAMPLE OF MIXED MODELS FOR
THE ANALYSIS OF PERCENT PREDICTED FEV 1

IN CF

Example 1

We first discussed a simple linear mixed model which
is used in the example of data analysis in this paper. We
then discussed a mixed model which can be used to test
the difference between two treatments.

Suppose the CF researcher is interested in using the
mixed model to determine the linear rate of decline (with
respect to age) in percent predicted FEV1 for a group of
CF subjects. We will use a simple linear mixed model
where the fixed population parameter vector,b, has two
elements: an intercept and slope. In addition, we will
assume each subject has their own intercept and slope, di,
i.e., there are two random effects for each subject: a
random intercept and a random slope.

The mixed model equation for the i-th subject may be
written as:

%PredFEV1i 4 b01i + b1AGEi + d0i1i

+ d1iAGEi + ei, i 4 1, . . . , k,

where %predFEV1i is an ni × 1 vector of ni measures of
percent predicted FEV1 over time on the i-th CF subject.
For most scenarios in CF research, ni will vary from
subject to subject. The mixed model formulation accom-
modates the differing numbers of observations per sub-
ject. b0 andb1 are the fixed population parameters (sca-
lars) representing the population intercept and slope (b is
a 2 × 1vector); 1i is an ni × 1 vector of 1s. AGEi is an
ni × 1 vector of ages for the i-th CF subject. Hence, Xi is
an ni × 2 fixed effect design matrix with two columns: a
column of 1s and a column of ages. d0i and d1i are the
random intercept and slope parameters specific to the i-th
CF subject (di is a 2 × 1vector). Zi is an ni × 2 random
effect design matrix for the i-th CF subject and is iden-
tical to Xi. ei is an ni × 1 vector of random error terms for
the i-th CF subject.

Rejection of the fixed-effect null hypothesis H0: b1 4
0 indicates a statistically significant rate of decline
(slope) in FEV1 percent predicted. Similarly, rejection of
the fixed-effect null hypothesis H0: b0 4 0 indicates a
statistically significant intercept.

In the mixed model, the structure of the random effects
covariance matrix, D, and the covariance matrix Var(Yi)
can be defined or modeled in several ways. The concept
of actually modeling the covariance matrices adds to the
complexity of using the mixed model. A complete dis-
cussion on modeling the covariance matrices is beyond
the scope of this paper, but the interested reader is re-
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ferred to Grady and Helms.12 When in doubt, a general
rule of thumb (when practical) is to use unstructured
covariance matrices for D. An inspection of the estimated
unstructured covariance matrices may be used to deter-
mine whether patterns exists.

Example 2

Often the CF researcher is interested in the comparison
of two groups, such as the comparison of males to fe-
males or the comparison of active treatment to placebo.
Let us assume that the CF researcher wishes to compare
males and females. Define the dummy variable GEN-
DER4 1 if the subject is male; GENDER4 0 if female.
A mixed model equation which may be used to test for
gender differences can be written as:

%PredFEV1i 4 b01i + b1GENDERi + b2AGEi

+ b3GENDERi*AGEi + d0i1i

+ d1iAGEi + ei, i 4 1, . . . , k,

where GENDERi is the ni × 1 vector of values indicating
gender (this is either all 0s or all 1s for the i-th subject);
and GENDERi*AGEi represents the interaction of gen-
der and age (multiplication of the dummy variable GEN-
DER by AGE).

In this case, rejection of the fixed-effect null hypoth-
esis H0: b3 4 0 indicates a statistically significant dif-
ference in the rates of decline (slopes) in FEV1 percent
predicted between males and females. Similarly, rejec-
tion of the fixed-effect null hypothesis H0: b1 4 0 indi-
cates a statistically significant difference in the levels
(intercepts) of FEV1 percent predicted between males
and females.
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