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Session Two Outline

• Examples
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• Selection Model for Timing of Surgery

• Analysis Options

• Evaluation of Methods

• Concluding Comments

• Extension to Treatment Selection
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Examples

• SPORT Weinstein et al. (2006) JAMA

. Spine Patient Outcomes Research Trial

. Disk herniation

. N=501 subjects

. SF-36 Physical Function assessment through 24 months.

. Surgery:

∗ At 3mo: 50% / 30%

∗ At 12mo: 60% / 45%
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Examples

• INVEST Kallmes et al. (2009) NEJM

. Vertebroplasty

. N=131 subjects

. Assessment at 0, 1, 3, 6, 12 mo

. Crossover:

∗ From Tx=A to Tx=B: 11/68

∗ From Tx=B to Tx=A: 32/63
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Original Goal

• As-treated analysis of surgical data requires use of methods

appropriate for endogenous exposure.

• Patient status post-randomization is a predictor of seeking

treatment change (non-adherence).

• Implication:

E[Yi(t) | Zi, Surgi= t + 1] 6= E[Yi(t) | Zi,Surgi> t + 1]

• Hypothesis:

. Standard longitudinal data analysis methods will be biased

with endogenous exposure.
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Longitudinal Structural Model

• Q: How to determine the “unbiased” estimate when

time-of-surgery is a random variable?

• A: Use a Longitudinal Structural Mean Model

Yi(t, s) = outcome at time t when

surgery is at time s

E[Yi(t, s)] = population mean when surgery

is controlled to be at time s
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Basic Structural Model
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Basic Structural Model
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Structural (Nested) Mean Model

• Surgery can be coded as a “point” treatment

t=1 t=2 t=3 t=4 t=5

s 0 1 0 0 0

• This implies that use of structural nested mean models (Robins

1994) takes a simple form:

E[Yi(t, s)] = β(t) + γ(t, s) · 1(t > s)
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Longitudinal Structural Mixed Model

• Data: Zi=Tx assigned; Si = surgical time;

Outcomes = Yi(t, Si)

• Q: How to simulate surgical outcome data with a given causal

structure and endogenous surgical timing?

• A: Structural Distribution Model

Yi(t, s) = β(t) + γ(t, s) · 1(t > s) population

+ bi(s, t) subject

+ ei(s, t) observation

63 ISCB 2010



Longitudinal Structural Mixed Model

• Simple Example:

Yi(t, s) = β0 + β1 · t + [γ0 + γ1 · (t− s)] · 1(t > s)

+ bi,0 + bi,1 · t + bi,2 · 1(t > s)

+ ei,0(t) · 1(t ≤ s) + ei,1(t) · 1(t > s)

distribution bi ∼ N , ei ∼ N
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Selection Model(s) for Surgery

• Define: Y O
i (t) observed outcome at time t.

pi(s) = P [Si = s | Si ≥ s, Zi, {Y O
i (t) t < s}, bi ]

• Direct: (like MAR)

pi(s) = f [ Zi, {Y O
i (t) t < s} ]

• Indirect: (like NMAR)

pi(s) = f [ Zi, {Y O
i (t) t < s}, bi]
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Estimation Options

• Linear Mixed Models

• Generalized Estimating Equations (GEE)

• Marginal Structural Models (MSM)

. Selection model; IPW; (R, H& B 2000)

• g-Estimation

. SNMM; semi-par efficient (Robins 1994)

. Extension of IV (Joffe 2004; Dunn 2007)

• Instrumental Variable (IV) Analysis

. 2SLS; (Woolridge 2002)
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Multivariate Structure

• In order to specify a multivariate regression model it is typical to

consider:

vec[Y O
i (t)] | vec[Xi(t)]

where Xi(t) = [Zi, 1(t > Si)].

• Endogeneity implies

Y O
i (t) | Xi(1), . . . , Xi(t), . . . , Xi(T )

depends on Xi(t + 1) . . . Xi(T ).
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Multivariate Conditional Mean

• Then we have

E
{
Y O

i (t) | vec[Xi(t)]
} 6= E[Y O

i (t) | Xi(t)]

6= β(t) + γ(t, s) · 1(t > s)

• Therefore moment-based arguments for regression validity do not

apply.

. LMM maximum likelihood as WLS

. GEE
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Marginal Structural Models

• Robbins, Hernan, Brumback (2000)

• General Approach Structural model and...

. Selection model for treatment (e.g. pi(s) described earlier)

used to reweight data in order to correct for selection bias.

. Semi-parametric since only moments of structural model are

specified.

• Key Assumptions

. Model for treatment is correct.
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Instrumental Variable Methods

• Wooldridge (2002)

• General Approach Structural model and IV:

Y = Xβ + ei

X = Zα + εi

. β̂ solution to: 0 = ZT (Y −Xβ)

• Key Assumptions

. Instrument Z is not correlated with ei.

. Randomization indicator, Z, is an IV!
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SNMM / G-Estimation

• Robbins (1994)

• General Approach Structural model and...

. Estimating equation

. Solve: 0 = g(Z)T W (Z)[Y − µ(X, Z)]

. Semi-parametric since only moments of structural model are

specified.

. Special case is IV estimator.

• Key Assumptions

. Typically “sequential randomization”.
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Simulations

• Use a SNMM with:

γ(s, t) = γ0 + γ1 · (t− s) = 3.0 + 0.4 · (t− s)

• Use a Longitudinal Structural Mixed Model (LSMM)

. Random intercept only

. Random intercept + slope

. Random intercept + slope + Tx

• Direct and Indirect Selection

. logit pi(s) = α(s, Zi) + η[Y O
i (s− 1)] + δ(bi)

• N=500 subjects, m=5 measurement times
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Summary

• MLE for LSMM requires correct random effects model.

• GEE-indep biased.

• MSM and IV approx unbiased, yet high variance.

• Q: What justifies LSMM MLE?

77 ISCB 2010



Joint Likelihood Factorization

• Define:

. ȲO
i (t) = [Y O

i (1), . . . , Y O
i (t)]

. X̄i(t) = [Xi(1), . . . , Xi(t)] encodes Si

• Assume conditional independence (no serial corr):

∏

i

∫ ∏
t

[Y O
i (t)|X̄i(t), bi] [Xi(t)|ȲO

i (t− 1), X̄i(t− 1), bi]dF (bi)

• Assume no indirect selection:

∏

i

∫ ∏
t

[Y O
i (t)|X̄i(t), bi][Xi(t)|ȲO

i (t− 1), X̄i(t− 1)]dF (bi)
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Likelihood Factorization

• Now the likelihood can be factored:

∏

i

[∏
t

[Xi(t)|ȲO
i (t− 1), X̄i(t− 1)]

∫
[Y O

i (t)|X̄i(t), bi]dF (bi)

]

and can be maximized using typical LMM software since this is an

equivalent likelihood.
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Joint Likelihood (Bayes)

• Using one dataset from simulation with indirect selection we used

the joint likelihood of Y O
i (t), Si and weak priors (WinBUGS):

. Evidence for indirect selection, where δ5 is coefficient of bi2 in

model for pi(s):
E[δ̂5]=4.45 (sd[δ̂5]=1.05)

• Comparison of Methods:

E[ bγ0] (sd[ bγ0]) E[ bγ1] (sd[ bγ1])

LSMM MLE 4.05 (0.108) 0.42 (0.0097)

Joint Likelihood 2.95 (0.199) 0.40 (0.0100)
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SPORT Illustration
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SPORT Illustration

26-week Effect

Estimation cγ0 (se) cγ1 (se) cγ0 +cγ1 · 26 (se)

ITT 0.61 (2.144) 0.06 (0.0847) 2.10 (2.082)

LME-intercept only (GEE-exchangeable) 3.06 (1.915) 0.67 (0.0968) 20.4 (1. 729)

LME-intercept + slope on time 3.61 (1.833) 0.73 (0.1004) 22.5 (1.905)

LME-intercept + slopes on time and Xt 1.66 (2.083) 0.68 (0.0958) 19.4 (1.972)

GEE-independence -3.50 (2.521) 0.54 (0.1143) 10.6 (2.328)

MSM, weights: past Y level 4.48 (2.737) 0.71 (0.1431) 22.9 (3.305)

MSM, weights: past Y level and Y trend 4.05 (2.702) 0.66 (0.1398) 21.1 (3.156)

IV, assuming random intercepts 11.25 (31.231) -0.14 (1.1169) 7.5 (13.816)

JOINT, no explicit selection 2.1 (2.173) 0.69 (0.1016) 20.0 (2.189)

JOINT, selection on bi0 4.42 (2.239) 0.70 (0.1043) 22.7 (2.271)

JOINT, selection on bi0 and bi1 -3.36 (3.071) 1.33 (0.1253) 31. 3 (3.037)

JOINT, selection on bi0, bi1, and bi2 -6.01 (3.308) 1.25 (0. 1331) 26.4 (4.006)

83 ISCB 2010



SPORT Illustration

Estimation cα4 (sd) cα5 (sd) dα6 (sd)

coeff. bi0 coeff. bi1 coeff. bi2

JOINT, no explicit selection - - -

JOINT, selection on bi0 -0.033 (0.0048) - -

JOINT, selection on bi0 and bi1 -0.041 (0.0084) -5.41 (1.077) -

JOINT, selection on bi0, bi1, and bi2 -0.022 (0.0111) -3.87 (1.236) 0.046 (0.0190)
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Conclusions

• Endogenous non-compliance in surgical trials.

• Longitudinal Structural Mixed Model (LSMM).

• Selection assumptions.

• Likelihood and/or Joint Likelihood methods.

• Semi-parametric methods.
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LSMM and Markers for Treatment Selection

• Motivation:

. The second aim of an RCT is often to determine who will

benefit from treatment.

. Markers to guide treatment choice (decision)

. Example: Carpal Tunnel / surgery / EDS and MRI

• Statistical Formulation:

. Ability of markers to classify

. Groups:

1 : patients with TX >> control

0 : patients with TX << control
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LSMM and Markers for Treatment Selection

• Typical data

subject treatment control ∆

101 Yi(1) - -

102 - Yi(0) -
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LSMM and Markers for Treatment Selection

• Desired information

subject treatment control ∆

101 Yi(1) Yi(0) ∆i

102 Yi(1) Yi(0) ∆i

• “Principal strata” (Frangakis and Rubin, 2002)
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LSMM and Markers for Treatment Selection

• Crossover Trial

subject time 1 time 2 ∆

101 Yi1(1) Yi2(0) ∆i ≈ Yi1(1)− Yi2(0)

102 Yi1(0) Yi2(1) ∆i ≈ Yi2(1)− Yi1(0)
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LSMM and Prescriptive Marker

• Using the LSMM we can define individual-level treatment effects

as:

∆i(t, 0) = Yi(t, 0)− Yi(t, T ∗)

where T ∗ > t indicating that subject i is non-treated at time t.

• Given data [Ȳi(T )O, X̄i(T ) we will have a posterior distribution

for ∆i(t, 0) since only one of Yi(t, 0), Yi(t, T ∗) may be observed.
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LSMM and Prescriptive Marker

• Using the simple LSMM from earlier slide we would obtain:

∆i(t, 0) = γ0 + γ1 · t
+ bi2

+ ei,1(t)− ei,0(t)

• Note that in order to make probabilistic inference on ∆i we would

need to make error assumptions:

. Rank preserving: ei,1(t) = ei,0(t)

. Independence: ei,1(t) ⊥ ei,0(t)
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LSMM and Prescriptive Marker

• Given a definition for an individual-level treatment effect we can

then evaluate the ability of a marker, Mi, to classify subjects

according to treatment benefit. Here we can consider:

p-PPV : P [∆i(t, 0) > 0 | Mi > c]

p-NPV : P [∆i(t, 0) ≤ 0 | Mi ≤ c]

p-Sensitivity : P [Mi > c | ∆i(t, 0) > 0]

p-Specificity : P [Mi ≤ c | ∆i(t, 0) ≤ 0]
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LSMM and Prescriptive Marker

• In order to make inference a joint model for the outcome(s) and

the marker is needed. Use [Yi | Mi] · [Mi]:

E[Yi(t, s) | Mi] = β(t,Mi) + γ(t, s,Mi) · 1(t > s)

e.g. γ0 + γ1 · (t− s) + γ2 ·Mi

bi, ei ∼ N
Mi ∼ FM

• Either a parametric or non-parametric model can be assumed for

Mi.
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LSMM and Prescriptive Marker

• Our current work is on inference for the classification error rates

p-Sensitivity and p-Specificity. Here the development uses:

p-Sensitivity = P [Mi > c | ∆i > 0]

=

∫∞
c

P [∆i > 0 | Mi = m] · P [Mi = m]∫∞
−∞ P [∆i > 0 | Mi = m] · P [Mi = m]

• Prescriptive ROC curves can be obtained by varying the value of c.

• Other thresholds for benefit: ∆i > d.

96 ISCB 2010



Surgery for Carpal Tunnel Syndrome

• Carpal Tunnel Jarvik et al. (2009) Lancet

• Subjects with mild-to-moderate carpal tunnel syndrome (CTS).

• RCT subjects (N=116) and observational arm (N=207)

• Hand functional status measured at t=0, 3, 6, 9, 12 months
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CTS: Markers to Indicate Surgery

• Jarvik et al. (2008) and (2009) identified variables that were

associated with treatment benefit.

• Electrodiagnostic (EDS) and MRI markers

. EDS: Median motor latency (MML)

. EDS: Median motor amplitude (MMA)

. MRI: Abnormal signal length (ABNSIG)

. MRI: Bowing of flexor retinaculum (QUAL23)

• Q: How do the markers compare in their ability to accurately

target treatment to those subjects who will benefit?
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LSMM: Summary

• Structural models specify parameters of interest.

• Alternative methods of estimation for treatment effects.

• Extension to evaluation of markers.

• Evaluation of prescriptive classification error rates.

• Collaboration with Colleen Sitlani (UW).
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Our Manuscripts

• Sitlani, Heagerty, Tosteson, Blood: Longitudinal structural mixed

models for the analysis of surgical trials with non-compliance.

(submitted)

• Sitlani, Heagerty, Comstock: Longitudinal structural mixed models

as tools for characterizing the accuracy of markers used to select

treatment. (manuscript)
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