Analysis of Longitudinal Data

- Patrick J. Heagerty PhD
- Department of Biostatistics
- University of Washington

Session Three Outline

- Role of correlation
 - Impact proper standard errors
 - Used to weight individuals (clusters)
- Models for correlation / covariance
 - Regression: Group-to-Group variation
 - Random effects: Individual-to-Individual variation
 - Serial correlation: Observation-to-Observation variation

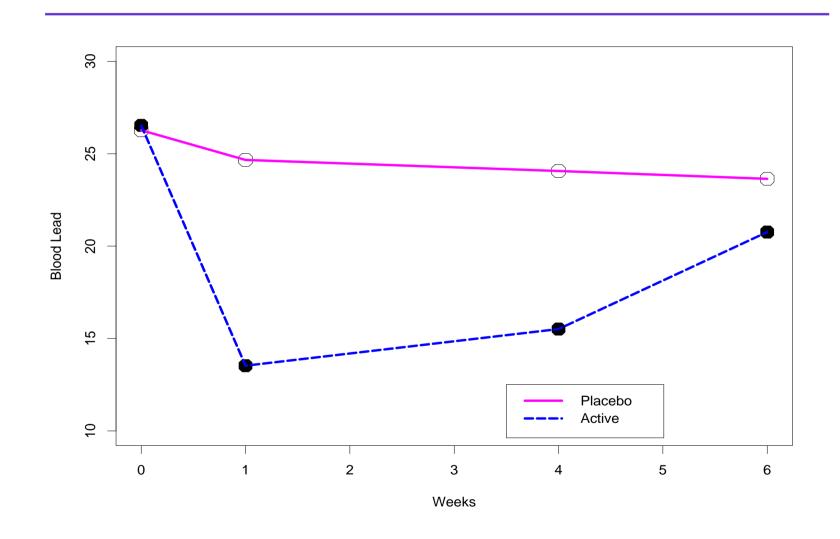
Longitudinal Data Analysis

INTRODUCTION to CORRELATION and WEIGHTING

Treatment of Lead-Exposed Children (TLC)

- Trial: In the 1990's a placebo-controlled randomized trial of a new chelating agent, succimer, was conducted among children with lead levels 20-44 μ g/dL.
- Children received up to three 26-day courses of succimer or placebo and were followed for 3 years.
- Data set with 100 children.
- m = 50 placebo; m = 50 active.
- Illustrate: naive analyses and the impact of correlation.

TLC Trial – Means



Simple (naive?) Analysis of Treatment

• Post Data Only – compare the mean blood lead after baseline in the TX and control groups – using 3 measurements/person, and all 100 subjects.

- ▶ Issue(s) =
- Pre/Post Data compare the mean blood lead after baseline to the mean blood lead at baseline for the treatment subjects only using 4 measurements/person, and only 50 subjects.
 - ▶ Issue(s) =

Simple Analysis: Post Only Data

	week 0	week 1	week 4	week 6
Control		eta_0	eta_0	eta_0
Treatment		$\beta_0 + \beta_1$	$\beta_0 + \beta_1$	$\beta_0 + \beta_1$

Auckland 2008 6-1

Post Data Only

```
. *** Analysis using POST DATA at weeks 1, 4, and 6
```

. regress y tx if week>=1

Number of obs = 300

у	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
tx _cons	-7.526 24.125	0.8503 0.6012	-8.85 40.12		0,120	-5.852 25.308

6-2

•

. regress y tx if week>=1, cluster(id)

Number of obs = 300
Regression with robust standard errors
Number of clusters (id) = 100

y	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
tx _cons		1.2287 0.7458		0.000	-9.964 22.645	-5.087 25.605

Simple Analysis: Pre/Post for Treatment Group Only

	week 0	week 1	week 4	week 6
Control				
Treatment	eta_0	$\beta_0 + \beta_1$	$\beta_0 + \beta_1$	$\beta_0 + \beta_1$

5-4 Auckland 2008

Pre/Post Data, TX Group Only

```
. *** Analysis using PRE/POST for treatment subjects
. regress y post if tx==1

Number of obs = 200

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

post | -9.940 1.3093 -7.59 0.000 -12.522 -7.358

_cons | 26.540 1.1339 23.41 0.000 24.303 28.776
```

Auckland 2008

6-5

•

. regress y post if tx==1, cluster(id)

Number of obs = 200
Regression with robust standard errors
Number of clusters (id) = 50

| Robust
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

post | -9.940 0.8680 -11.45 0.000 -11.685 -8.196

_cons | 26.540 0.7118 37.28 0.000 25.109 27.970

Dependent Data and Proper Variance Estimates

Let $X_{ij} = 0$ denote placebo assignment and $X_{ij} = 1$ denote active treatment.

[1] Consider (Y_{i1}, Y_{i2}) with $(X_{i1}, X_{i2}) = (0, 0)$ for i = 1 : n and $(X_{i1}, X_{i2}) = (1, 1)$ for i = (n + 1) : 2n

$$\hat{\mu}_0 = \frac{1}{2n} \sum_{i=1}^n \sum_{j=1}^2 Y_{ij}$$

$$\hat{\mu}_1 = \frac{1}{2n} \sum_{i=n+1}^n \sum_{j=1}^2 Y_{ij}$$

$$\text{var}(\hat{\mu}_1 - \hat{\mu}_0) = \frac{1}{n} \{\sigma^2(1+\rho)\}$$

Scenario 1

subject	control		treat	ment
	time 1	time 2	time 1	time 2
ID = 101 ID = 102 ID = 103 ID = 104 ID = 105 ID = 106	$Y_{1,1} \\ Y_{2,1} \\ Y_{3,1}$	$Y_{1,2} \\ Y_{2,2} \\ Y_{3,2}$	$Y_{4,1} \ Y_{5,1} \ Y_{6,1}$	$Y_{4,2} \ Y_{5,2} \ Y_{6,2}$

7-1 Auckland 2008

Dependent Data and Proper Variance Estimates

Consider (Y_{i1}, Y_{i2}) with $(X_{i1}, X_{i2}) = (0, 1)$ for i = 1 : n and $(X_{i1}, X_{i2}) = (1, 0)$ for i = (n + 1) : 2n

$$\hat{\mu}_{0} = \frac{1}{2n} \left\{ \sum_{i=1}^{n} Y_{i1} + \sum_{i=n+1}^{2n} Y_{i2} \right\}$$

$$\hat{\mu}_{1} = \frac{1}{2n} \left\{ \sum_{i=1}^{n} Y_{i2} + \sum_{i=n+1}^{2n} Y_{i1} \right\}$$

$$\operatorname{var}(\hat{\mu}_1 - \hat{\mu}_0) \quad = \quad \frac{1}{n} \{ \sigma^2 (1 - \rho) \}$$

Scenario 2

subject	control		treat	ment
	time 1	time 2	time 1	time 2
ID = 101 $ID = 102$ $ID = 103$ $ID = 104$ $ID = 105$ $ID = 106$	$Y_{1,1} \\ Y_{2,1} \\ Y_{3,1}$	$Y_{4,2} \ Y_{5,2} \ Y_{6,2}$	$Y_{4,1} \ Y_{5,1} \ Y_{6,1}$	$Y_{1,2} \\ Y_{2,2} \\ Y_{3,2}$

8-1 Auckland 2008

Dependent Data and Proper Variance Estimates

If we simply had 2n independent observations on treatment (X=1) and 2n independent observations on control then we'd obtain

$$\operatorname{var}(\hat{\mu}_1 - \hat{\mu}_0) = \frac{\sigma^2}{2n} + \frac{\sigma^2}{2n}$$
$$= \frac{1}{n}\sigma^2$$

Q: What is the impact of <u>dependence</u> relative to the situation where all (2n + 2n) observations are independent?

(1) \Rightarrow positive dependence, $\rho > 0$, results in a loss of precision.

(2) \Rightarrow positive dependence, $\rho > 0$, results in an improvement in precision!

Therefore:

- Dependent data impacts proper statements of precision.
- Dependent data may increase or decrease standard errors depending on the design.

Consider the situation where subjects report both the number of attempts and the number of successes: (Y_i, N_i) .

Examples:

live born (Y_i) in a litter (N_i) condoms used (Y_i) in sexual encounters (N_i) SAEs (Y_i) among total surgeries (N_i)

Q: How to combine these data from i=1:m subjects to estimate a common rate (proportion) of successes?

Proposal 1:

$$\hat{p}_1 = \sum_i Y_i / \sum_i N_i$$

Proposal 2:

$$\hat{p}_2 = \frac{1}{m} \sum_i Y_i / N_i$$

Simple Example:

Data :
$$(1,10)$$
 $(2,100)$

$$\hat{p}_1 = (2+1)/(110) = 0.030$$

$$\hat{p}_1 = \frac{1}{(1/10 + 2/100)} = 0.057$$

$$\hat{p}_2 = \frac{1}{2} \{ 1/10 + 2/100 \} = 0.051$$

Note: Each of these estimators, \hat{p}_1 , and \hat{p}_2 , can be viewed as weighted estimators of the form:

$$\hat{p}_w = \left\{ \sum_i w_i \, \frac{Y_i}{N_i} \right\} / \sum_i w_i$$

We obtain \hat{p}_1 by letting $w_i = N_i$, corresponding to equal weight given each to binary outcome, $Y_{ij}, Y_i = \sum_{j=1}^{N_i} Y_{ij}$.

We obtain \hat{p}_2 by letting $w_i=1$, corresponding to equal weight given to each subject.

Q: What's optimal?

A: Whatever weights are closest to 1/variance of Y_i/N_i (stat theory called "Gauss-Markov").

If subjects are perfectly homogeneous then

$$V(Y_i) = N_i p(1-p)$$

and \hat{p}_1 is best.

If subjects are heterogeneous then, for example

$$V(Y_i) = N_i p(1-p) \{1 + (N_i - 1)\rho\}$$

and an estimator closer to \hat{p}_2 is best.

Summary: Role of Correlation

- Statistical inference must account for the dependence.
 - correlation impacts standard errors!
- Consideration as to the choice of weighting will depend on the variance/covariance of the response variables.
 - correlation impacts regression estimates!

Longitudinal Data Analysis

INTRODUCTION to REGRESSION APPROACHES

Statistical Models

- Regression model: Groups
 mean response as a function of covariates.
 "systematic variation"
- Random effects: Individuals
 variation from subject-to-subject in trajectory.
 "random between-subject variation"
- Within-subject variation: Observations
 variation of individual observations over time
 "random within-subject variation"

Groups: Scientific Questions as Regression

★ Questions concerning the <u>rate of decline</u> refer to the time slope for FEV1:

$$E[\mathsf{FEV1} \mid \boldsymbol{X} = \mathsf{age}, \mathsf{gender}, \mathsf{f508}] = \beta_0(\boldsymbol{X}) + \beta_1(\boldsymbol{X}) \cdot \mathsf{time}$$

Time Scales

- Let age0 = age-at-entry, age $_{i1}$
- ullet Let ageL = time-since-entry, age $_{ij}$ age $_{i1}$

CF Regression Model

Model:

$$egin{array}{lll} E[exttt{FEV} \mid oldsymbol{X}_i] &=& eta_0 \ &+eta_1 \cdot exttt{age0} + eta_2 \cdot exttt{ageL} \ &+eta_3 \cdot exttt{female} \ &+eta_4 \cdot exttt{f508} = 1 + eta_5 \cdot exttt{f508} = 2 \ &+eta_6 \cdot exttt{female} \cdot exttt{ageL} \ &+eta_7 \cdot exttt{f508} = 1 \cdot exttt{ageL} + eta_8 \cdot exttt{f508} = 2 \cdot exttt{ageL} \ &=& eta_0(oldsymbol{X}_i) + eta_1(oldsymbol{X}_i) \cdot exttt{ageL} \ &=& eta_0(oldsymbol{X}_i) + eta_1(oldsymbol{X}_i) \cdot exttt{ageL} \ \end{array}$$

Intercept

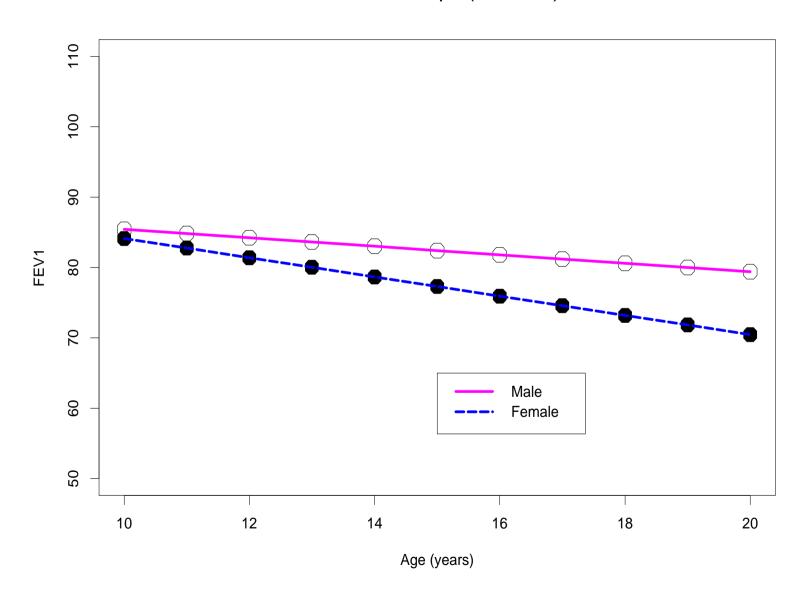
	f508=0	f508=1	f508=2
male	$eta_0 + eta_1 \cdot exttt{age0}$	$egin{array}{c} eta_0 + eta_1 \cdot \mathtt{age0} \ + eta_4 \end{array}$	$egin{aligned} eta_0 + eta_1 \cdot \mathtt{age0} \ + eta_5 \end{aligned}$
female	$eta_0 + eta_1 \cdot \mathtt{age0} \ + eta_3$	$eta_0 + eta_1 \cdot \mathtt{age0} \ + eta_3 + eta_4$	$eta_0 + eta_1 \cdot \mathtt{age0} \ + eta_3 + eta_5$

19-1 Auck

Slope

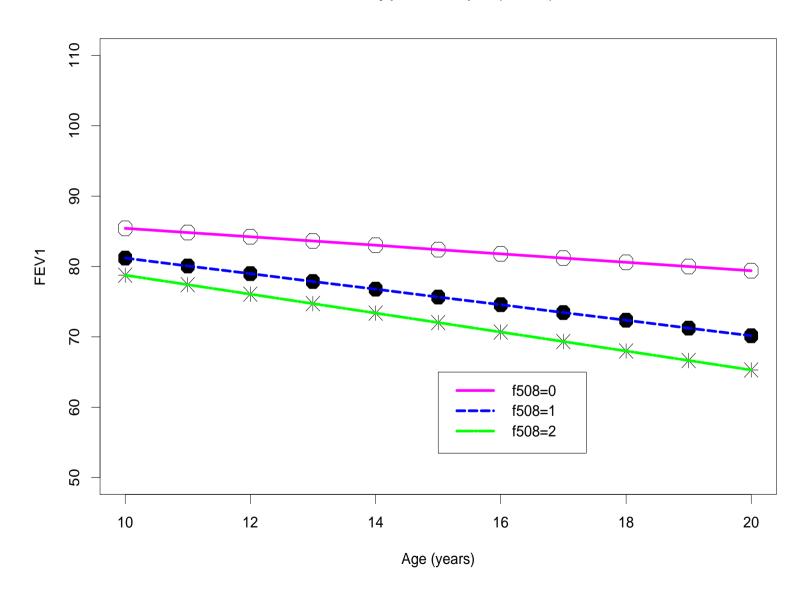
	f508=0	f508=1	f508=2
male	eta_2	$\beta_2 + \beta_7$	$\beta_2 + \beta_8$
female	$eta_2 + eta_6$	$\beta_2 + \beta_7 + \beta_6$	$\beta_2 + \beta_8 + \beta_6$

Gender Groups (f508==0)



19-3

Genotype Groups (male)



19-4

Define

$$Y_{ij} = \text{FEV1 for subject } i \text{ at time } t_{ij}$$

$$oldsymbol{X}_i = (oldsymbol{X}_{ij}, \ldots, oldsymbol{X}_{in_i})$$

$$m{X}_{ij} = (X_{ij,1}, X_{ij,2}, \dots, X_{ij,p})$$
 age0, ageL, gender, genotype

Issue: Response variables measured on the same subject are correlated.

$$cov(Y_{ij}, Y_{ik}) \neq 0$$

Some Notation

- It is useful to have some notation that can be used to discuss the stack of data that correspond to each subject.
- Let n_i denote the number of observations for subject i.
- Define:

$$Y_i = \left(egin{array}{c} Y_{i1} \ Y_{i2} \ dots \ Y_{in_i} \end{array}
ight)$$

• If the subjects are observed at a common set of times t_1, t_2, \ldots, t_m then $E(Y_{ij}) = \mu_j$ denotes the mean of the population at time t_j .

Dependence and Correlation

- Recall that observations are termed independent when deviation in one variable does not predict deviation in the other variable.
 - ▶ Given two subjects with the same age and gender, then the blood pressure for patient ID=212 is <u>not</u> predictive of the blood pressure for patient ID=334.
- Observations are called dependent or correlated when one variable does predict the value of another variable.
 - The LDL cholesterol of patient ID=212 at age 57 is predictive of the LDL cholesterol of patient ID=212 at age 60.

Dependence and Correlation

• Recall: The variance of a variable, Y_{ij} (fix time t_j for now) is defined as:

$$\sigma_j^2 = E[(Y_{ij} - \mu_j)^2]$$
$$= E[(Y_{ij} - \mu_j)(Y_{ij} - \mu_j)]$$

• The variance measures the average distance that an observation falls away from the mean.

23

Dependence and Correlation

• Define: The covariance of two variables, Y_{ij} , and Y_{ik} (fix t_j and t_k) is defined as:

$$\sigma_{jk} = E\left[(Y_{ij} - \mu_j)(Y_{ik} - \mu_k) \right]$$

- The covariance measures whether, on average, departures in one variable, $Y_{ij} \mu_j$, "go together with" departures in a second variable, $Y_{ik} \mu_k$.
- In simple linear regression of Y_{ij} on Y_{ik} the regression coefficient β_1 in $E(Y_{ij} \mid Y_{ik}) = \beta_0 + \beta_1 \cdot Y_{ik}$ is the covariance divided by the variance of Y_{ik} :

$$\beta_1 = \frac{\sigma_{jk}}{\sigma_k^2}$$

Dependence and Correlation

• Define: The correlation of two variables, Y_{ij} , and Y_{ik} (fix t_j and t_k) is defined as:

$$\rho_{jk} = \frac{E\left[(Y_{ij} - \mu_j)(Y_{ik} - \mu_k) \right]}{\sigma_j \sigma_k}$$

- The correlation is a measure of dependence that takes values between -1 and ± 1 .
- Recall that a correlation of 0.0 implies that the two measures are unrelated (linearly).
- Recall that a correlation of 1.0 implies that the two measures fall perfectly on a line – one exactly predicts the other!

Why interest in covariance and/or correlation?

- Recall that on earlier pages our standard error for the sample mean difference $\hat{\mu}_1 \hat{\mu}_0$ depends on ρ .
- In general a statistical model for the outcomes $Y_i = (Y_{i1}, Y_{i2}, \dots, Y_{in_i})$ requires the following:
 - \triangleright **Means**: μ_j
 - \triangleright Variances: σ_i^2
 - \triangleright Covariances: σ_{jk} , or correlations ρ_{jk} .
- Therefore, one approach to making inferences based on longitudinal data is to construct a model for each of these three components.

Something new to model...

```
\mathsf{cov}(Y_i) \ = \ \begin{bmatrix} \mathsf{var}(Y_{i1}) & \mathsf{cov}(Y_{i1}, Y_{i2}) & \dots & \mathsf{cov}(Y_{i1}, Y_{in_i}) \\ \mathsf{cov}(Y_{i2}, Y_{i1}) & \mathsf{var}(Y_{i2}) & \dots & \mathsf{cov}(Y_{i2}, Y_{in_i}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{cov}(Y_{in_i}, Y_{i1}) & \mathsf{cov}(Y_{in_i}, Y_{i2}) & \dots & \mathsf{var}(Y_{in_i}) \end{bmatrix}
                                                       = \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho_{12} & \dots & \sigma_1 \sigma_{n_i} \rho_{1n_i} \\ \sigma_2 \sigma_1 \rho_{21} & \sigma_2^2 & \dots & \sigma_2 \sigma_{n_i} \rho_{2n_i} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n_i} \sigma_1 \rho_{n_i 1} & \sigma_{n_i} \sigma_2 \rho_{n_i 2} & \dots & \sigma_{n_i}^2 \end{bmatrix}
```

TLC Trial – Covariances

Placebo

Active

	yO	y1	y4	у6		yC) у	1 y	4	у6
уO	25.2	22.7	24.3	21.4	yO	25.2	15.5	15.1	23.	. O
y1	22.7	29.8	27.0	23.4	y1	15.5	58.9	44.0	36.	. 0
y4	24.3	27.0	33.1	28.2	y4	15.1	44.0	61.7	33.	. 0
у6	21.4	23.4	28.2	31.8	у6	23.0	36.0	33.0	85.	. 5

TLC Trial – Correlations

Placebo

Active

	yO	y1	y4	у6		y() y:	1 y4	1 y6	,
уO	1.00	0.83	0.84	0.76	уO	1.00	0.40	0.38	0.50	
y1	0.83	1.00	0.86	0.76	y1	0.40	1.00	0.73	0.51	
y4	0.84	0.86	1.00	0.87	y4	0.38	0.73	1.00	0.45	
y6	0.76	0.76	0.87	1.00	y6	0.50	0.51	0.45	1.00	

Mean and Covariance Models for FEV1

Models:

$$E(Y_{ij} \mid \boldsymbol{X}_i) = \mu_{ij}$$
 (regression) Groups

$$\mathsf{cov}(m{Y}_i \mid m{X}_i) = m{\Sigma}_i = m{ ext{between-subjects}} + m{ ext{within-subjects}}$$
 $\mathsf{individual-to-individual}$ observation-to-observation

Q: What are appropriate covariance models for the FEV1 data?

Individual-to-Individual variation?

Observation-to-Observation variation?

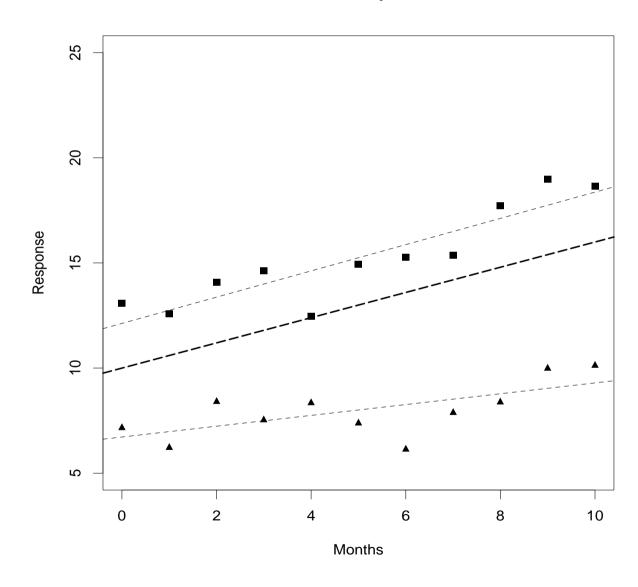
How to build models for correlation?

- Mixed models
 - "random effects"
 - between-subject variability
 - within-subject similarity due to sharing trajectory
- Serial correlation
 - close in time implies strong similarity
 - correlation decreases as time separation increases

Toward the Linear Mixed Model

- Regression model:
 mean response as a function of covariates.
 "systematic variation"
- Random effects: Individuals
 variation from subject-to-subject in trajectory.
 "random between-subject variation"
- Within-subject variation:
 variation of individual observations over time
 "random within-subject variation"

Two Subjects



Levels of Analysis

 We first consider the distribution of measurements within subjects:

$$egin{array}{lll} Y_{ij} &=& eta_{0,i} + eta_{1,i} \cdot t_{ij} + e_{ij} \\ &e_{ij} &\sim & \mathcal{N}(0,\sigma^2) \\ E[oldsymbol{Y}_i \mid oldsymbol{X}_i,oldsymbol{eta}_i] &=& eta_{0,i} + eta_{1,i} \cdot t_{ij} \\ &=& \left[1, anheta_{ij}
ight] \left[eta_{0,i} \ eta_{1,i}
ight] \\ &=& oldsymbol{X}_ioldsymbol{eta}_i \end{array}$$

Levels of Analysis

 We can equivalently separate the subject-specific regression coefficients into the average coefficient and the specific departure for subject i:

$$\triangleright \quad \beta_{0,i} = \beta_0 + b_{0,i}$$

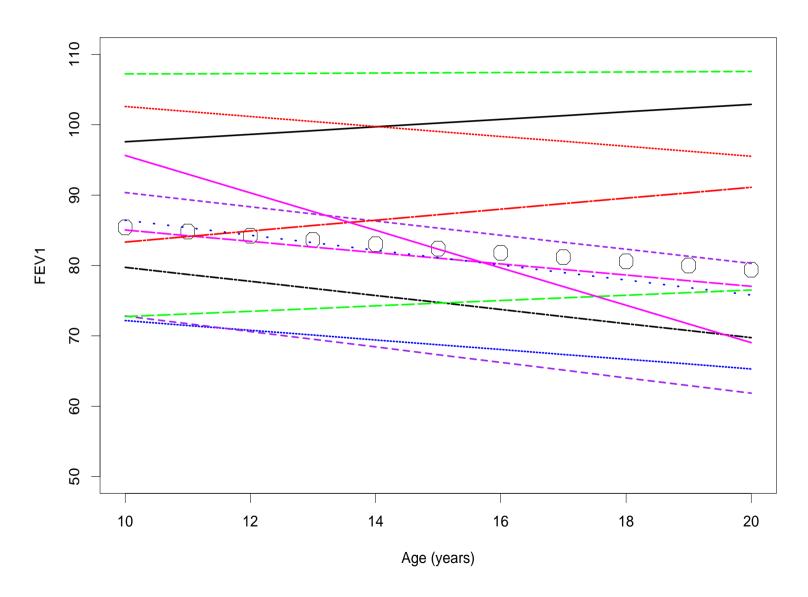
$$\triangleright \quad \beta_{1,i} = \beta_1 + b_{1,i}$$

This allows another perspective:

$$Y_{ij} = \beta_{0,i} + \beta_{1,i} \cdot t_{ij} + e_{ij}$$
$$= (\beta_0 + \beta_1 \cdot t_{ij}) + (b_{0,i} + b_{1,i} \cdot t_{ij}) + e_{ij}$$

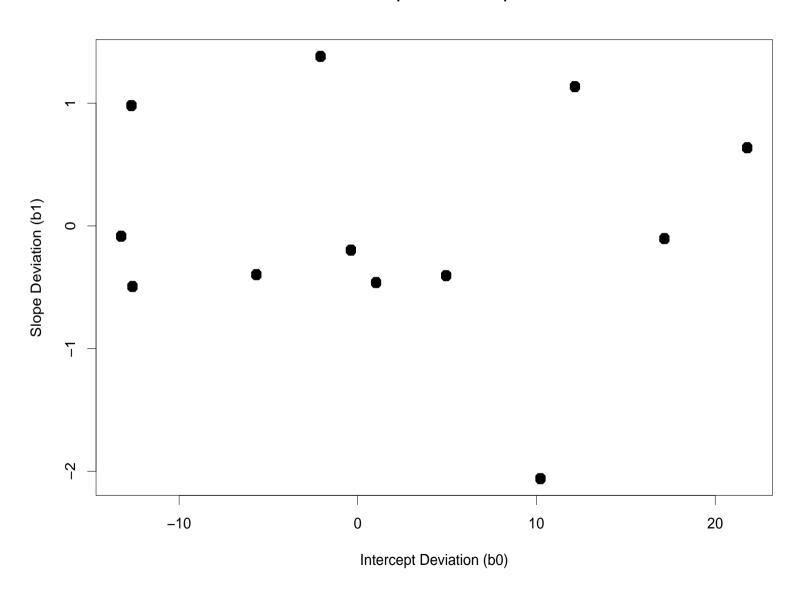
$$E[\mathbf{Y}_i \mid \mathbf{X}_i, \boldsymbol{\beta}_i] = \underbrace{\mathbf{X}_i \boldsymbol{\beta}}_{\mathbf{mean model}} + \underbrace{\mathbf{X}_i \boldsymbol{b}_i}_{\mathbf{between-subject}}$$

Sample of Lines



34-1 Auckland 2008

Intercepts and Slopes



34-2

Levels of Analysis

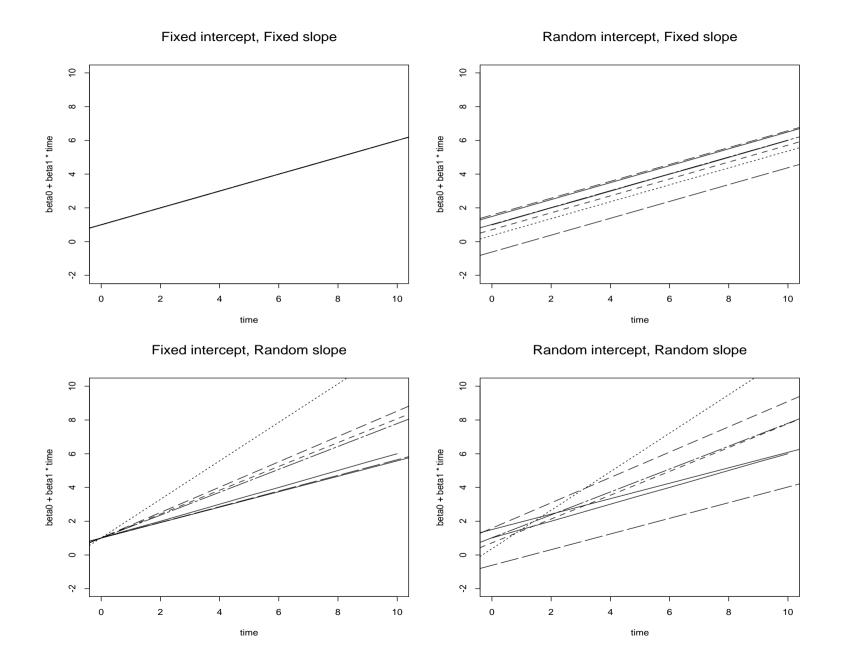
• Next we consider the distribution of **patterns (parameters)** among subjects:

$$m{eta}_i \sim \mathcal{N}(m{eta},m{D})$$

equivalently

$$m{b}_i ~\sim~ \mathcal{N}(m{0},m{D})$$

$$\star\star\star Y_i = \underbrace{X_i\beta}_{\text{mean model}} + \underbrace{X_ib_i}_{\text{bi}} + \underbrace{e_i}_{\text{within-subject}}$$



35-1

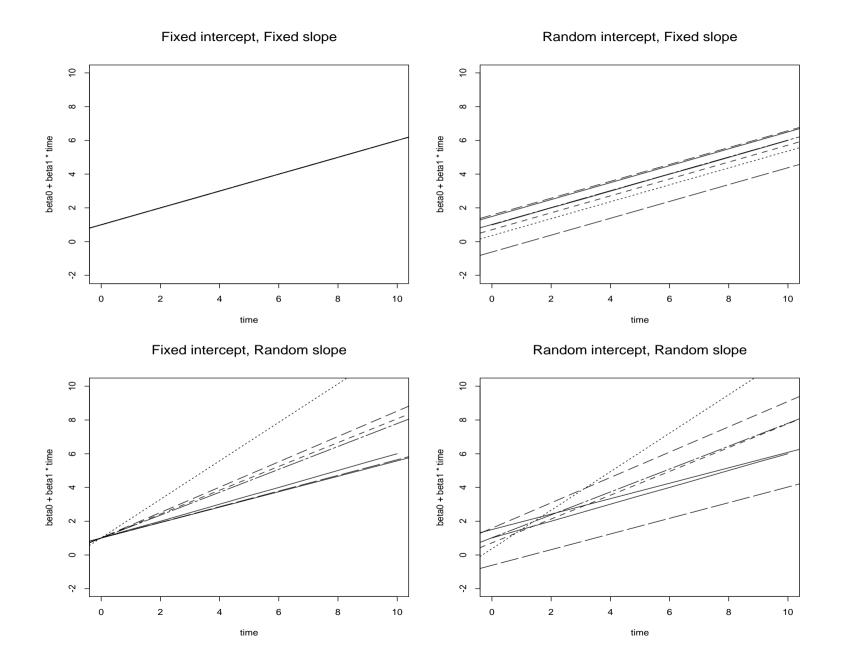
Between-subject Variation

- We can use the idea of random effects to allow different types of between-subject heterogeneity:
- The magnitude of heterogeneity is characterized by D:

$$m{b}_i = egin{bmatrix} b_{0,i} \ b_{1,i} \end{bmatrix}$$
 var $(m{b}_i) = egin{bmatrix} D_{11} & D_{12} \ D_{21} & D_{22} \end{bmatrix}$

Between-subject Variation

- ullet The components of $oldsymbol{D}$ can be interpreted as:
 - $ightharpoonup \sqrt{D_{11}}$ the typical subject-to-subject deviation in the overall level of the response.
 - $\sqrt{D_{22}}$ the typical subject-to-subject deviation in the **change** (time slope) of the response.
 - \triangleright D_{12} the covariance between individual intercepts and slopes.
 - * If positive then subjects with high levels also have high rates of change.
 - * If <u>negative</u> then subjects with **high levels** have **low rates** of change.



37-1

Between-subject Variation: Examples

No random effects:

$$Y_{ij} = \beta_0 + \beta_1 \cdot t_{ij} + e_{ij}$$
$$= [1, time_{ij}]\beta + e_{ij}$$

• Random intercepts:

$$Y_{ij} = (\beta_0 + \beta_1 \cdot t_{ij}) + b_{0,i} + e_{ij}$$

= $[1, time_{ij}]\beta + [1]b_{0,i} + e_{ij}$

• Random intercepts and slopes:

$$Y_{ij} = (\beta_0 + \beta_1 \cdot t_{ij}) + \boldsymbol{b_{0,i}} + \boldsymbol{b_{1,i}} \cdot t_{ij} + \boldsymbol{e_{ij}}$$
$$= [1, \mathsf{time}_{ij}]\boldsymbol{\beta} + [1, \mathsf{time}_{ij}]\boldsymbol{b_i} + \boldsymbol{e_{ij}}$$

Toward the Linear Mixed Model

- Regression model:
 mean response as a function of covariates.
 "systematic variation"
- Random effects:
 variation from subject-to-subject in trajectory.
 "random between-subject variation"
- Within-subject variation: Observation
 variation of individual observations over time
 "random within-subject variation"

Covariance Models

Serial Models

• Linear mixed models assume that each subject follows his/her own line. In some situations the dependence is more local meaning that observations close in time are more similar than those far apart in time.

Covariance Models

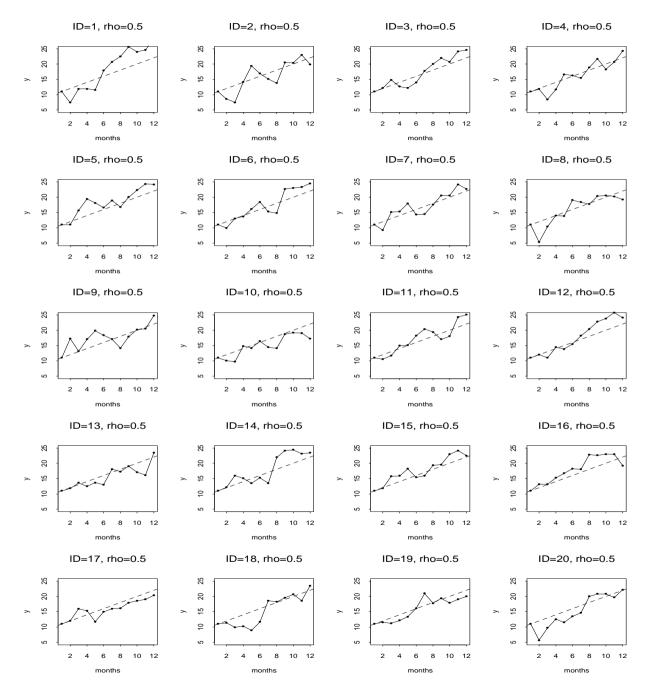
Define

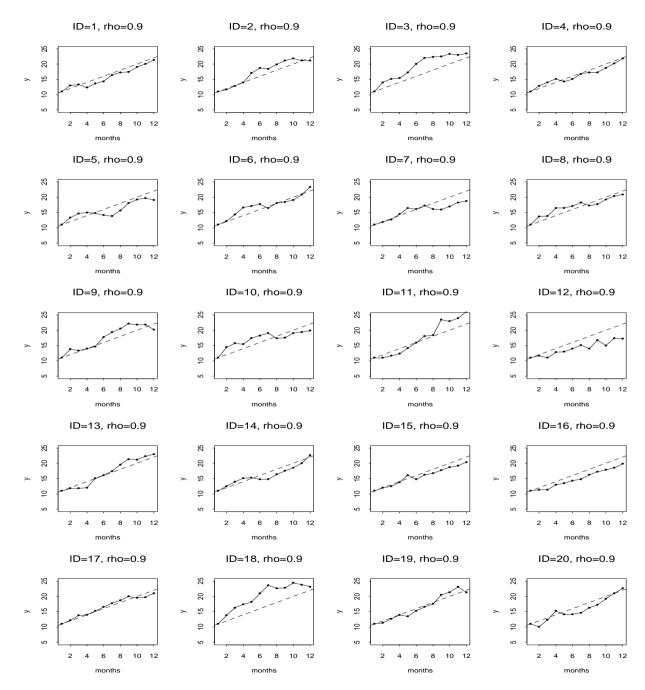
$$e_{ij} = \rho \cdot e_{ij-1} + \epsilon_{ij}$$

$$\epsilon_{ij} \sim \mathcal{N}(0, \sigma^2(1 - \rho^2))$$
 $\epsilon_{i0} \sim \mathcal{N}(0, \sigma^2)$

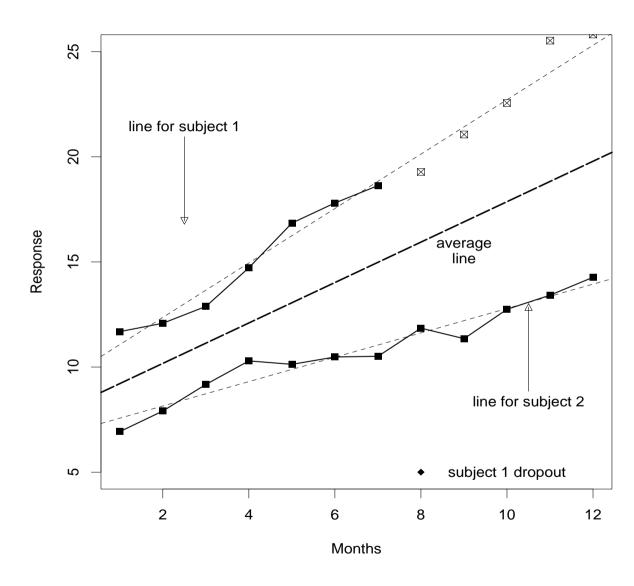
This leads to autocorrelated errors:

$$cov(e_{ij}, e_{ik}) = \sigma^2 \rho^{|j-k|}$$





Two Subjects



Toward the Linear Mixed Model

• Regression model:

mean response as a function of covariates.

"systematic variation"

Random effects:

variation from subject-to-subject in trajectory.

"random between-subject variation"

• Within-subject variation:

variation of individual observations over time

"random within-subject variation"

Session Three Summary

- Role of correlation
 - Impact proper standard errors
 - Used to weight individuals (clusters)
- Models for correlation / covariance
 - Regression: Group-to-Group variation
 - Random effects: Individual-to-Individual variation
 - Serial correlation: Observation-to-Observation variation

- Q: What is the correlation between outcomes Y_{ij} and Y_{ik} under these random effects models?
- Random Intercept Model

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + b_{0,i} + e_{ij}$$
 $Y_{ik} = \beta_0 + \beta_1 t_{ik} + b_{0,i} + e_{ik}$
 $\operatorname{var}(Y_{ij}) = \operatorname{var}(b_{0,i}) + \operatorname{var}(e_{ij})$
 $= D_{11} + \sigma^2$
 $\operatorname{cov}(Y_{ij}, Y_{ik}) = \operatorname{cov}(b_{0,i} + e_{ij}, b_{0,i} + e_{ik})$
 $= D_{11}$

Random Intercept Model

$$\begin{array}{ll} \mathsf{corr}(Y_{ij},Y_{ik}) & = & \frac{D_{11}}{\sqrt{D_{11}+\sigma^2}} \\ \\ & = & \frac{D_{11}}{D_{11}+\sigma^2} = \frac{\mathsf{between \ var}}{\mathsf{between \ var} + \mathsf{within \ var}} \end{array}$$

- Therefore, any two outcomes have the same correlation. Doesn't depend on the specific times, nor on the distance between the measurements.
- "Exchangeable" correlation model.
- Assuming: $var(e_{ij}) = \sigma^2$, and $cov(e_{ij}, e_{ik}) = 0$.

Random Intercept and Slope Model

$$\begin{array}{rcl} Y_{ij} & = & (\beta_0 + \beta_1 t_{ij}) + (b_{0,i} + b_{1,i} t_{ij}) + e_{ij} \\ Y_{ik} & = & (\beta_0 + \beta_1 t_{ik}) + (b_{0,i} + b_{1,i} t_{ik}) + e_{ik} \\ \\ \mathrm{var}(Y_{ij}) & = & \mathrm{var}(b_{0,i} + b_{1,i} t_{ij}) + \mathrm{var}(e_{ij}) \\ & = & D_{11} + 2 \cdot D_{12} t_{ij} + D_{22} t_{ij}^2 + \sigma^2 \end{array}$$

$$cov(Y_{ij}, Y_{ik}) = cov[(b_{0,i} + b_{1,i}t_{ij} + e_{ij}), (b_{0,i} + b_{1,i}t_{ik} + e_{ik})]$$

$$= D_{11} + D_{12}(t_{ij} + t_{ik}) + D_{22}t_{ij}t_{ik}$$

Random Intercept and Slope Model

$$\begin{split} \rho_{ijk} &= & \operatorname{corr}(Y_{ij}, Y_{ik}) \\ &= & \frac{D_{11} + D_{12}(t_{ij} + t_{ik}) + D_{22}t_{ij}t_{ik}}{\sqrt{D_{11} + 2 \cdot D_{12}t_{ij} + D_{22}t_{ij}^2 + \sigma^2} \sqrt{D_{11} + 2 \cdot D_{12}t_{ik} + D_{22}t_{ik}^2 + \sigma^2}} \end{split}$$

- Therefore, two outcomes may not have the same correlation. Correlation depends on the specific times for the observations, and does not have a simple form.
- Assuming: $var(e_{ij}) = \sigma^2$, and $cov(e_{ij}, e_{ik}) = 0$.