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Extensions of Generalized Linear Models
to Longitudinal Data (Part 1)

When the response variable is categorical (e.g., binary and count data),
generalized linear models (e.g., logistic regression) can be extended to
handle the correlated outcomes.

However, non-linear transformations of the mean response (e.g., logit) raise
additional issues concerning the interpretation of the regression coefficients.

Different approaches for accounting for the correlation lead to models
having regression coefficients with distinct interpretations.

As we will see, different models for discrete longitudinal data have somewhat
different targets of inference.
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MOTIVATING EXAMPLE

Oral Treatment of Toenail Infection

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toenail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate
from the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and
48.

Interested in the rate of decline of the proportion of patients with
onycholysis over time and the effects of treatment on that rate.
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GENERALIZED LINEAR MODELS FOR
LONGITUDINAL DATA

Next, we focus on two general approaches for extending generalized linear
models to correlated data:

1. Marginal Models

2. Generalized Linear Mixed Models

The main emphasis will be on discrete response data, e.g., count data or
binary responses.

Before discussing these approaches, we briefy review main features of
generalized linear models for a univariate outcome.
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Brief Review of Generalized Linear Models

Generalized linear models are a class of regression models; they include the
standard linear regression model but also many other important models:

- Linear regression for continuous data

- Logistic regression for binary data

- Loglinear/Poisson regression models for count data

Generalized linear models extend the methods of regression analysis to
settings where the outcome variable can be categorical.

Later (Sessions 5 and 6), we consider extensions of generalized linear models
to longitudinal data.
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Notation for Generalized Linear Models

Assume m independent observations of a single response variable, Yi.

Associated with each response, Yi, there is a p × 1 vector of covariates,
Xi1, ..., Xip.

Goal: Primarily interested in relating the mean of Yi,
µi = E(Yi|Xi1, ..., Xip), to the covariates.
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In generalized linear models:

(i) the distribution of the response is assumed to belong to a family of
distributions known as the exponential family, e.g., normal, Bernoulli,
binomial, and Poisson distributions.

(ii) A transformation of the mean response, µi, is then linearly related to
the covariates, via an appropriate link function:

g(µi) = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip,

where link function g(·) is a known function, e.g., log(µi).
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Mean and Variance of Exponential Family
Distributions

Exponential family distributions share some common statistical properties.

The variance of Yi can be expressed in terms of

Var (Yi) = φ v(µi),

where the scale parameter φ > 0.

The variance function, v(µi), describes how the variance of the response is
functionally related to µi, the mean of Yi.
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Link Function

The link function applies a transformation to the mean and then links the
covariates to the transformed mean,

g(µi) = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip,

where link function g(·) is known function, e.g., log(µi).

This implies that it is the transformed mean response that changes linearly
with changes in the values of the covariates.
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Canonical link and variance functions for the normal, Bernoulli, and Poisson
distributions.

Distribution Var. Function, v(µ) Canonical Link

Normal v(µ) = 1 Identity: µ = η

Bernoulli v(µ) = µ(1− µ) Logit: log
[

µ
(1−µ)

]
= η

Poisson v(µ) = µ Log: log(µ) = η

where η = β0 + β1X1 + β2X2 + · · ·+ βpXp.
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Common Examples

Normal distribution:

If we assume that g(·) is the identity function,

g (µ) = µ

then
µi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip,

gives the standard linear regression model, with Var (Yi) = φ.

Note: Variance is unrelated to the mean.
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Bernoulli distribution:

For the Bernoulli distribution, 0 < µi < 1, so we would prefer a link function
that transforms the interval [0, 1] on to the entire real line (−∞,∞):

logit : ln [µi/ (1− µi)]
probit : Φ−1 (µi)

where Φ(·) is the standard normal cumulative distribution function.

If we assume a logit link function then

log
[

µi
(1− µi)

]
= β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip,

yields logistic regression model, with Var (Yi) = µi(1 − µi) (Bernoulli
variance).
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Poisson distribution:

For the Poisson distribution, µi > 0, so we would prefer a link function that
transforms the interval (0,∞) on to the entire real line (−∞,∞).

If we assume a log link function then

log (µi) = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip,

yields Poisson or loglinear regression model, with Var (Yi) = µi (Poisson
variance).
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Summary

In generalized linear models:

(i) response assumed to have exponential family distribution, e.g., normal,
Bernoulli, binomial, and Poisson distributions.

(ii) transformed mean response is linearly related to the covariates, via an
appropriate link function:

g(µi) = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip.
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MARGINAL MODELS FOR LONGITUDINAL DATA

The basic premise of marginal models is to make inferences about
population averages.

The term ‘marginal’ is used here to emphasize that the mean response
modelled is conditional only on covariates and not on other responses or
random effects.

A feature of marginal models is that the models for the mean and the
‘within-subject association’ (e.g., covariance) are specified separately.
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Notation

Let Yij denote response variable for ith subject on jth occasion.

Yij can be continuous, binary, or a count.

We assume there are ni repeated measurements on the ith subject and each
Yij is observed at time tij.

Associated with each response, Yij, there is a p×1 vector of covariates, Xij.

Covariates can be time-invariant (e.g., gender) or time-varying (e.g., time
since baseline).

16



Features of Marginal Models:

The focus of marginal models is on inferences about population averages.

The marginal expectation, µij = E (Yij|Xij), of each response is modelled
as a function of covariates.

Specifically, marginal models have the following three part specification:
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1. The marginal expectation of the response, µij, depends on covariates
through a known link function

g (µij) = β0 + β1X1ij + β2X2ij + · · ·+ βpXpij.

2. The marginal variance of Yij depends on the marginal mean according
to

Var (Yij) = φ v (µij)
where v (µij) is a known ‘variance function’ and φ is a scale parameter
that may need to be estimated.

3. The ‘within-subject association’ among the responses is a function of
the means and of additional parameters, say ααα, that may also need to
be estimated.
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For example, when α represents pairwise correlations among responses, the
covariances among the responses depend on µij(β), φ, and α:

Cov(Yij, Yik) = s.d.(Yij) Corr(Yij, Yik) s.d.(Yik)

=
√
φ v (µij) Corr(Yij, Yik)

√
φ v (µik)

where s.d.(Yij) is the standard deviation of Yij.

In principle, can also specify higher-order moments.
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Examples of Marginal Models

Example 1. Continuous responses:

1. µij = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp.
(i.e., linear regression)

2. Var (Yij) = φ
(i.e., homogeneous variance)

3. Corr (Yij, Yik) = α|k−j| (0 ≤ α ≤ 1)
(i.e., autoregressive correlation)
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Example 2. Binary responses:

1. Logit (µij) = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp.
(i.e., logistic regression)

2. Var (Yij) = µij (1− µij)
(i.e., Bernoulli variance)

3. OR (Yij, Yik) = αjk
(i.e., unstructured odds ratios)
where

OR (Yij, Yik) =
Pr(Yij = 1, Yik = 1) Pr(Yij = 0, Yik = 0)
Pr(Yij = 1, Yik = 0) Pr(Yij = 0, Yik = 1)

.
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Example 3. Count data:

1. Log (µij) = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp.
(i.e., Poisson regression)

2. Var (Yij) = φµij
(i.e., extra-Poisson variance or “overdispersion” when φ > 1)

3. Corr (Yij, Yik) = α
(i.e., compound symmetry correlation)
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Interpretation of Marginal Model Parameters

The regression parameters, β, have ‘population-averaged’ interpretations
(where ‘averaging’ is over all individuals within subgroups of the
population):

- describe effect of covariates on the average responses

- contrast the means in sub-populations that share common covariate
values

=⇒ Marginal models are most useful for population-level inferences.

The regression parameters are directly estimable from the data.

Of note, nature or magnitude of within-subject association (e.g.,
correlation) does not alter the interpretation of β.
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For example, consider the following logistic model,

logit(µij]) = logit(E[Yij|Xij]) = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp.

Each element of β measures the change in the log odds of a ‘positive’
response per unit change in the respective covariate, for sub-populations
defined by fixed and known covariate values.

The interpretation of any component of β, say βk, is in terms of changes
in the transformed mean (or “population-averaged”) response for a unit
change in the corresponding covariate, say Xijk.
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When Xijk takes on some value x, the log odds of a positive response is,

log
[

Pr(Yij=1|Xij1,...,Xijk=x,...,Xijp)
Pr(Yij=0|Xij1,...,Xijk=x,...,Xijp)

]
=

β0 + β1Xij1 + · · ·+ βkx+ · · ·+ βpXijp.

Similarly, when Xijk now takes on some value x+ 1,

log
[

Pr(Yij=1|Xij1,...,Xijk=x+1,...,Xijp)

Pr(Yij=0|Xij1,...,Xijk=x+1,...,Xijp)

]
=

β0 + β1Xij1 + · · ·+ βk(x+ 1) + · · ·+ βpXijp.

−→ βk is change in log odds for subgroups of the study population (defined
by any fixed values of Xij1, ..., Xij(k−1), Xij(k+1), ..., Xijp).
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Statistical Inference for Marginal Models

Maximum Likelihood (ML):

Unfortunately, with discrete response data there is no simple analogue of
the multivariate normal distribution.

In the absence of a “convenient” likelihood function for discrete data, there
is no unified likelihood-based approach for marginal models.

Alternative approach to estimation - Generalized Estimating Equations
(GEE).
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GENERALIZED ESTIMATING EQUATIONS

Avoid making distributional assumptions about Yi altogether.

Potential Advantages:

Empirical researcher does not have to be concerned that the distribution of
Yi closely approximates some multivariate distribution.

It circumvents the need to specify models for the three-way, four-way and
higher-way associations (higher-order moments) among the responses.

It leads to a method of estimation, known as generalized estimating
equations (GEE), that is straightforward to implement.
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The GEE approach has become an extremely popular method for analyzing
discrete longitudinal data.

It provides a flexible approach for modelling the mean and the pairwise
within-subject association structure.

It can handle inherently unbalanced designs and missing data with ease
(albeit making strong assumptions about missingness).

GEE approach is computationally straightforward and has been
implemented in existing, widely-available statistical software.

28



The GEE estimator of β solves the following generalized estimating equations

m∑
i=1

D′iV
−1
i (yi − µi) = 0,

where Vi is the so-called “working” covariance matrix.

By “working” covariance matrix we mean that Vi approximates the true
underlying covariance matrix for Yi.

That is, Vi ≈ Cov (Yi), recognizing that Vi 6= Cov (Yi) unless the models for
the variances and the within-subject associations are correct.

Di = ∂µi/∂β is the “derivative” matrix (of µi with respect to the
components of β); Di(β) transforms from the original units of Yij (and
µij) to the units of g(µij).
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Therefore the generalized estimating equations depend on both β and α.

Because the generalized estimating equations depend on both β and α, an
iterative two-stage estimation procedure is required:

1. Given current estimates of α and φ, an estimate of β is obtained as the
solution to the ‘generalized estimating equations’

2. Given current estimate of β, estimates of ααα and φ are obtained based on
the standardized residuals,

rij = (Yij − µ̂ij) /v (µ̂ij)
1/2
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For example, φ can be estimated by

1/ (mn− p)
m∑
i=1

n∑
j=1

r2
ij

The correlation parameters, α, can be estimated in a similar way.
For example, unstructured correlations, αjk = Corr (Yij, Yik), can be
estimated by

α̂jk = (1/(m− p)) φ̂−1
m∑
i=1

rijrik

Finally, in the two-stage estimation procedure we iterate between steps 1)
and 2) until convergence has been achieved.
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Properties of GEE estimators

β̂, the solution to the generalized estimating equations, has the following
properties:

1. β̂ is consistent estimator of β

2. In large samples, β̂ has a multivariate normal distribution

3. Cov(β̂) = B−1MB−1

where

B =
m∑
i=1

D′iV
−1
i Di
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M =
m∑
i=1

D′iV
−1
i Cov (Yi)V −1

i Di

B and M can be estimated by replacing α, φ, and β by their estimates, and
replacing Cov (Yi) by (Yi − µ̂i) (Yi − µ̂i)′.

Note: We can use this empirical or so-called ‘sandwich’ variance estimator
even when the covariance has been misspecified.

33



Summary

The GEE estimators have the following attractive properties:

1. In many cases β̂ is almost efficient when compared to MLE.
For example, GEE has same form as likelihood equations for multivariate
normal models and also certain models for discrete data

2. β̂ is consistent even if the covariance of Yi has been misspecified

3. Standard errors for β̂ can be obtained using the empirical or so-called
‘sandwich’ estimator
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Case Study: Oral Treatment of Toenail Infection

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toenail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate
from the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and
48.

Interested in the rate of decline of the proportion of patients with
onycholysis over time and the effects of treatment on that rate.
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Assume that the marginal probability of onycholysis follows a logistic model,

logit {E(Yij)} = β0 + β1Monthij + β2Trti ∗Monthij

where Trt = 1 if treatment group B and 0 otherwise.

Here, we assume that Var(Yij) = µij(1− µij).

We also assume an unstructured correlation for the within-subject
association (i.e., estimate all possible pairwise correlations).
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Table 1: GEE estimates and standard errors (empirical) from marginal
logistic regression model for onycholysis data.

PARAMETER ESTIMATE SE Z

INTERCEPT -0.698 0.122 -5.74

Month -0.140 0.026 -5.36

Trt × Month -0.081 0.042 -1.94
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Results

From the output above, we would conclude that:

1. There is a suggestion of a difference in the rate of decline in the two
treatment groups (P = 0.052).

2. Over 12 months, the odds of infection has decreases by a factor of 0.19
[exp(-0.14*12)] in treatment group A.

3. Over 12 months, the odds of infection has decreases by a factor of 0.07
[exp(-0.221*12)] in treatment group B.

4. Odds ratio comparing 12 month decreases in risk of infection between
treatments A and B is approx 2.6 (or e12∗0.081).

5. Overall, there is a significant decline over time in the prevalence of
onycholysis for all randomized patients.
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Summary of Key Points

The focus of marginal models is on inferences about population averages.

The regression parameters, β, have ‘population-averaged’ interpretations
(where ‘averaging’ is over all individuals within subgroups of the
population):

- describe effect of covariates on marginal expectations or average
responses

- contrast means in sub-populations that share common covariate values

=⇒ Marginal models are most useful for population-level inferences.

Marginal models should not be used to make inferences about individuals
(“ecological fallacy”).
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STATISTICAL SOFTWARE: GENERALIZED
ESTIMATING EQUATIONS

SAS and Stata, which are widely available, can perform all analyses
presented in these lectures.

Alternative software packages, e.g. SPSS and S-PLUS, can also be used.

Caveat: Statistical software is constantly evolving.
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GEE using PROC GENMOD in SAS

PROC GENMOD in SAS is primarily a procedure for fitting generalized
linear models to a single response.

However, PROC GENMOD has incorporated an option for implementing
GEE approach using a REPEATED statement (similar to PROC MIXED).

PROC GENMOD, as with almost all software for longitudinal analyses,
requires each repeated measurement in a longitudinal data set to be a
separate “record”.

If the data set is in a multivariate mode (or “wide format”), it must be
transformed to a univariate mode (or “long format”) prior to analysis.
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Table 2: Illustrative commands for a marginal logistic regression, with
within-subject associations specified in terms of correlations, using PROC
GENMOD in SAS.

PROC GENMOD DESCENDING;

CLASS id group;

MODEL y=group time group*time / DIST=BINOMIAL LINK=LOGIT;

REPEATED SUBJECT=id / WITHINSUBJECT=time TYPE=UN;
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Table 3: Illustrative commands for a marginal logistic regression, with
within-subject associations specified in terms of log odds ratios, using
PROC GENMOD in SAS.

PROC GENMOD DESCENDING;

CLASS id group;

MODEL y=group time group*time / DIST=BINOMIAL LINK=LOGIT;

REPEATED SUBJECT=id / WITHINSUBJECT=time LOGOR=FULLCLUST;
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Table 4: Illustrative commands for a marginal log-linear regression, with
within-subject associations specified in terms of correlations, using PROC
GENMOD in SAS.

PROC GENMOD;

CLASS id group;

MODEL y=group time group*time / DIST=POISSON LINK=LOG;

REPEATED SUBJECT=id / WITHINSUBJECT=time TYPE=UN;
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GEE using xtgee in Stata

Table 5: Illustrative commands for a marginal logistic regression, with
within-subject associations specified in terms of correlations, using xtgee
in Stata.

. generate grp time=group*time

. tsset id time

. xtgee y group time grp time,family(binomial) link(logit) corr(unstr) robust
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Table 6: Illustrative commands for a marginal log-linear regression, with
within-subject associations specified in terms of correlations, using xtgee in
Stata.

. generate grp time=group*time

. tsset id time

. xtgee y group time grp time,family(poisson) link(log) corr(unstr) robust
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