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LINEAR MIXED EFFECTS MODELS

Motivating Example: Influence of Menarche on Changes in Body Fat

• Prospective study on body fat accretion in a cohort of 162 girls from the
MIT Growth and Development Study.

• At start of study, all the girls were pre-menarcheal and non-obese

• All girls were followed over time according to a schedule of annual
measurements until four years after menarche.

• The final measurement was scheduled on the fourth anniversary of their
reported date of menarche.

• At each examination, a measure of body fatness was obtained based on
bioelectric impedance analysis.
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Figure 1: Timeplot of percent body fat against age (in years).
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Consider an analysis of the changes in percent body fat before and after
menarche.

For the purposes of these analyses “time” is coded as time since menarche
and can be positive or negative.

Note: measurement protocol is the same for all girls.

Study design is “balanced” if timing of measurement is defined as time since
baseline measurement.

It is inherently unbalanced when timing of measurements is defined as time
since a girl experienced menarche.
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Figure 2: Timeplot of percent body fat against time, relative to age of
menarche (in years).
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LINEAR MIXED EFFECTS MODELS

Basic idea: Individuals in population are assumed to have their own subject-
specific mean response trajectories over time.

Allow subset of the regression parameters to vary randomly from
one individual to another, thereby accounting for sources of natural
heterogeneity in the population.

Distinctive feature: mean response modelled as a combination of population
characteristics (fixed effects) assumed to be shared by all individuals, and
subject-specific effects (random effects) that are unique to a particular
individual.

The term mixed denotes that model contains both fixed and random effects.
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Linear Models for the Mean Response

The mean response can be modelled by a familiar regression model.

For example, with a linear trend over time, we may have

E(Yij|Xij) = µij = β0 + β1tij.

With additional covariates, this can be written more generally

E(Yij|Xij) = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp

where tij, or possibly functions of tij, have been incorporated into the
covariates, e.g., Xij1 = tij, Xij2 = treatment group indicator, and Xij3 =
tij× treatment group indicator.
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Models for Correlation: Random Intercept Model

One traditional approach for handling the correlation among repeated
measures is to assume that it arises from a random subject effect.

That is, each subject is assumed to have an (unobserved) underlying level
of response which persists across his/her repeated measurements.

This subject effect is treated as random and the model becomes

Yij = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp + bi + εij

or
Yij = (β0 + bi) + β1Xij1 + β2Xij2 + · · ·+ βpXijp + εij

(also known as “random intercept model”).
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In the model

Yij = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp + bi + εij

the response for the ith subject at jth occasion is assumed to differ from
the population mean,

µij = E(Yij|Xij) = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp

by a subject effect, bi, and a within-subject measurement error, εij.

Furthermore, it is assumed that

bi ∼ N(0, σ2
b); εij ∼ N(0, σ2

ε )

and that bi and εij are mutually independent.
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Figure 3 provides graphical representation of linear trend model:

Yij = (β0 + bi) + β1tij + εij

Overall mean response over time in the population changes linearly with
time (denoted by the solid line).

Subject-specific mean responses for two specific individuals, subjects A and
B, deviate from the population trend (denoted by the broken lines).

Individual A responds “higher” than the population average and thus has
a positive bi.

Individual B responds “lower” than the population average and has a
negative bi.

Inclusion of measurement errors, εij, allows response at any occasion to
vary randomly above/below subject-specific trajectories (see Figure 4).
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Figure 3: Graphical representation of the overall and subject-specific mean
responses over time.
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Figure 4: Graphical representation of the overall and subject-specific mean
responses over time, plus measurement errors.
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Covariance/Correlation Structure

The introduction of a random subject effect induces correlation among the
repeated measures.

The following “compound symmetry” covariance structure results:

Var(Yij) = σ2
b + σ2

ε

Cov(Yij, Yik) = σ2
b =⇒ Corr(Yij, Yik) =

σ2
b

σ2
b + σ2

ε

This is the correlation among pairs of observations on the same individual.

Potential Drawback: Variances and correlations are assumed to be constant.

Solution: Allow for heterogeneity is trends over time =⇒ random intercepts
and slopes.
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Extension: Random Intercept and Slope Model

Consider a model with intercepts and slopes that vary randomly among
individuals,

Yij = β0 + β1tij + b0i + b1itij + εij, j = 1, ..., ni,

where tij denotes the timing of the jth response on the ith subject.

This model posits that individuals vary not only in their baseline level of
response (when ti1 = 0), but also in terms of their changes in the response
over time (see Figure 5).

The effects of covariates (e.g., due to treatments, exposures) can be
incorporated by allowing mean of intercepts and slopes to depend on
covariates.
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Figure 5: Graphical representation of the overall and subject-specific mean
responses over time, plus measurement errors.
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For example, consider two-group study comparing a treatment and a control
group:

Yij = β0 + β1tij + β2trti + β3tij × trti + b0i + b1itij + εij,

where trti = 1 if the ith individual assigned to treatment group, and
Groupi = 0 otherwise.

The model can be re-expressed as follows for the control group and treatment
group respectively:

trt = 0: Yij = (β0 + b0i) + (β1 + b1i)tij + εij,

trt = 1: Yij = (β0 + β2 + b0i) + (β1 + β3 + b1i)tij + εij,
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Finally, consider the covariance induced by the introduction of random
intercepts and slopes.

Assuming b0i ∼ N(0, σ2
b0

), b1i ∼ N(0, σ2
b1

) (with Cov(b0i, b1i) = σb0,b1) and
εij ∼ N(0, σ2

ε ), then

Var (Yij) = Var (b0i + b1itij + εij)
= Var(b0i) + 2tijCov(b0i, b1i) + t2ijVar(b1i) + Var(εij)
= σ2

b0
+ 2tijσb0,b1 + t2ijσ

2
b1

+ σ2
ε .

Similarly, it can be shown that

Cov (Yij, Yik) = σ2
b0

+ (tij + tik)σb0,b1 + tijtikσ
2
b1
.

Thus, in this mixed effects model for longitudinal data the variances and
correlations (covariance) are expressed as an explicit function of time, tij.
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Linear Mixed Effects Model

Can allow any subset of the regression parameters to vary randomly.

Using vector notation, the linear mixed effects model can be expressed as

Yij = X ′ijβ + Z ′ijbi + εij,

where bi is a (q × 1) vector of random effects and Zij is the vector of
covariates linking the random effects to Yij.

Note: Components of Zij are a subset of the covariate inXij, e.g., in random
intercepts and slopes model Xij = [1 tij trti tij ∗ trtij] and Zij = [1 tij].

Specifically, any component of β can be allowed to vary randomly by simply
including corresponding covariate in Zij.

The random effects, bi, are assumed to have a multivariate normal
distribution with mean zero and covariance matrix denoted by D.
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Estimation: Maximum Likelihood

ML estimator of β0, β1, ..., βp is the generalized least squares (GLS) estimator
and depends on covariance among the repeated measures.

This is a generalization of the ordinary least squares (OLS) estimator used
in standard linear regression.

In general, there is no simple expression for ML estimator of the covariance
components - requires iterative techniques.

Because ML estimation of covariance is known to be biased in small samples,
use restricted ML (REML) estimation instead.
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Prediction of Random Effects

In many applications, inference is focused on fixed effects, β0, β1, ..., βp.

However, we can also “estimate” or predict subject-specific effects, bi (or
subject-specific response trajectories over time):

b̂i = E(bi|Yi; β̂, D̂, σ̂2
ε ).

This is known as “best linear unbiased predictor” (or BLUP).

In general, BLUP “shrinks” predictions towards population-averaged mean.
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For example, consider the random intercept model

Yij = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp + bi + εij,

where Var (bi) = σ2
b and Var (εij) = σ2

ε .

It can be shown that the BLUP for bi is:

b̂i = w ×

 1
ni

ni∑
j=1

(Yij − µij)

+ (1− w)× 0, where w =
niσ

2
b

niσ2
b + σ2

ε

.

That is, a weighted-average of zero (mean of bi) and the mean “residual”
for the ith subject.

Note: Less shrinkage (toward zero) when ni is large and when σ2
b is large

relative to σ2
ε .
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Case Study: Influence of Menarche on Changes in

Body Fat

• Prospective study on body fat accretion in a cohort of 162 girls from the
MIT Growth and Development Study.

• At start of study, all the girls were pre-menarcheal and non-obese

• All girls were followed over time according to a schedule of annual
measurements until four years after menarche.

• The final measurement was scheduled on the fourth anniversary of their
reported date of menarche.

• At each examination, a measure of body fatness was obtained based on
bioelectric impedance analysis.
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Consider an analysis of the changes in percent body fat before and after
menarche.

For the purposes of these analyses “time” is coded as time since menarche
and can be positive or negative.

Note: measurement protocol is the same for all girls.

Study design is “balanced” if timing of measurement is defined as time since
baseline measurement.

It is inherently unbalanced when timing of measurements is defined as time
since a girl experienced menarche.
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Figure 6: Timeplot of percent body fat against time, relative to age of
menarche (in years).
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Consider hypothesis that %body fat increases linearly with age, but with
different slopes before/after menarche.

We assume that each girl has a piecewise linear spline growth curve with a
knot at the time of menarche (see Figure 7).

Each girl’s growth curve can be described with an intercept and two slopes,
one slope for changes in response before menarche, another slope for changes
in response after menarche.

Note: the knot is not a fixed age for all subjects.

Let tij denote time of the jth measurement on ith subject before or after
menarche (i.e., tij = 0 at menarche).
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Figure 7: Graphical representation of piecewise linear trajectory.
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We consider the following linear mixed effects model

E(Yij|bi) = β0 + β1tij + β2(tij)+ + b0i + b1itij + b2i(tij)+,

where (tij)+ = tij if tij > 0 and (tij)+ = 0 if tij ≤ 0.

Interpretation of model parameters:

The intercept β0 is the average %body fat at menarche (when tij = 0).

The slope β1 is the average rate of change in %body fat (per year) during
the pre-menarcheal period.
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The average rate of change in %body fat (per year) during the post-
menarcheal period is given by (β1 + β2).

Goal: Assess whether population slopes differ before and after menarche,
i.e., H0 : β2 = 0.

Similarly, (β0 + b0i) is intercept for ith subject and is the true %body fat
at menarche (when tij = 0).

(β1 + b1i) is ith subject’s slope, or rate of change in %body fat during the
pre-menarcheal period.

Finally, the ith subject’s slope during the post-menarcheal period is given
by [(β1 + β2) + (b1i + b2i)].
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Interpretation of variance components:

Recall that the subject-specific intercepts, (β0 + b0i), have mean β0 and
variance σ2

b0i
.

Furthermore, since b0i ∼ N(0, σ2
b0i

) this implies that (β0+b0i) ∼ N(β0, σ
2
b0i

).

Under the assumption of normality, we expect 95% of the subject-specific
intercepts, (β0 + b0i), to lie between: β0 ± 1.96× σb0i.

Variance components for b1i and b2i can be interpreted in similar fashion.
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Table 1: Estimated regression coefficients (fixed effects) and standard errors
for the percent body fat data.

PARAMETER ESTIMATE SE Z

INTERCEPT 21.3614 0.5646 37.84

time 0.4171 0.1572 2.65

(time)+ 2.0471 0.2280 8.98
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Table 2: Estimated covariance of the random effects and standard errors
for the percent body fat data.

PARAMETER ESTIMATE SE Z

Var(b0i) 45.9413 5.7393 8.00
Var(b1i) 1.6311 0.4331 3.77
Var(b2i) 2.7497 0.9635 2.85
Cov(b0i, b1i) 2.5263 1.2185 2.07
Cov(b0i, b2i) -6.1096 1.8730 -3.26
Cov(b1i, b2i) -1.7505 0.5980 -2.93

Var(ei) = σ2
e 9.4732 0.5443 17.40
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Results

Estimated intercept, β̂0 = 21.36, has interpretation as the average percent
body fat at merarche (when tij = 0).

Of note, actual percent body fat at menarche is not observed.

The estimate of the population mean pre-menarcheal slope, β1, is 0.42,
which is statistically significant at the 0.05 level.

This estimated slope is rather shallow and indicates that the annual rate of
body fat accretion is less that 0.5%.
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The estimate of the population mean post-menarcheal slope, β1+β2, is 2.46
(with SE = 0.12), which is statistically significant at the 0.05 level.

This indicates that annual rate of body fat accretion is approximately 2.5%,
almost six times higher than in the pre-menarcheal period.

Based on magnitude of β̂2, relative to its standard error, slopes before and
after menarche differ (at the 0.05 level).

Thus, there is evidence that body fat accretion differs before and after
menarche.
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Estimated variance of b0i is 45.94, indicating substantial variability from
girl to girl in true percent body fat at menarche, β0 + b0i.

For example, approximately 95% of girls have true percent body fat between
8.08% and 34.65%

(
i.e., 21.36± 1.96×

√
45.94

)
.

Estimated variance of b1i is 1.6, indicating substantial variability from girl
to girl in rates of fat accretion during the pre-menarcheal period.

For example, approximately 95% of girls have changes in percent body fat
between -2.09% and 2.92%

(
i.e., 0.42± 1.96×

√
1.63

)
.
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Estimated variance of slopes during the post-menarcheal period, Var(b1i +
b2i), is 0.88 (or [1.63 + 2.75 −2 × 1.75]), indicating less variability in the
slopes after menarche.

For example, approximately 95% of girls have changes in percent body fat
between 0.62% and 4.30%

(
i.e., 2.46± 1.96×

√
0.88

)
.

Results indicate that more than 95% of girls are expected to have increases
in body fat during the post-menarcheal period.

Substantially fewer (approximately 63%) are expected to have increases in
body fat during the pre-menarcheal period.
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Finally, there is strong positive correlation (approximately 0.8) between
annual measurements of percent body fat.

The estimated marginal correlations among annual measurements of
percent body fat can be derived from the estimated variances and
covariances among the random effects in Table 2.

Strength of correlation declines over time, but does not decay to zero even
when measurements are taken 8 years apart (see Table 3).
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Table 3: Marginal correlations (off-diagonals) among repeated measures of
percent body fat between 4 years pre- and post-menarche, with estimated
variances along main diagonal.

-4 -3 -2 -1 0 1 2 3 4

61.3 0.82 0.78 0.71 0.61 0.60 0.57 0.52 0.47
0.82 54.9 0.81 0.76 0.70 0.68 0.64 0.60 0.54
0.78 0.81 51.8 0.80 0.76 0.74 0.71 0.66 0.60
0.71 0.76 0.80 52.0 0.81 0.79 0.76 0.71 0.64
0.61 0.70 0.76 0.81 55.4 0.81 0.78 0.73 0.66
0.60 0.68 0.74 0.79 0.81 49.1 0.79 0.76 0.70
0.57 0.64 0.71 0.76 0.78 0.79 44.6 0.77 0.74
0.52 0.60 0.66 0.71 0.73 0.76 0.77 41.8 0.76
0.47 0.54 0.60 0.64 0.66 0.70 0.74 0.76 40.8
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The mixed effects model can be used to obtain estimates of each girl’s
growth trajectory over time, based on the β̂’s and b̂i’s.

Figure 8 displays estimated population mean growth curve and predicted
(empirical BLUP) growth curves for two girls.

Note: two girls differ in the number of measurements obtained (6 and 10
respectively).

A noticeable feature of the predicted growth curves is that there is more
shrinkage towards the population mean curve when fewer data points are
available.

This becomes more apparent when BLUPs are compared to ordinary least
squares (OLS) estimates based only on data from each girl (see Figure 9).

38



Figure 8: Population average curve and empirical BLUPs for two randomly
selected girls.
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Figure 9: Population average curve, empirical BLUPs, and OLS predictions
for two randomly selected girls.
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Summary of Key Points

Linear mixed effects models are increasingly used for the analysis of
longitudinal data.

Introduction of random effects accounts for the correlation among repeated
measures and allows for heterogeneity of the variance over time, but does
not change the model for E(Yij|Xij).

The inclusion of random slopes or random trajectories induces a random
effects covariance structure for Yi1, ..., Yini where the variances and
correlations are a function of the times of measurement.

In general, the random effects covariance structure is relatively
parsimonious (e.g., random intercepts and slopes model has only four
parameters, σ2

b0
, σ2
b1
, σb0,b1, and σ2

e).

41



Linear mixed effects models are appealing because of

• their flexibility in accommodating a variety of study designs, data models
and hypotheses.

• their flexibility in accommodating any degree of imbalance in the data
(e.g., due to mistimed measurements and/or missing data)

• their ability to parsimoniously model the variance and correlation

• their ability to predict individual trajectories over time

Note 1: Tests rely on asymptotic normality of the fixed effects (not Yij);
need reasonable (> 30) number of subjects.

Note 2: Missing observations can be accommodated easily, validity of results
depends upon assumption about missingness (see Session 7).
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Linear Mixed Models using PROC MIXED in SAS

Table 4: Illustrative commands for a linear mixed effects model, with
randomly varying intercepts and slopes, using PROC MIXED in SAS.

PROC MIXED;
CLASS id group;
MODEL y=group time group*time / SOLUTION CHISQ;
RANDOM INTERCEPT time / SUBJECT=id TYPE=UN G V;
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Table 5: Illustrative commands for obtaining the estimated BLUPs and
predicted responses from model with randomly varying intercepts and
slopes, using PROC MIXED in SAS.

PROC MIXED;
CLASS id group;
MODEL y=group time group*time / SOLUTION CHISQ OUTPRED=yhat;
RANDOM INTERCEPT time / SUBJECT=id TYPE=UN SOLUTION;

PROC PRINT;
VAR id group time y PRED;
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Linear Mixed Models using xtmixed in Stata

Table 6: Illustrative commands for a linear mixed effects model, with
randomly varying intercepts and slopes, using xtmixed in Stata. The
predict postestimation command is used for obtaining the estimated
BLUPs.

. generate grp time=group*time

. xtmixed y group time grp time ‖ id: time, cov(unstr) variance

. predict b1 b0, reffects
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