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Examples

SPORT | Weinstein et al. (2006) JAMA

Spine Patient Outcomes Research Trial

Disk herniation

N=501 subjects

SF-36 Physical Function assessment through 24 months.
Surgery:

At 3mo: 50% / 30%
At 12mo: 60% / 45%

ISCB 2010



Examples

e | INVEST | Kallmes et al. (2009) NEJM

> Vertebroplasty
> N=131 subjects
> Assessment at 0, 1, 3, 6, 12 mo

> Crossover:

From Tx=A to Tx=B: 11/68
From Tx=B to Tx=A: 32/63

55
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Is a Common Medical Procedure Unnecessary?
Two Studies Show that No Difference For Patients Who Had Vertebroplasty and Those Who Had Placebo

Treatment
By Jonathan LaPoaok

A | '
| [ 2 PLAY CBS VIDEO

VIDED

Unnecessary Proceduras

Shudies hawa shown with those who undengo a common
back surgery, verebroplasty, falt no different As Dr. Jon
LaPook reparts, many quastion if expansive treatmants
lika thase raally work.

N ENFontsize L Print € Share [ 39 Comments

[CBS) Sister Rogene Fox, 81, was suffering from severe back pain until she
agreed to a popular treatment, reports CBS News medical correspondent
Dr. Jon LaPook. She believed it worked.

"1 just thought, thank God. | don't care wihat | received,” Fox zaid. "l feel good!
| dom't have pain!"

But it turng out she got relief without gatting the procedure, called
Verebroplasty, a common treatment for patients with painful back fractures
from osteoporosis,

Wednesday, two separate studies in the Mew England Joumal of Medicine
report there was no difference up to six months [ater for patients who actually
had the procedure and these who had a fake or placebo treatment instead.

"1 thought, "Wow, we're onto something,™ said Dr. David Kallmes, a study
author. "We saw many placebo patients get full pain relief. | have no idea

wihiy."

During Vertebroplasty, doctors inject medical cement into fractured bone in
the back to strengthen the area and reduce pain. The placebo was just a shot
to temporarily numb the area. Vertebroplasty is endorsed by multiple medical
societies, but the surpriging findings may force doctors to rethink the
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Original Goal

As-treated analysis of surgical data requires use of methods
appropriate for endogenous exposure.

Patient status post-randomization is a predictor of seeking
treatment change (non-adherence).

Implication:

EY;(t) | Zi,Surg;=t + 1] # E[Y;(t) | Z;,Surg;> ¢ + 1]

Hypothesis:

> Standard longitudinal data analysis methods will be biased
with endogenous exposure.

ISCB 2010
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Longitudinal Structural Model

e (: How to determine the “unbiased” estimate when
time-of-surgery is a random variable?

e A: Use a Longitudinal Structural Mean Model

Y;(t,s) = outcome at time ¢t when

surgery Is at time s

ElYi(t, s)]

population mean when surgery

Is controlled to be at time s

ISCB 2010
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Basic Structural Model
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Basic Structural Model
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Structural (Nested) Mean Model

e Surgery can be coded as a “point” treatment
t=1 t=2 t=3 t=4 t=bH
s| O 1 0 0 0

e This implies that use of structural nested mean models (Robins
1994) takes a simple form:

ElYi(t,s)l = 6(t) + (t,5)-1(t > s)
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Longitudinal Structural Mixed Model

e |Data:| Z;=Tx assigned; S; = surgical time;
Outcomes = Y;(t,S;)

e Q: How to simulate surgical outcome data with a given causal
structure and endogenous surgical timing?

° - Structural Distribution Model

Yi(t,s) = pB() + ~(t,s)-1(t>s) population
+ bi(s,t) subject
+ e;(s,1) observation
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Longitudinal Structural Mixed Model

Simple Example:

Yi(t,s) = Bo+pBi-t + [vo+7-(E—s) 1> s)

+ bi,O + b7;71 -t + bz‘,g . 1(t > S)

+ 6@70(15) . 1(t < S) + 62'71(15) . 1(t > S)

distribution bi~N, ei~N

ISCB 2010
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Selection Model(s) for Surgery

e Define: Y, (t) observed outcome at time ¢.

pi(s) = P|S; =s|8; > s, Z;, {YiO(t) t < s}, b;|

e | Direct: |(like MAR)

pi(s) = fl Zi, {Y7(t)t<s} ]

e | Indirect: | (like NMAR)

pZ(S) — f[ Zi, {Y;O(t> t < 8}7 b’b]
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Estimation Options

Linear Mixed Models
Generalized Estimating Equations (GEE)

Marginal Structural Models (MSM)
> Selection model; IPW; (R, H& B 2000)

g-Estimation
> SNMM; semi-par efficient (Robins 1994)
> Extension of IV (Joffe 2004; Dunn 2007)

Instrumental Variable (1V) Analysis
> 2SLS; (Woolridge 2002)

ISCB 2010
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Multivariate Structure

e In order to specify a multivariate regression model it is typical to

consider:
vec[V,7 ()] | vec[X(t)]

where X;(t) = [Z;,1(t > S;)].
e Endogeneity implies
YO(t) | Xi(1), .., Xu(t),..., Xi(T)

depends on X;(t+1)... X, (T).

ISCB 2010



Multivariate Conditional Mean

e Then we have

E{YO(1) [vec Xi(0)]} # ENC() | Xi(t)

# B(t) +(t,s) - 1(t > s)
e Therefore moment-based arguments for regression validity do not
apply.
> LMM maximum likelihood as WLS
> GEE
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Marginal Structural Models

Robbins, Hernan, Brumback (2000)

General Approach | Structural model and...

> Selection model for treatment (e.g. p;(s) described earlier)
used to reweight data in order to correct for selection bias.

> Semi-parametric since only moments of structural model are
specified.

Key Assumptions

> Model for treatment is correct.

ISCB 2010



Instrumental Variable Methods

e Wooldridge (2002)

e | General Approach

> (3 solution to:

e | Key Assumptions

Structural model and 1V:

X — ZOé—|—€7;

0=2T(Y — XB)

> Instrument Z is not correlated with e;.

> Randomization indicator, Z, is an V!

71
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SNMM / G-Estimation

e Robbins (1994)

General Approach | Structural model and...

> Estimating equation
> Solve: 0=g(Z)IW(2D]Y — u(X, Z)]

> Semi-parametric since only moments of structural model are

specified.

> Special case is |V estimator.

Key Assumptions

> Typically “sequential randomization”.

ISCB 2010
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Simulations

Use a SNMM with:
v(s,t) =v+711-(t—s)=3.0+04-(t—s)

Use a Longitudinal Structural Mixed Model (LSMM)
> Random intercept only
> Random intercept + slope

> Random intercept + slope + Tx
Direct and Indirect Selection
> logit pi(s) = a(s, Z;) +n[Y,? (s — 1)] + o(b;)

N=500 subjects, m=5 measurement times

ISCB 2010
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gamma0

Rand Int Data / Direct Selection
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gamma0

Rand Int+Slope Data / Direct Selection

Method
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gamma0

Rand Int+Slope+Tx Data / Direct Selection

Method
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Summary

MLE for LSMM requires correct random effects model.
GEE-indep biased.

MSM and |V approx unbiased, yet high variance.

Q: What justifies LSMM MLE?

ISCB 2010
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Joint Likelihood Factorization

e Define:

> YO(1) = [YO(1),....Y.O(0)

1

> Xy(t) = [X;(1),...,X;(t)] encodes S;

e Assume conditional independence (no serial corr):
[T [ TIVOOI%:(0).b] XY~ 1). Xt = 1. bldF(b)
i t

e Assume no indirect selection:

[T [ TIv R0 X Y0t - 1).Xi(e — D)F ()

ISCB 2010
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Likelihood Factorization

e Now the likelihood can be factored:

TT I TTX20 - 1), Kt — 1)] / YO8, bildF (b;)

i Lt
and can be maximized using typical LMM software since this is an
equivalent likelihood.

ISCB 2010
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gamma0

Rand Int+Slope+Tx Data / Direct+Indirect Selection

Method

21 122 100 22 20 1 <1
m —]
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[ [ [ [
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Joint Likelihood (Bayes)

e Using one dataset from simulation with indirect selection we used

the joint likelihood of Y,©(t), S; and weak priors (WinBUGS):

> Evidence for indirect selection, where 05 is coefficient of b, in

model for p;(s):

E[55]=4.45 (sd[§5]=1.05)

e Comparison of Methods:

E[70] (sd[Y0])

E[71] (sd[71])

LSMM MLE
Joint Likelihood

4.05 (0.108)
2.95 (0.199)

0.42 (0.0097)
0.40 (0.0100)

ISCB 2010
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SPORT Illlustration
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SPORT Illlustration

26-week Effect
Estimation ~o (se) 1 (se) ~o + 71 - 26 (se)
ITT 0.61 (2.144)  0.06 (0.0847) 2.10 (2.082)
LME-intercept only (GEE-exchangeable) 3.06 (1.915) 0.67 (0.0968) 20.4 (1. 729)
LME-intercept + slope on time 3.61 (1.833) 0.73 (0.1004) 22.5 (1.905)
LME-intercept + slopes on time and X; 1.66 (2.083) 0.68 (0.0958) 19.4 (1.972)
GEE-independence 2350 (2.521)  0.54 (0.1143) 10.6 (2.328)
MSM, weights: past Y level 4.48 (2.737) 0.71 (0.1431) 22.9 (3.305)
MSM, weights: past Y level and Y trend | 4.05 (2.702)  0.66 (0.1398) 21.1 (3.156)
IV, assuming random intercepts 11.25 (31.231)  -0.14 (1.1169) 7.5 (13.816)
JOINT, no explicit selection 2.1 (2.173) 0.69 (0.1016) 20.0 (2.189)
JOINT, selection on b;g 4.42 (2.239)  0.70 (0.1043) 22.7 (2.271)
JOINT, selection on b;o and b;3 -3.36 (3.071) 1.33 (0.1253) 31. 3 (3.037)
JOINT, selection on b;o, bs1, and byz -6.01 (3.308)  1.25 (0. 1331) 26.4 (4.006)

ISCB 2010



84

SPORT Illlustration

Estimation ag (sd) as (sd) "o (sd)
coeff. b;g coeff. b;1 coeff. b;o
JOINT, no explicit selection - - -
JOINT, selection on b;g -0.033 (0.00438) - -
JOINT, selection on b;p and b;1 -0.041 (0.0084)  -5.41 (1.077) -
JOINT, selection on b;g, b;1, and b;2 | -0.022 (0.0111)  -3.87 (1.236) 0.046 (0.0190)

ISCB 2010
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Conclusions

Endogenous non-compliance in surgical trials.

Longitudinal Structural Mixed Model (LSMM).

Selection assumptions.
Likelihood and/or Joint Likelihood methods.

Semi-parametric methods.

ISCB 2010
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LSMM and Markers for Treatment Selection

Motivation:

> The second aim of an RCT is often to determine who will
benefit from treatment.

> Markers to guide treatment choice (decision)

> Example: Carpal Tunnel / surgery / EDS and MRI

Statistical Formulation:

> Ability of markers to classify

> Groups:

1 : patients with TX >> control
0 : patients with TX << control

ISCB 2010
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LSMM and Markers for Treatment Selection

Typical data

subject treatment control A
101 Y;i(1) - -
102 - Y;(0) -

ISCB 2010



LSMM and Markers for Treatment Selection

e | Desired information

subject treatment control A

101 Yi(1) Yi(0) A

102 Y1) Yi(0) A

e “Principal strata” (Frangakis and Rubin, 2002)

ISCB 2010
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LSMM and Markers for Treatment Selection

Crossover Trial

subject timel time2 A
101 Yii(1) Yie(0) A; =Y;(1) —Y;2(0)
102 Yii(0) Yio(l) A; = Yie(l) —Y;(0)

ISCB 2010
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LSMM and Prescriptive Marker

e Using the LSMM we can define individual-level treatment effects

as:

where T > t indicating that subject ¢ is non-treated at time ¢.

e Given data [Y;(T)°, X,(T) we will have a posterior distribution
for A;(t,0) since only one of Y;(t,0), Y;(¢,7*) may be observed.
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LSMM and Prescriptive Marker

e Using the simple LSMM from earlier slide we would obtain:

Ai(t,0) = v+t
+ big
+ ei,l(t) — 67;’0(t)

e Note that in order to make probabilistic inference on A; we would
need to make error assumptions:

> Rank preserving: e; 1(t) = e; 0(t)
> Independence: 61,1(15) 1 67;,0(?5)

ISCB 2010
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LSMM and Prescriptive Marker

e Given a definition for an individual-level treatment effect we can

then evaluate the ability of a marker, M;, to classify subjects

according to treatment benefit. Here we can consider:

p-PPV
p-NPV

p-Sensitivity
p-Specificity

PIA(£,0)> 0| M; > ¢
P[A;(t,0) <0 | M; <]

P[MZ > C ‘ Az(t,O) > O]
PIM; < c| Ai(¢,0) <0

ISCB 2010



LSMM and Prescriptive Marker

e In order to make inference a joint model for the outcome(s) and
the marker is needed. Use |Y; | M;] - [M;]:

ElYi(t,s) [ M;] = B, M) + ~(t,s,M;)-1(t > s)
eg. Yo+ (t—s)+y2- M,
bi,e; ~ N
M, ~ Fy

e Either a parametric or non-parametric model can be assumed for
M;.
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LSMM and Prescriptive Marker

Our current work is on inference for the classification error rates

p-Sensitivity and p-Specificity. Here the development uses:
p-Sensitivity = P[M; > c| A; > 0]

[T P[A; > 0| M, =m]-P[M;, =m)]
[ PIA;>0]| M; =m]- P[M; =m]

Prescriptive ROC curves can be obtained by varying the value of c.

Other thresholds for benefit: A; > d.

ISCB 2010



Surgery for Carpal Tunnel Syndrome

e | Carpal Tunnel

Jarvik et al. (2009) Lancet

e Subjects with mild-to-moderate carpal tunnel syndrome (CTS).

e RCT subjects (N=116) and observational arm (N=207)

e Hand functional status measured at t=0, 3, 6, 9, 12 months

97
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CTS: Markers to Indicate Surgery

e Jarvik et al. (2008) and (2009) identified variables that were
associated with treatment benefit.
e Electrodiagnostic (EDS) and MRI markers
> EDS: Median motor latency (MML)
> EDS: Median motor amplitude (MMA)
> MRI: Abnormal signal length (ABNSIG)
> MRI: Bowing of flexor retinaculum (QUAL23)

e Q: How do the markers compare in their ability to accurately
target treatment to those subjects who will benefit?

ISCB 2010
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True Positive Fraction
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LSMM: Summary

Structural models specify parameters of interest.

Alternative methods of estimation for treatment effects.

Extension to evaluation of markers.

Evaluation of prescriptive classification error rates.

Collaboration with Colleen Sitlani (UW).
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Our Manuscripts

e Sitlani, Heagerty, Tosteson, Blood: Longitudinal structural mixed
models for the analysis of surgical trials with non-compliance.
(submitted)

e Sitlani, Heagerty, Comstock: Longitudinal structural mixed models
as tools for characterizing the accuracy of markers used to select
treatment. (manuscript)
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