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State of the Art —

Modern Statistical Techniques for the Analysis of
Longitudinal Data in Biomedical Research

Lloyd J. Edwards, PhD*

Summary. Longitudinal study designs in biomedical research are motivated by the need or
desire of a researcher to assess the change over time of an outcome and what risk factors may
be associated with the outcome. The outcome is measured repeatedly over time for every
individual in the study, and risk factors may be measured repeatedly over time or they may be
static. For example, many clinical studies involving chronic obstructive pulmonary disease
(COPD) use pulmonary function as a primary outcome and measure it repeatedly over time for
each individual. There are many issues, both practical and theoretical, which make the analysis
of longitudinal data complicated. Fortunately, advances in statistical theory and computer tech-
nology over the past two decades have made techniques for the analysis of longitudinal data
more readily available for data analysts.

The aim of this paper is to provide a discussion of the important features of longitudinal data
and review two popular modern statistical techniques used in biomedical research for the analy-
sis of longitudinal data: the general linear mixed model, and generalized estimating equations.
Examples are provided, using the study of pulmonary function in cystic fibrosis research. Pediatr
Pulmonol. 2000; 30:330-344. © 2000 Wiley-Liss, Inc.
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INTRODUCTION longitudinal design terminology. For example, the
phrases “longitudinal study design” and “repeated mea-
Longitudinal study designs in biomedical research aseires design” are often used synonymously. As another
motivated by the need or desire of a researcher to assesample, in survey research, longitudinal cohort studies
the change over time of an outcome. In a longitudinake usually referred to as panel studies to distinguish
study design, the outcome is measured repeatedly otteem from studies of birth “cohorts$”Duncan and
time for every individual in the study. In addition, assoKalton* identified four types of longitudinal study de-
ciated risk factors may be measured repeatedly over timigns in survey research: panel survey, repeated survey,
or they may be static. Compared to cross-sectional studyating panel survey, and split panel survey. However,
designs, longitudinal study designs can be more efficiettitis paper will not explore longitudinal study designs in
less costly, and more robust to model selection, and theyrvey research.
can have increased statistical poweér. There are several classes of longitudinal study designs,
In the past decade, an unscientific observation by tiecluding prospective (cohort or follow-up) designs, ret-
author indicates an increase in the medical literature afspective (case-control) designs, observational designs,
the reported use of longitudinal studies in clinical reand experimental designs. The prospective longitudinal
search. There are many reasons why there may bestudy design is used to collect data on subjects going
increase in the use of longitudinal study designs in bio-
medical research. Two important reasons are advancesifision of Biometry, Duke University Medical Center, Durham,
statistical theory and computer technology, which hawerth Carolina.
made statistical techniques for the analysis of longitudi-

nal data available to statisticians. Lonaitudinal stud d*Qorrespondence to: Lloyd J. Edwards, Ph.D., Division of Biometry,
9 Y uke University Medical Center, Box #3827, Hanes House, Rm. 249,

signs have a Ion_g h_iStory in many_ scientific diSCip_“ne%orner of Trent Dr. and Erwin Rd., Durham, NC 27710.
As a result, longitudinal study design terminology is not

standardized. Helmgrovides an excellent summary ofReceived 22 July 1999; Accepted 30 March 2000.
© 2000 Wiley-Liss, Inc.
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forward in time. Usually, subjects are selected with amthta complicated. These issues include, but are not lim-
without risk factors, and then they are followed over timied to, correlation between repeated outcome measure-
to repeatedly measure a defined outcome variable. Timents, irregularly timed data, missing data, mixture of
retrospective longitudinal study design does just the ogtatic and time-varying covariates, and availability of
posite, i.e., it is used to collect data on subjects goirspftware for model fitting.
backwards in time where the outcome variable for both
cases (those already known to have disease based on tegirrrelation Between Outcome Measurements
outcome) and controls (those already known to not have
the disease) is repeatedly collected backwards in time. An extremely important fact regarding measurements
Though the discussion thus far has used time as tlgpeated on an individual is that the measurements are
longitudinal metameter, it should be noted that otheypically correlated. Though it could happen that re-
variables may also be used. For example, in a longitugieated measurements on an individual may not be cor-
nal study of pulmonary function in children, height mayelated, it is unlikely that repeated measurements on the
be used as the longitudinal metameter, with interest beisgme individual will actually be independent. If correla-
in evaluating how pulmonary function changes withion is ignored, it can negatively impact parameter esti-
changing height. Another example would be a dose raration, hypothesis testing, and efficiency of study de-
sponse study of a cholesterol-reducing drug, where rsign.
peated measures of cholesterol are made on each indin standard univariate regression analysesfunda-
vidual. Of main interest would be how cholesteromental assumption is that the values of the outcome are
changes with changing dose. independent, whether there is one observation per indi-
There are many issues, both practical and theoreticaklual or repeated observations per individual. A simple
which make the analysis of longitudinal data compliexample illustrates what can happen when correlation
cated. Such issues include, but are not limited to, corigetween observations are ignored in the univariate case:
lation between repeated outcome measurements, missiogpose Y, i = 1, ..., n, arecorrelated normally dis-
data, irregularly timed data, mixture of static and timeributed observations, with meau) and variance?. As-
varying covariates, and availability of software for modedume all pairwise correlations are equalptde.g., re-
fitting. In addition, there are specific issues of concerpeated measurements of a healthy individual's weight
for the biomedical researcher who is not a statisticiaover a short period of time). Suppose we want to con-
statistical methods must address factors such as easstaict a 95% confidence interval for the meanlLet's
use; incorporation of biological assumptions and tredsolate our attention to the upper 95% confidence limit:
ment modalities; and strength of interpretation. The aim
of this paper is to provide a review of the state-of-the-art B e 12
of techniques for statistically analyzing longitudinal data Y + 1.96[— {1+(n- l)p}] ,
in biomedical research. A preponderance of mathemati- n
cal detail are eschewed so that important concepts can tﬁe
highlighted. Though the emphasis of this paper is of"¢"®
biomedical research, much of the paper’'s discussion is
applicable to studies other than biomedical research. Ex-
amples are provided, using the study of pulmonary func-
tion in cystic fibrosis (CF) research.

If we were to ignore the correlation and assumed that the
CONSIDERATIONS IN THE ANALYSIS OF Y;s are instead independent, i.e., asspme 0, then the
LONGITUDINAL DATA IN CLINICAL STUDIES upper 95% confidence interval is given by

As stated above, there are many issues, both practical o1/m
and theoretical, which make the analysis of longitudinal Y +1 96[0 ]

n

Abbreviations . .. -
If the correlation is ignored, the computed confidence

ANOVA Analysis of variance . .
Y interval could be much smaller than the nominal level,

CF Cystic fibrosis . .

COPD  Chronic obstructive pulmonary disease hypothesis tests can have a much higher Type | error, and
Fu Helms-McCarroll approximate F statistic statistical power can be lower than planned.

FEV,  Forced expired volume in 1 sec Before the availability of more appropriate longitudi-
GEE  Generalized estimating equation nal data analysis techniques, a common method of per-

MAR Missing at random

MCAR  Missing completely at random forming regression analyses for repeated measures was

to perform regression analyses, say a simple linear
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TABLE la—Pediatric Patients, National Cystic Fibrosis relation between 1989 and 1990 percent predicted FEV

Patient Registry 1989-1995, Correlation Matrix for Percent is 0.71. and the correlation between 1994 and 1995 is

Predicted FEV , 0.91. Similarly, the correlations just below the diagonal
1989 1990 1991 1992 1993 1994 199%representing adjacent years are correlations for percent

1989  1.00 predicted FE\ which are 2 years apart. In general, all
1990 071 1.00 correlations are moderate to large, and their magnitudes
1991 0.67 0.74  1.00 demonstrate why the correlations should not be ignored.
1992 067 072 076  1.00 In addition. i hat th lati | di
1993 065 070 073 081  1.00 n addition, it appears that the correlations along a di-
1994 0.66 072 075 080 084 1.00 agonal increase with time, i.e., the more recent years of

1995 065 070 072 078 081 091 100FEV, appear to be more correlated than the earlier years
for these data. The latter observation suggests that a pos-
S . s]jble correlation pattern could be modeled which would
model, for each individual using the same number @ SN -
nhance accuracy and precision in the longitudinal analy-
parameters and then aggregate the parameters, e.g., Eaelé'of these data

ing the average of the individual slopes to obtain a mea“, ", " ihor hand, correlations for adults are larger

sure of group behavior. Accordingly, each separate in han correlations for pediatrics. Also, in contrast to the

vidual regression analysis would be conducted under the ;. . . .
9 y ediatric correlations, the adult correlations do not ex-

fundamental assumption that the values of the outco o8 . .
X ) . ibit the same pattern of behavior. The adult correlations
were independent, i.e., the regression analyses would 'Eﬂ'ng the diagonals have more of a tendency to either

nore correlations. As demonstrated in the univariate ec)fécrease over time or rise and fall over time. Though a

ample abo_ve,_lgnorlng corr_elatlons between Observat'O(rgﬁc‘rrelr;ltion pattern may exist for the adult patients, the
leads to bias in even the simplest cases.

. . ; . attern is less clear than for the pediatric patients.
The correlation matrix and/or covariance matrix be- o -
) . . ._Modern longitudinal statistical methods, such as the
tween observations play an important role in the analysis . . o ; .
oo / . . eneral linear mixed mod&ft®and generalized estimat-
of longitudinal data. Let's consider a straightforward ex®

i . ; i
ample: the Cystic Fibrosis Foundation National Patiebqg equations;' use the correlation (or covariance) be

Registry contains yearly data on over 21,000 registere&veen observations in modeling longitudinal data. Grady

> X . . .
CF patients in the United States. The Registry contaiﬁgd H_elmé provllde te_zchnlques for_selectlng_ appropriate
. g ic f-ovariance matrices in the analysis of longitudinal data.
approximately 85% of all diagnosed cases of cystic fiz .~ . ; lati ) :
brosis in the United States and more than 90% of émdjustlng or correlation between observations is one

deaths’ Specifically, let's consider the 2,982 registereaeason that modern longitudinal data analysis techniques
: ' ' are more appropriate than some previous methods of

pediatric patients (ages between 6-18) and 2,105 re 15 vses
tered adult patients (ages between 18-45) who had,F yses.
measurements for each of the 7 years from January 1,

1989 to December 31, 1995 (complete data). Tables EJ%ta Collection Schedule
and b present the estimated correlation matrices for per-

cent predicted FEYin pediatric patients and adults (7_ It is customary in a longitudinal study design to ad-

rows and 7 columns). The correlations contain the esH— . .
ress the scheduling for collecting repeated measure-

mated correlation coefficients between pairs of perce_rrT\1tentS_ Helm provides us with two very good defini-

predicted FE\ measurements on the same individual I ons regarding data collection scheduling in a

two different years. lonaitudinal studv:
In Table 1a, the correlations just below the main di- 9 y:

agonal consisting of 1.00 represent correlations betwea 'Alongitudinal study has eegularly timed scheduli

successive adjacent years of data. For example, the cor .
measurements are scheduled at equal intervals of the

longitudinal metameter. A longitudinal study has

regularly timed dataf measurements are actually ob-

TABLE 1b—Adult Patients, National Cystic Fibrosis
Patient Registry 1989-1995, Correlation Matrix for Percent

Predicted FEV , tained at regular intervals of the longitudinal metame-
ter.
1989 1990 1991 1992 1993 1994 199 N : .

Eb) A longitudinal study has eonsistently timed schedule
1838 é'gg 100 if every subject has the same schedule, i.e., is sched-
1991 080 083  1.00 uled to be evaluated at the same set of Iongltudlngl
1992 0.79 0.83 083  1.00 metameter values, whether or not the schedule is
1993 074 078 078 0.83 1.00 regularly timed. A longitudinal study hansistently
1994 072 076 076 083 083 100 timed dataif every subject igvaluatedat the same set

1995 068 071 071 078 078 08 100 of |gngitudinal metameter values.
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In the study of many chronic diseases, one may plavith nonrandomly missing data. Though there are several
on having a regularly timed scheduled, but the actual datethods in the statistics literature for addressing ran-
collection isirregularly timed.For example, in a longi- domly missing data in longitudinal studies, there appear
tudinal study of pulmonary function in cystic fibrosisto be essentially two general approackesasing gener-
with a regularly timed schedule, say at the end of eaelized least-squares, and using the test statistics of
month for 6 months, cystic fibrosis patients may hav/ald.*®> However, there is no general consensus on how
unexpected pulmonary exacerbations during the mortthanalyze longitudinal data with missing values. In ad-
which may require measurements sometime during th&ion, since nonrandomly missing data can be even more
month in addition to at the end of the month. A furtheof a problem than randomly missing data, there simply
example is that patients may miss the window of oppoare no unified approaches to addressing the problem.
tunity of pulmonary measurement and have to be r@/oolson et ak* support the latter statement: “Little
scheduled for some other time. work has been done on the problem of nonrandomly

Observe that a longitudinal study can have a consistissing longitudinal data by way of formal modeling of
tently timed schedule, but the schedule can be irregulathe incompleteness, although models do exist for han-
timed. For example, if data were scheduled to be calling special types of completeness such as censoring or
lected at months 1, 3, and 6, then the study would hatrencation of data beyond a certain time period.” Rem-
a consistently timed schedule but the schedule wowdies for addressing both randomly and nonrandomly
also be irregularly timed. missing data will be active areas of research in the sta-

tistical community for years to come.
Missing Data

Because longitudinal studies are rarely complete dggatic and Time-Varying Covariates

to patient attrition, mistimed visits, premature study ter- - . . . .
mination, death, and other factors, missing data in lon-'" Most longitudinal studies, there is an interest in
gitudinal studies can be a difficult problem to overcom@SSessing the relationship between the outcome variable
Missing data makes sense only in the context of a reqguitd Selected covariates (the word “covariates” is used
or consistently timed data collection schedule. MissingyNPnymously with independent variables, predictor
data can be classified into two broad categories: ra¥g'iables, explanatory variables, and risk factors). In
domly missing data, and nonrandomly missing dat§ross-sectional studies, only static variables such as race

Randomly missing data can be further broken down infi’d gender, and variables measured at a single point in
“missing completely at random” (MCAR) or “missing attime such as age, height, and weight, can be covariates.

random” (MAR). Nonrandomly missing data are oftefjiowever, longitudinal studies allow for the effect of co-
referred to as informatively missing data. variates as they change over time, in addition to the use

Little and Rubiri® provide a formal way of classifying O Static covariates. o
missing values: Let Y* be the vector containing the com- FOr €xample, consider a longitudinal study of pulmo-

plete set of observations which would have been oB@'y functionin CF. Variables such as age and weight are
tained in the case of no missing values. Lé®\denote obvious time-varying covariates. However, other less ob-
the vector of actual, observed measurements affg YVious time-varying covariates may inclueseudomonas
denote the vector of missing observations which wouRfruginosastatusHemophilus influenzastatus, or nor-

have been observed but were not, so that ¥*(Y ©), mal flora status. With the ability to use time-varying

Y ™) can be represented as the partitioned vector®f ycovariates, CF researchers can more accurately assess the
and Y™™, Let R denote a set of indicator random varirélationship between pulmonary function and time-
ables which delineate which observations in Y* are a¥@rying covariates of interest, instead of forcing the time-
tually observed, i.e., elements of®, and which are Varying covariate to be static (e.g., using the last ob-
missing, i.e., elements of . Then, using probabilistic S€Tved measure to determine normal flora status).

arguments, randomly missing (MCAR and MAR) and

nonrandomly missing (informatively missing) can b&TATISTICAL METHODS USED IN THE ANALYSIS

classified as follows: OF LONGITUDINAL DATA

1) MCAR means that R is independent of botf?Y
Y(m);

2) MAR means that R is independent of™:

Though there are several statistical methods which
may be used in the analysis of longitudinal data, the
=0 ' primary focus of this paper is to highlight two modern
3) n(()nT)randome missing means that R is dependent Qiiihods which are receiving considerable attention in

Y. both the statistical and subject-matter literature:gha-

Statistical analysis with randomly missing data hasral linear mixed modelnd generalized estimating
been shown to provide a more tractable solution thaguations.
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Both thegeneral linear mixed moddmixed model) cross-sectional data. The mixed model is a statistical
andgeneralized estimating equatio(GEE) are part of a method for modeling continuous outcome measures as a
broader class of techniques called generalized lindanction of fixed (population) effects, while simulta-
modelst!16:17There are three basic extensions of gemeously modeling individual subject parameters as ran-
eralized linear models, each reflecting the interpretatiatom effects. The mixed model can accommodate both
of the regression parameters for dependent outcontgse-dependent covariates and static covariates.
which are correlated: Mixed model statistical methods are not especially
ew. Seminal theoretical papers published by HaiAlle

Ramnggg;s;a.ffects models (mixed model, SUbJec'['Sp%'ﬁ'zlcnd Laird and Warehelped to popularize the use of

Marai . . mixed models in practice. Although many papers, both
arginal models (population-average models); . . .
Conditional models. t_he.oretlt_:al and applied, subsequgntly appeared in the sta-
tistical literature?1-27 most statistical textbooks do not
Both random effect models and marginal models can et include discussions of mixed models.

referred to as unconditional models. An unconditional We present an abbreviated discussion of general defi-
model simply means that the expected outcome is maations and assumptions used in the formulation of the
eled as a (linear) function of time and other covariategeneral linear mixed model.

which represent both within- and between-subject ef-
fects. Conditional models, on the other hand, can be de-_ .. .. .
scribed as (linear) models where the outcome appears oPef'mt'onS and Assumptions

the right side of the regression equation (as a predictor)The following discussion provides the general defini-
as well as the left side of the regression equation, i.e., then and notation of the general linear mixed model for
mean or probability of the outcome variable is condihe analysis of incomplete longitudinal data. The mixed
tional on the other values of the outcome (in many senodel, which contains both fixed and random effects, is
tings, the conditioning is on the prior value(s) of thgiven by

outcome). Conditional models are outside the scope of

this paper, but the interested reader is directed to Rosner Yi=XiB+Zd +e,i=1,...,Kk,

and Munoz® and Rosner et &P for further reading.

Random effects models (mixed models) are regressiaere Y, is an n x 1 vector of nobservations on the i-th
models which are particularly suited for analyzing corsubject; is a p x 1vector of unknown, fixed, population
related outcomes which are continuous. The mixgmhrameters; Xis an n x p known, constant design matrix
model provides estimation and hypothesis testing for $or the i-th subject; dis a q x 1vector of unknown,
multaneously modeling both population effects (fixed efandom individual parameters. The random parameters
fects) and random effects (subject-specific effects). Maare subject-specific, but the vector size is the same from
ginal models are particularly relevant when the maisubject to subject; 4s an n x g known, constant design
focus of a study is investigating the effects of covariatesatrix for the i-th subject corresponding to the random
on the population mean. GEE is a method of estimati@ifects ¢ and gis an n x 1 vector of random error terms.
in marginal models (GEE isota model, but an estima- Fori=1,...,k,itisassumed that the random subject
tion technique) with correlated outcomes. GEE can lparameters, ;d have independent, multivariate normal
applied to marginal models where the outcome is eithdistributions with mean vector zero and covariance D,
continuous or categorical. denoted dONID(0, D), where D is an unknown, posi-

For readers without a matrix algebra and/or calculdive-definite matrix. Similarly, it is assumed that the vec-
background, the definitions and assumptions below m&ys of random error terms;,éhave independent, multi-
be skipped. Instead, the reader may use the Appendix f@riate normal distributions with mean vector zero and
a more specific and less complex presentation of tlsevariancer?l;, denoted el1NID(0, o?l;), where | is an
mixed model, which may help to facilitate their undern, x n; identity matrix, and>? is the scalar within-subject
standing of this complex modeling technique. variance parameter. It should be noted that the covari-
ance of ecould be expressed more generally usifay;,
where Wis a known, nx n, positive-definite matrix. The
random subject parameters, dre assumed to be inde-

Thegeneral linear mixed modaieferred to henceforth pendent of the vector of random error terms, Ehe
as the mixed model, is a multivariate regression methadrrelation between the individual random effects is ob-
that helps to generalize the analysis of variandained as a function D.

(ANOVA) and general linear regression methods. The From the above definitions, it can easily be shown that
mixed mode? is a general statistical technique for anag(Y;) = X;B and Var(Y) = V, = Z,DZ/ + ¢2l,, where
lyzing longitudinal data, but can also be used to analyx£ is the n x n; positive-definite, symmetric covariance

General Linear Mixed Model
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matrix of ;. The covariance matrix \tan be viewed in meansu,, w,, - . ., . For the j-th element of the i-th
a couple of ways when attempting to model it. Singe \subject, let
is n x n, then there are;Mm, — 1)/2 parameters which

require estimating. However, taking advantage of the E(Y5) = wi,
writing of V; as a function of D, Y = ZDZ/ + o2, 9(i) =i = X1 B
allows the flexibility of reducing the number of param- oo
eters to [q(q - 1)/2] + 1. Also, since each subject is var(Y;) = bh(u;),

allowed to have unique fixed effect and random effeg\l}ere d-) is called the link function, &) is the variance

design matrices Xand Z, the mixed model can accom-fnction, v; the linear predictor, and the scale or dis-

modate time-dependent covariates and missing and Migision parameter. The GEE can be formed by the fol-
timed observations.

Maximum likelihood estimators of the parameters (rek—)Wlng'
stricted or unrestricted) in the mixed model generally do k
not have explicit solutions. Hence, complex iterative EDiTEi‘l (Y;- ) =0,
computer algorithms are usually required to derive esti- i=1

mates that maximize the likelihood of the observed data

Two frequently used algorithms are the EM (expectatiovﬁhere

and maximization) algorithm and the Newton-Raphson

algorithm. Detailed discussions of these iterative com- D, =
puter algorithms are beyond the scope of this paper, and B

we refer the interested reader to Lindstrom and B%ﬁesandzi = Var(Y,). The diagonals oF, are determined by
The introduction of SAS Proc MIXE® has greatly fa- Var(Y;) = oh(u;). To determine the off-diagonal ele-

cilitated the implementation of the mixed model for geng,ants firsts, = dA,CA,, where A = diagt/h(w;)) and
1 [ A B 1]

_

eral practitioners. C = COff(Yi)- . N
In solving the GEE, the correlation matrix is assumed
Generalized Estimating Equations to be parameterized by an s x 1 vegioAn estimate of

) S ) p is plugged into the equation and estimation then pro-
Generalized estimating equations (GEEs) are an afseds. The assumed correlation structure is called the

proach*>-32which specifies only the marginal distri-yorking correlation matrix, denoted by,.Rn all likeli-
bution of the outcome variables. GEE is an estimatiqfhod, the working correlation matrix, Rnay not be iden-

technique which estimates a common scale paramefigh| to the true correlation matrix ,CThus, GEE is
and a working correlation matrix of the outcome varigglyed by

ables, treating them as nuisance parameters. GEE can be

used for both discrete and continuous outcomes, but is K

mostly used for discrete outcomes and even then, most EDiTVi‘1 (Yi-m) =0

real-life applications are correlated binary outcomes. i=1
In specifying only the marginal distribution of the out-

iable, GEE will d ti t f |ati WhereVI = AiRiAi-
come varianie, WIll produce estimates ot population USing GEE, the estimate Cﬁ is unearly efficient

parameters only (modeling of population mean only) lative to the maximum likelihood estimates pfin

Henc_e_, GE.E cannot be used In settings where S.Ubjerﬁény practical situations, provided that Vaj¥as been
specific estimation and hypothesis testing are required.

: : . ) .@asonably approximated?’and the estimate df con-
contrast, the mixed model does provide subject-spemf} rges in probability to the true value “even if the co-

as well as population estimation and hypothesis testiid jance structure of is incorrectly specified?® In

for continuous outcome measures. ther words, good estimates of population parameters

We present an abbreviated discussion of general d 4n be achieved even when the within-subject variances

gtéoEns and assumptions used in the formulation of tr}ﬂe only roughly approximated. The use of GEE by the
' practitioner is aided by software such as SAS Proc Gen-
mod 33
Definitions and Assumptions
The following discussion provides the general definEXAMPLE OF LONGITUDINAL ANALYSES, USING

tion and notation of the generalized estimating equati(?ﬁJLMONARY FUNCTION IN CYSTIC

(GEE) approach to the analysis of incomplete Iongitud'l:-IBROSIS RESEARCH

nal data. We will examine the application of the mixed model
Suppose Y, Y, ..., Y, are independent vectors withand issues arising in the analysis of complex longitudinal
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data, using data collected on cystic fibrosis subjectsstical power than cross-sectional studies and are more
Since GEE and the mixed model give quite similar reobust to model selectioh.

sults for the population estimates in this example, only This CF example also discusses the implications of
the mixed model will be discussed for the sake of claritysing cross-sectional methods in the design of controlled
and simplicity. clinical trials in cystic fibrosis research when longitudi-

Cystic fibrosis (CF) is the most common lethal autoral data are available. By way of this example, the dif-
somal recessive genetic disease among Caucasians. fEhences in interpretations one could potentially get from
clinical course of CF varies widely; however, althoughising cross-sectional methods as compared to longitudi-
CF affects multiple organs, the majority of morbidity andhal methods of analyses in cystic fibrosis are highlighted.
mortality in these patients is the result of pulmonary
complications. CF is a chronic obstructive pulmonar, .
disease which is both studied and treated within a |ongp|é-SueS In CF Research
tudinal framework. Collecting spirometric data longitu- Several controlled clinical trials per year are con-
dinally on CF subjects has been the norm for many yeadkicted on CF subjects by both academic researchers and
However, many of the major results assessing the refgharmaceutical companies. Because of the consequences
tionship between CF pulmonary function outcomes sudf disease progression in CF, it is important that any
as forced expired volume in 1 sec (FBVforced vital controlled clinical trial in CF research have an appropri-
capacity (FVC), and maximum mid-expired flowate study design, statistical analyses, power computation,
(MMEF) and possible predictor variables (genotypgnd sample size determination. As with any controlled
pancreatic status, age, gender, and a host of others) helir@cal trial, a study design which has less power than it
been based on cross-sectional analy4e¥. should to assess change in CF pulmonary function can

Longitudinal pulmonary function data from CF paseriously undermine study results. In addition, an inap-
tients typically have undesirable characteristics from @opriate statistical analysis to assess rate of change in
statistical viewpoint. Longitudinal CF data are often pulmonary function in CF subjects can lead to erroneous
regularly timed,i.e., obtained at irregular time intervals.conclusions regarding the rate of change.

The subjects often miss scheduled visits; the availableCross-sectional data analysis technigques have not been
data areéncomplete When a visit is missed for reasondssues of concern for CF researchers. Traditional statis-
related to the underlying disease process, the data @ical analysis techniques for assessing change in CF pul-
said to beinformatively censoreda patient who dies monary function have been readily available for many
before the scheduled end of data collection produces yaars. These techniques include the usé-tests” and
extreme form of informatively censored data. Most lorgeneral linear regression modéfs3” Statistical power
gitudinal CF data have all of these characteristics; aaynd sample size computations for the cross-sectional
one is sufficient to defeat traditional statistical methodggchniques, though at times challenging, have also been
leading to incorrect statistical analyses in most caseszailable. Statistical software to perform cross-sectional
This may explain the prevalence of cross-sectional anabnalysis has facilitated the use of cross-sectional methods
ses in much CF research. in CF research.

Some studies of non-CF populations comparing cross-For CF investigators, general statistical techniques for
sectional analyses with longitudinal analysis of the sanassessing the relationship between longitudinal pulmo-
data have shown conflicting conclusioffs#? For in- nary function outcomes and predictor variables of inter-
stance, some studi®s*®have apparently shown the rateest have been lacking. Any general statistical technique
of decline in FEV, to be significantly greater when usingfor analyzing these relationships has to have features
cross-sectional analysis than longitudinal analysis. Othegeded by the CF researcher: ease of manipulation, mod-
studies?*#? however, found the rate of decline in FEV eling of fixed population effects and random subject ef-
greater using longitudinal analysis than cross-sectiorfatts, the incorporation of biological assumptions and
analysis. Pattishall et at!, studying cross-sectional andtreatment modalities, adjustment for correlated observa-
longitudinal estimates of lung growth in children, foundions (within-subject), and proper handling of irregularly
noncomparability of cross-sectional and longitudindglmed and missing observations. In addition, to properly
analysis. They concluded that longitudinal studies shoullgésign a controlled clinical trial in CF patients, the in-
be compared with longitudinally collected data, andestigator must be able to compute power and sample
cross-sectional studies should be compared with data csike based on the available longitudinal analysis tech-
lected cross-sectionally. In addition, van Pelt et®gre- nique.
sented evidence that reference equations based on crosgortunately for CF researchers, the general linear
sectional studies may overestimate longitudinal changaixed model has the desirable features discussed previ-
that, in turn, can lead to underestimating the effects ofisly. Applications of the mixed model are increasingly
exposure. Longitudinal studies generally have more st@pearing in the literatur4*and the mixed model was
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Fig. 1. Longitudinal and cross-sectional adult cystic fibrosis data, 47 subjects and 1,401 observations. *, percent predicted values
(1,401 observations); @, last percent predicted value for each patient.

used as the statistical technique of choice in proposeduld be helpful to have a unique plot symbol for each
clinical trials involving the longitudinal analysis of pul-of the 47 subjects in Figure 1 so that the reader could get
monary function data (this is the author’s personal ol better view of the individual's longitudinal data. Un-
servation as a member of the Clinical Research Commiibrtunately, such a plot would be very crowded and of
tee of the Cystic Fibrosis Foundatith dubious value. However, Figure 1 does provide the
reader with a sense of the complexities facing the CF
researcher in analyzing longitudinal pulmonary function
outcomes.

Figure 2 is a plot of the linear regression line resulting
Longitudinal FEV, data were available from clinical from a cross-sectional simple linear regression analysis

follow-up of 47 adult CF patients (23 female, 24 male%éf the 47 last FEV percent predicted values for each

Data Analysis Using FEV ; Percent
Predicted Values

seen at the University of North Carolina pulmonar atient. Figure 2 also presents the scatter plot of the 47
clinic. Complementary data for some of the patients wef@St FEVi percent predicted values for each patient.
obtained from other institutions where they had beelfPe 2 provides the parameter estimates, standard errors
followed for long-term care. Pediatric measurements ({§E). andP-values of the intercept and slope resulting
< age < 19 years; 10-18) were obtained in a subset of 1@M the cross-sectional analysis. The estimate of the
patients, including some data from a subset of patierfif{?del variance is also given. The reader should note that
from other institutions. All subjects were pancreatic inthe intercept is centered at age25 so that the intercept
sufficient as adults, and all were homozygous for tHestimate will be meaningful, i.e., 25 is subtracted from all
most common CF mutatiol\F508. From 4 to 97 (me- ages before performing estimation.
dian = 27) measurements were documented per subjectFigure 3 is a plot of the population regression line
Figure 1 is a scatter plot of the 1,401 FEyercent (thick line) and the individual regression lines (thin lines)
predicted values for the 47 homozygot§508 CF pa- resulting from a mixed model analysis using the 1,401
tients. The solid circles in Figure 2 represent the labEV, percent predicted values for the 47 patients (see
FEV, percent predicted value for each patient. Obserd@pendix for details). Table 3 provides parameter esti-
that these last values are recorded for each patient afieates, SE, ané-values of the population intercept and
age 18. The values will be used to demonstrate the reswispe obtained from the mixed model analysis. The esti-
of performing a longitudinal analysis vs. a crossmate of the within-subject variance is also given. The
sectional analysis for this group of CF patients. Ideally, ihtercept is centered at age 20.
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Fig. 2. Cross-sectional analysis regression line and scatter plot, N = 47 subjects with cystic fibrosis. @, last FEV, percent predicted
value for each patient.
TABLE 2—Cross-Sectional Regression Model for FEV  , females would affect the planning of a controlled clinical
Percent Predicted, Intercept Estimated at Age = 25 Years trial.
Parameter Estimate SE P-value Figure 5 is a plot of the population regression lines
Intercept 49 3.7 0.0001 (thick dashed and solid lines) and the individual regres-
Age -0.2 0.7 0.75  sion lines (thin dashed and solid lines) resulting from the
o 485 mixed model analysis using the 1,401 FEdercent pre-

dicted values for the 23 female and 24 male patients.

The estimate of the slope of the population regressigable 5 provides parameter estimates, SE, Rivalues
line from the mixed model is over 10 times that of thef the population intercept and slope obtained from the
estimate of the slope from the cross-sectional analysis.rtiixed model analysis. The estimate of the within-subject
addition, the conclusion from the cross-sectional analysisriance is also given. For this analysis, there are no
is that there is no statistically significant rate of decline isignificant differences between males and females in the
FEV, percent predicted over time for this group of aduihtercepts or slopes.
CF subjects. In contrast, using a mixed model analysis,A note of caution should be sounded here. The previ-
there is a statistically significant rate of decline in FEVous analyses are not presented as an exhaustive or com-
percent predicted over time for this group. Just as imfete modeling (curvilinear or nonlinear) of FE\per-
portant, interpretation of the magnitude of rates of dgent predicted. Although other covariates such as
cline from both the cross-sectional and longitudinajenotype, pancreatic status, gender, and/or polynomial
analyses would affect the planning of a controlled clinage may be considered when assessing the relation be-
cal trial. tween age and FEYwe have limited our analyses to two

Figure 4 is a plot of the linear regression line resultingxamples: one using a simple linear mixed model with
from a cross-sectional linear regression analysis for thge (in years) as the time-varying covariate, and the sec-
23 female and 24 male patients. Table 4 provides paraghd using both gender and age. In addition, only patients
eter estimates, SE, aiivalues of the population inter- who survived to adulthood were included in this analysis,
cepts and slopes obtained from the cross-sectional analg-that parameter estimates are affected by survival bias

sis. For this analysis, there are no significant differencesd do not represent the whole CF population.
between males and females in the intercept or slope. Note

that the estimates of the_ slopes _for females (1.1) aB%WER AND SAMPLE SIZE CONSIDERATIONS

males (—0.9) are in opposite directions. Even though the

slopes are not statistically different than zero, interpreta- This section illustrates how very different statistical
tion of the estimates of rates of decline for males ammbwer and sample size computations may be obtained
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Fig. 3. Mixed model analysis. Population and individual regression lines, 47 subjects with cystic fibrosis and 1,401 observations.

TABLE 3—Mixed Model Regression Model for FEV  ,, A general framework for computing statistical power
Percent Predicted, Intercept Estimated at Age = 20 Years can be given as follows:

Parameter Estimate SE P-value

Intercept 62 3.4 <0.0001 1) The outcome variable or efficacy variable of interest
Age -2 0.34 <0.0001 should be clearly stated.

o2 114 2) It is assumed that a rough estimate of a (minimal)

clinically significant difference to detect can be pro-
vided. Where this estimate is obtained, it should be
using cross-sectional vs. longitudinal methods for a stated clearly.
chronic lung disease like cystic fibrosis. 3) Itis assumed that an estimate of the relevant variance
can be provided. Where this estimate is obtained, it
should also be made clear.
General Framework 4) Itis assumed that the statistical procedure for hypoth-
esis testing has been determined and is clearly com-
Since cystic fibrosis is a deadly, chronic pulmonary municated.
disease, it is very important to design the most effecti\gy It is assumed that a specified sample size is provided
and most powerful controlled clinical trials possible. To and a Type | error levek, is specified.
do this, the use of longitudinal statistical methods will
have to become a mainstay in the design of controllédom the above assumptions, a statement of statistical
clinical trials in CF research. power can be made. Similarly, sample size computations
In practice, when designing a controlled clinical trialcan be placed in the same general framework by chang-
the CF researcher will know the approximate number @fg the phrase “sample size” in item 5 above to “power.”
subjects he/she can reasonably expect to obtain (conin computing statistical power or sample size for a
straints may be due to budget concerns or subject avgilanned controlled clinical trial, estimates are needed
ability) and know a minimum number of measurementhich have been derived from a similar study design or
occasions he/she can expect. What remains is for thieleast from procedures which have similar assumptions.
investigator to compute the statistical power associatédr a planned longitudinal controlled clinical trial in CF
with the respective sample size to detect a difference r&search, estimates should be derived from a longitudinal
sufficient importance. To compute statistical power, seenalysis. In addition to estimates of the relevant variance
eral assumptions must be made. The assumptions shand difference to detect, the computation of statistical
be well-stated for the acceptance of the statistical powgower for longitudinal designs typically requires an es-
computations. timate of the correlation between successive measure-
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Fig. 4. Cross-sectional analysis. Regression lines and scatter plot by gender in 47 subjects.
TABLE 4—Cross-Sectional Regression Model for FEV 4, both fixed effect and random effect design matrices, X
Percent Predicted, Gender and Age Included as and Z.
Covariates, Intercept Estimated at Age = 25 Years
Parameter Estimate SE P-value
Intercept 50 4.9 0.0001 Example of Power Analysis
Gender -4 7.2 0.5590
Age 11 1.03 02763  Suppose CF researchers wanted to propose a con-

* —_ .. . . . .

Gender* age 465-0 132 0.1392 trolled clinical trial aimed at alleviating the rate of de-
g2

cline in percent predicted FEYusing the group of adult
CF subjects discussed in the previous section. Consider
ments for an individual. The National Cystic Fibrosior the moment the estimation results in Table 2 (cross-
Patient Regist§/provides an excellent source of data fosectional analysis). Since the effect size (slope with re-
obtaining initial estimates needed in computing statisticapect to age) is small and the variance is large, a larger
power for longitudinal study designs in CF research. number of CF subjects would be required to have ad-
Since general statistical techniques for the analysis @fluate power to detect a clinically meaningful effect in a
complex longitudinal data have been lacking for the Cproposed cross-sectional design. The power we have to
researcher, computation of statistical power and sampletect the observed slope of —0.2 (%/year) using a two-
size have also been lacking. Appropriate methods fsidedt-test with level of significancex = 0.05 is ap-
computing statistical power for the classic general linegroximately 0.5. The sample size needed to detect the
multivariate model (repeated measures design with nbserved slope with a power of 0.8, = 0.05, is ap-
missing observations) are discussed by Muller et’al.proximately 100 subjects. The approximate sample size
Muller et al#” also provide free computer software (usneeded for a power of 0.9 is approximately 130. Hence,
ing the Interactive Matrix Language software in S8 in the planning of a controlled clinical trial using cross-
with very good documentation for computing statisticadectional analyses, we would have to double or nearly
power for the classic general linear multivariate modetriple our sample size simply to have reasonable power to
For appropriate statistical power computations in thaetect the observed slope of —0.2 (%/year).
mixed model, Helm’s discusses using the Helms- Now consider the estimation results in Table 3 (lon-
McCarroll approximate F statistic, denoted.Frhe ap- gitudinal analysis with the mixed model). In a proposed
proximate power is expressed as a function of the fixddngitudinal study design where the mixed model is used,
effect regression parametef, the random effect vari- since the effect size (slope with respect to age) is large
ance matrix, D, the within-subject error varianeé, and and the variance is small, improved statistical power is
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Fig. 5. Mixed model analysis. Population and individual regression lines by gender, 47 subjects with cystic fibrosis and 1,401
observations.

TABLE 5—Mixed Model Regression Model for FEV  ,, CONCLUSIONS

Percent Predicted, Gender and Age Included as

Covariates, Intercept Estimated at Age = 20 Years This paper has presented an overview of some of the

Parameter Estimate SE P-value fundamental concepts involved in the analysis of com-

Intercept 65 4.9 0.0001 plex longitudinal data. Two of the most commonly used

Eendef -148 g-gg g-ggfg statistical methods for the analysis of longitudinal data
ge L . : were highlighted: thgeneral linear mixed modémix

Gender* age -0.5 0.71 0.4361 ere highlighted: thgeneral linea ed modémixed

model) and the method afeneralized estimating equa-
tions(GEESs). An example using pulmonary function data
in cystic fibrosis research was used to illustrate the ap-
achieved. The power we have to detect the observglitation of the mixed model.
slope of -2 (%/year) using a one-sided F-test with level The mixed model and GEE are both very advanced
of significancea = 0.05 is approximately 0.99 (seeand complex statistical techniques. A comparison of the
Helms' for more details). Presently, computing samplmixed model and GEE can be found in P&k hough a
size using the mixed model is not fully developed andetailed discussion of this comparison is beyond the
will be omitted here. scope of this paper, Pakdemonstrates that results from

It is clear that for this cystic fibrosis example, we hav&EE can differ from that of the mixed model when there
more statistical power, and estimation results are magiee missing observations and/or the covariance matrix is
useful using longitudinal rather than cross-sectionatructured. Also, both the mixed model and GEE are
methods. In a study with human subijects it is often lesscking in accessible techniques for performing assess-
expensive to measure each subject several times thamient of goodness-of-fit, model assumptions such as nor-
get an equal number of single measurements fromnality (in the case of the mixed model), and other re-
greater number of subject$® Hence, we might expect gression diagnostics. However, active research in the
greater cost savings in using longitudinal methods in tls¢atistical literature provides encouragement that these
design of controlled clinical trials in CF research basdinitations will be remedied in the near future.
on these results. The example given in this paper involved using simple

Finally, it is noted that both the cross-sectional anithear models, and therefore the full complexity of the
longitudinal methods demonstrate large power (>0.9p)yocedures was understated for the sake of clarity and
for detecting the observed differences in rates of declisemplicity. It is important that the reader who is inexpe-
between males and females. rienced and/or not trained in the use of advanced longi-

a? 108




342 Edwards

tudinal statistical methods enlists the services of a trainegl Harville DA. Extension of the Gauss-Markov theorem to include

statistician in attempting to apply the mixed model and/ thg estimation of random effects. Ann Stat 1976;4:384—:'%95..
or GEE to complex longitudinal data 9. Laird NM, Ware JH. Random-effects models for longitudinal

data. Biometrics 1982;38:963-974.
In the near future,

. . Iongltudlnal data anaIySIS tec}l‘o. Laird NM, Lange N, Stram D. Maximum likelihood computations
niques will be used to reevaluate some of the most fun- yth repeated measures: application of the EM algorithm. J Am

damental assumptions about the relationship between Stat Assoc 1987;82:97-105.
correlated outcomes and predictor variables of interest, Diggle PJ, Liang K-L, Zeger SL. Analysis of longitudinal data.
including treatment modalities for clinical trial partici- ng(;rd:JJOXLOFId U”F'{‘@rs&y dprfssi 1994. 24; P. o _
H H H H H . rady , Aeims . Model selection tec niques or the covari-
p"?‘”ts' In addition, longitudinal dat.a an.aIySIS teChquég ance matrix for incomplete longitudinal data. Stat Med 1995;14:
will be used to reevaluate the estimation of parameters ;397 1416
used in sample size and statistical power determinations, Littie RJA, Rubin DB. Statistical analysis with missing data. New
with obvious implications for the future design of many York: John Wiley; 1987. 278 p.
observational studies and clinical trials. 14. Woolson R, Clarke W, Leeper JD. Missing data in longitudinal
At present, it is clear that in order to develop more St(;ldies- In: DWVTV J';l" l':efi”'?ib M,dLipriert (Fj" Hof?Eilstﬁf H,

: : : editors. Statistical models for longitudinal studies of health. New
effectnl/le danl‘,j 'molre_ plovvlerful_ og.serlvatm_na}l sltudlers] znd York: Oxford University Press; 1991. p 207-300.
controlled clinical trials, longitudinal statistica met_ 0 %5. Wald A. Tests of statistical hypothesis concerning several param-
Sh_OUId be _Used more often. The ex_amples deS_C“bed IN eters when the number of observations is large. Trans Am Math
this paper illustrate how a cross-sectional analysis of pul- Soc 1943;54:426-482.
monary function outcomes obtained from CF subject$. Nelder JA, Wedderburn RWM. Generalized linear models. J R
should be considered inadequate, when the study designStat Soc [A] 1972;135:370-384.
and/or data collection are longitudinal. 17. McCullagh P, Nelder JA. Generalized linear models, 2nd ed. Lon-

. don: Chapman & Hall; 1989. 511 p.
Often, there is a lag between the development of aPS' Rosner B, Munoz A. Conditional linear models for longitudinal

vanced statistical techniques and their widespread use. gata. in: Dwyer JH, Feinleib M, Lippert P, Hoffmeister H, editors.
Such has been the case in the development and applica-Statistical models for longitudinal studies of health. New York:
tion of advanced longitudinal statistical techniques such Oxford University Press; 1991. p 115-131.

as the mixed model and GEE. Now that the statistied? 2L FC L oo orthe anaysis o longiudina
met_hodology exists and the computer softV\_/are is readily gata. Stat Med 19895; 4-457-467. Y 9
ava_ulable to a_ccommOdate IOngltl-Jd-InaI d_eS|g_ns_ O.f Obs%. Harville DA. Maximum likelihood approaches to variance com-
vational studies and controlled clinical trials, it is impor-  ponent estimation and to related problems. J Am Stat Assoc 1977;
tant that these methods are employed when appropriate.72:320-338.

Researchers and practitioners are encouraged to explditWoolson RF, Leeper JD, Clarke WR. Analysis of incomplete data
the advances in general statistical methods for the analy- from !onglltudlnal and mixed longitudinal studies. J R Stat Soc [A]
sis of complex longitudinal outcomes in designing mor, 1978;141:242-252.

. . . . Andrade DA, Helms RW. ML estimation and LR tests for the
efficient and_ mOI’e 'powerful observational studies an multivariate normal distribution with general linear model mean
controlled clinical trials.

and linear-structure covariance matrix: k-population, complete
data case. Commun Stat Theor Methods 1986;13:89-108.
Andrade DA, Helms RW. ML estimation for the multivariate
normal distribution with general linear model mean and linear-
structure covariance matrix: one population, complete data case.
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Zeger SL, Liang K-Y, Self SG. Models for longitudinal data: 2APPENDIX: EXAMPLE OF MIXED MODELS FOR

generalized estimating equation approach. Biometrics 1988;4fHE ANALYSIS OF PERCENT PREDICTED FEV,
1049-1060.

Prentice RL. Correlated binary regression with covariates speci”él

to each binary observation. Biometrics 1988;44:1033-1048. Example 1

Liang K-Y, Zeger SL. Longitudinal data analysis using general-

ized linear models. Biometrika 1986;73:13-22. ) ) ) ) ) )
SAS Institute, Inc. The GENMOD procedure, in SAS/STAT soft-  We first discussed a simple linear mixed model which
ware, changes and enhancements through release 6.12. Cary, isaised in the example of data analysis in this paper. We
SAS Institute, Inc.; 1997. p 249-347. then discussed a mixed model which can be used to test
Kerem E, Corey M, Kerem B, Rommens J, Markiewicz D, Levithe difference between two treatments.

son H, Tsui L, Durie P. The relation between genotype and phe- Suppose the CF researcher is interested in using the

notype in cystic fibrosis—analysis of the most common mutation _. . . . .
(AFsod. N Engl J Med 1990;323:1517—1522. mixed model to determine the linear rate of decline (with

Knowles MR, Church NL, Waltner WE, Yankaskas JR, GiIIigar{eSpeCt'to age) in pgrcent pre_diCted _Flﬁm agroup of

P, King M, Edwards LJ, Helms RW, Boucher RC. A pilot studyCF subjects. We will use a simple linear mixed model
of aerosolized amiloride for the treatment of lung disease in cystighere the fixed population parameter vec{drhas two
fibrosis. N Engl J Med 1990;322:1189-1194. ~ elements: an intercept and slope. In addition, we will
Johansen H, Nir M, Hoiby N, Koch C, Schwartz M. Severity o 55 yme each subject has their own intercept and slgpe, d

cystic fibrosis in patients homozygous and heterozygous for the S
AF508 mutation. Lancet 1091:337:631-634. i.e., there are two random effects for each subject: a

Glindmeyer HW, Diem JE, Jones RN, Weill H. Noncomparabilit}raﬂdom |_ntercept and a rgndom SlOp_e' .

of longitudinally and cross-sectionally determined annual change The mixed model equation for the i-th subject may be

in spirometry. Am Rev Respir Dis 1982;125:544-548. written as:

Burrows B, Lebowitz MD, Camilli AE, Knudson RJ. Longitudinal

changes in forced expiratory volume in one second in adults. Am

Rev Respir Dis 1986;133:974-980. %PredFEV; = Bol + B,AGE; + dyil

Dontas AS, Jacobs DR, Corcondilas A, Keys A, Hannan P. Lon- +d,,AGE +¢,i =1,...,Kk,

gitudinal versus cross-sectional vital capacity changes and affect-

ing factors. J Gerontol 1984,;39:430-438.

Vollmer WM, Johnson LR, McCamant LE, Buist AS. Methodowhere %predFEY, is an n x 1 vector of p measures of

'1036'; _'28:11%51;”_%2 ;”a'ys's of lung function data. J Chronic Disercent predicted FEVbver time on the i-th CF subject.
,'h i | bilty of For most scenarios in CF research,will vary from

Pattishall EN, Helms RW, Strope GL. Noncomparability of cross e ot 15 sypject. The mixed model formulation accom-

sectional and longitudinal estimates of lung growth in children:. . . .
Pediatr Pulmonol 1989:7:22—28. modates the differing numbers of observations per sub-

van Pelt W, Borsboom GJJM, Rijcken B, Schouten JP, van zI£Ct. Bo and B, are the fixed pqpul_ation parameters_(sca'
meren BC, Quanjer PH. Discrepancies between longitudinal at@rs) representing the population intercept and sl@pis

p g pop p
cross-sectional change in ventilatory function in 12 years of folg 2 x 1vector); 1 is an n x 1 vector of 1s. AGEis an
low-up. Am J Respir Crit Care Med 1994;149:1218-1226. n, x 1 vector of ages for the i-th CF subject. HencejsX

Knowles MR, Hohneker KW, Zhou Z, Olsen JC, Noah TL, H : ; ; ; .
] il 1 il y x
P-C, Leigh MW, Engelhardt JF, Edwards LJ, Jones KR, Grossm?nn n 2 fixed effect deSIQn matrix with two columns: a

M, Wilson JM, Johnson LG, Boucher RC. A controlled study oPOIumn 9f 1s and a column of ages, dnd q{ E_ire the .
adenoviral-vector-mediated gene transfer in the nasal epithelii@ndom intercept and slope parameters specific to the i-th
of patients with cystic fibrosis. N Engl J Med 1995;333:823-831CF subject (dis a 2 x lvector). Z is an n x 2 random
Konstan MW, Byard PT, Hoppel CL, Davis PB. Effect of high-effect design matrix for the i-th CF subject and is iden-
dose ibuprofen in patients with CF. N Engl J Med 1995;332:848¢c3] to X;. & is an n x 1 vector of random error terms for
?:54' M. Edwards LJ, Levison H, Knowles M. Longitudinal ', - CF subject

orey M, tawards -], Levison H, hnowies M. “ONguding’ - pejection of the fixed-effect null hypothesis,H3, =

analysis of pulmonary function decline in patients with cystic. . "7 L . g .
fibrosis. J Pediatr 1997:131:809-814. 0 indicates a statistically significant rate of decline

Bethesda, MD: Cystic Fibrosis Foundation National Office. ~ (Slope) in FEV, percent predicted. Similarly, rejection of
Muller KE, LaVange LM, Ramey SL, Ramey CT. Power calcuthe fixed-effect null hypothesis §13, = 0 indicates a
lations for general linear multivariate models including repeatestatistically significant intercept.

measures applications. J Am Stat Assoc 1992;87:1209-1226.  |n the mixed model, the structure of the random effects
SAS Institute, Inc. SAS/IML software: usage and reference, vegpyariance matrix, D, and the covariance matrix var(y
sion 6, first edltlop. C.ary, NC.: SAS Instltu.te, In(.:.;.1989. 501.p..can be defined or modeled in several ways. The concept
Helms RW. Longitudinal designs and their statistical analysis Blf actually modeling the covariance matrices adds to the

pediatric pulmonary research. Pediatr Pulmonol 1990;9:69-71. lexi f usi h ived del. A | di
Park T. A comparison of the generalized estimating equation a%c-)mp exity of using the mixed model. A complete dis-

proach with the maximum likelihood approach for repeated me&USSION 0N mOd_e"ng the Covariance matrices is be_yond
surements. Stat Med 1993;12:1723-1732. the scope of this paper, but the interested reader is re-
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ferred to Grady and Helm€. When in doubt, a general %PredFEV; = Bol; + B;GENDER + B,AGE;

rule of thumb (when practical) is to use unstructured + B;GENDER*AGE; + d,; 1
covariance matrices for D. An inspection of the estimated +d,;AGE +e,i =1,...,Kk
unstructured covariance matrices may be used to deter-

mine whether patterns exists. where GENDERIs the n x 1 vector of values indicating

gender (this is either all Os or all 1s for the i-th subject);
and GENDERAGE; represents the interaction of gen-

Example 2 der and age (multiplication of the dummy variable GEN-
DER by AGE).

Often the CF researcher is interested in the comparisonn this case, rejection of the fixed-effect null hypoth-
of two groups, such as the comparison of males to fesis H; B, = 0 indicates a statistically significant dif-
males or the comparison of active treatment to placelfgarence in the rates of decline (slopes) in FBércent
Let us assume that the CF researcher wishes to compaviédicted between males and females. Similarly, rejec-
males and females. Define the dummy variable GENon of the fixed-effect null hypothesisddf, = 0 indi-
DER = 1ifthe subjectis male; GENDER: O if female. cates a statistically significant difference in the levels
A mixed model equation which may be used to test fdintercepts) of FEV percent predicted between males
gender differences can be written as: and females.



