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Session Three Outline

e Role of correlation
> Impact proper standard errors

> Used to weight individuals (clusters)

e Models for correlation / covariance
> Regression: Group-to-Group variation
> Random effects: Individual-to-Individual variation

> Serial correlation: Observation-to-Observation variation
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Longitudinal Data Analysis

INTRODUCTION
to
CORRELATION and WEIGHTING
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Treatment of Lead-Exposed Children (TLC)

Trial: | In the 1990’s a placebo-controlled randomized trial of a

new chelating agent, succimer, was conducted among children
with lead levels 20-44ug/dL.

Children received up to three 26-day courses of succimer or
placebo and were followed for 3 years.

Data set with 100 children.

m = 50 placebo; m = 50 active.

lllustrate: | naive analyses and the impact of correlation.
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TLC Trial — Means
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Simple (naive?) Analysis of Treatment

Post Data Only |- compare the mean blood lead after baseline
in the TX and control groups — using 3 measurements/person,
and all 100 subjects.

> Issue(s) =

Pre/Post Data | — compare the mean blood lead after baseline
to the mean blood lead at baseline for the treatment subjects only

— using 4 measurements/person, and only 50 subjects.

> Issue(s) =

Auckland 2008



0-1

Simple Analysis: Post Only Data

week 0 | week 1 week 4 week 6
Control
Bo Bo Bo
Treatment
Bo+PB1 | Bo+ 051 | Bo+ B

Auckland 2008



Post Data Only

. ***x Analysis using POST DATA at weeks 1, 4, and 6

. regress y tx if week>=1

I
w
o
o

Number of obs

y | Coef. Std. Err. t P>|t| [95% Conf. Intervall
________ +_________________________________________________________
tx | -7.526 0.8503 -8.85  0.000 -9.199 -5.852
cons | 24.125 0.6012 40.12 0.000 22.942 25.308

0-2 Auckland 2008



. regress y tx if week>=1, cluster(id)

Number of obs = 300

Regression with robust standard errors
Number of clusters (id) = 100

| Robust
y | Coef. Std. Err. t P>|t]| [95% Conf. Intervall
________ +____________________________________________________________
tx | —-7.526 1.2287 -6.12 0.000 -9.964 -5.087
cons | 24.125 0.7458 32.35 0.000 22.645 25.605

0-3 Auckland 2008



Simple Analysis: Pre/Post for Treatment Group Only

0-4

week 0

week 1

week 4

week 6

Control

Treatment

Bo

Bo + b1

Bo + b1

Bo + B
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Pre/Post Data, TX Group Only

. **%* Analysis using PRE/POST for treatment subjects

. regress y post if tx==

Number of obs = 200
y | Coef. Std. Err. t P>t [95% Conf. Intervall]
________ +__________________________________________________________
post | -9.940 1.3093 -7.59 0.000 -12.522 -7.358
cons | 26.540 1.1339 23.41 0.000 24 .303 28.776
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. regress y post if tx==1, cluster(id)

Number of obs = 200

Regression with robust standard errors
Number of clusters (id) = 50

| Robust
y | Coef. Std. Err. t P>t [95% Conf. Intervall]
________ +_________________________________________________________
post | -9.940 0.8680 -11.45 0.000 -11.685 -8.196
cons | 26.540 0.7118 37.28 0.000 25.109 27.970

0-6 Auckland 2008



Dependent Data and Proper Variance Estimates I

Let X;; = 0 denote placebo assignment and X;; = 1 denote active
treatment.

(].) Consider (Yt,;l,Y;'Q) with (Xﬂ,XZ'Q) = (O, 0) for:=1:n and
(X1, X2) = (L, 1) fori=(n+1):2n

1 n 2
flo = %ZZYLJ

i=1 j=1
1 2n 2
R PRt
i=n+1 j=1
R R L.,
var(fin — j1o) = —10°(1+p)}
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Scenario 1

control
time 1 time 2

treatment
time 1l time 2

subject

ID = 101
ID = 102
ID = 103
ID = 104
ID = 105
ID = 106

7-1

Yia Yio
Yo Yoo
Y31 ER

Y Yo
Y51 Y52
Ys.1 Ys.2
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Dependent Data and Proper Variance Estimates I

(2) | Consider (Y;1, Y;2) with (X1, X52) = (0,1) for i =1 : n and

(Xil,Xz'Q) = (1,0) for ¢ = (n—l— 1) 1 2n

var(fiy — fio)

1 2n )
o <\; Yii + i_;_l }/i2/>
1

%< ;Y;Q—Fz;lilef

{o*(1 - p))
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Scenario 2

subject control treatment
timel time2 | timel time?2

ID =101 | Yi: Yio
ID =102 | Y2, Yoo
ID =103 | Y33 Y39
ID = 104 Yio Yiq

ID = 105 Y5 o Y51

ID = 106 Y5 2 Ys.1
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Dependent Data and Proper Variance Estimates I

If we simply had 2n independent observations on treatment (X = 1)
and 2n independent observations on control then we'd obtain

o2 o2

var(fiy — fig) = o T o
1
p— —0'2
n

Q: What is the impact of dependence relative to the situation where

all (2n + 2n) observations are independent?
(1) = positive dependence, p > 0, results in a loss of precision.

(2) = positive dependence, p > 0, results in an improvement in
precision!

Auckland 2008
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Therefore:
e Dependent data impacts proper statements of precision.

e Dependent data may increase or decrease standard errors depending
on the design.

Auckland 2008
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Weighted Estimation I

Consider the situation where subjects report both the number of

attempts and the number of successes: (Y;, IV;).

Examples:

live born (Y;) in a litter (IV;)
condoms used (Y;) in sexual encounters (IV;)
SAEs (Y;) among total surgeries (IV;)

Q: How to combine these data from 7 = 1 : m subjects to estimate a

common rate (proportion) of successes?

Auckland 2008
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Proposal 1:

Proposal 2:

Simple Example:

Data

Weighted Estimation I

(1,10) (2,100)

— (2+1)/(110) = 0.030
- %{1/10-F2/100}:=(1051

Auckland 2008
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Weighted Estimation I

Note: | Each of these estimators, p1, and ps, can be viewed as

weighted estimators of the form:

. Yi
o = {zwi M} /S
1 1
We obtain p; by letting w; = NN;, corresponding to equal weight given
each to binary outcome, Y;;, Y; = Zjvzl Yi;.

We obtain ps by letting w; = 1, corresponding to equal weight given
to each subject.

Q: What's optimal?

Auckland 2008
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Weighted Estimation I

A: Whatever weights are closest to 1/variance of Y;/N; (stat theory

called “Gauss-Markov").

e If subjects are perfectly homogeneous then
V(Y;) = Nip(1 - p)

and p; Is best.

e If subjects are heterogeneous then, for example
V(Y;) = Nip(1 = p){1 + (N; — 1)p}

and an estimator closer to ps Is best.

Auckland 2008
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Summary: Role of Correlation

e Statistical inference must account for the dependence.

> correlation impacts standard errors!

e Consideration as to the choice of weighting will depend on the

variance/covariance of the response variables.

> correlation impacts regression estimates!

Auckland 2008
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Longitudinal Data Analysis

INTRODUCTION

to

REGRESSION APPROACHES
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Statistical Models

e | Regression model: | Groups

mean response as a function of covariates.

“systematic variation”

e | Random effects: | Individuals

variation from subject-to-subject in trajectory.

“random between-subject variation”

e | Within-subject variation:

Observations

variation of individual observations over time

“random within-subject variation”

17
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Groups: Scientific Questions as Regression

* | Questions concerning the rate of decline refer

to the time slope for FEV1:

E[FEV1 | X = age, gender, f508] = [p(X) + (1(X) - time

Time Scales

o Let age0 = age-at-entry, age,

o Let agel = time-since-entry, age,; — age;,

Auckland 2008
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CF Regression Model I

+/3, - age0 + (5 - ageL

+/33 - female

+34 - £508 =1+ (5 - £508 = 2

+3¢ - female - ageL

+37 - £508 = 1 - agelL + s - £508 = 2 - ageL

Bo(Xi) + 1(X;) - ageL

Auckland 2008



Intercept

f508=0 f508=1 f508=2

male | 5o + 51 -age0 | Bo + [1-aged | Bo + P1 - agel
+ 04 +05

female | o+ B1 - age0 | fo + 1 - age0 | By + f1 - ageO
+03 +B3 + B4 +0B3 + Bs

19-1 Auckland 2008



Slope

19-2

f508=0 | f508=1 | f508=2
male B2 B2 + Br | B2 + B3
female | (39 B2 + B7 | B2 + B

+06 +6 +6

Auckland 2008



Gender Groups (f508==0)
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Genotype Groups (male)
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Define

Yi; = FEVI for subject 7 at time t¢;;
X, = (X’L]77X’an)
XZj = (X'ij,17 Xij,27 st ,Xij,p)

age0, agel, gender, genotype

Issue: Response variables measured on the same subject are
correlated.

cov(Y;;,Yir) #0

Auckland 2008
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Some Notation

e It is useful to have some notation that can be used to discuss the
stack of data that correspond to each subject.

e Let n; denote the number of observations for subject s.

e | Define:
( Yi1 \
v, = Yio
\ Vi, /
e If the subjects are observed at a common set of times t1,%5,...,t,

then E(Y;;) = p; denotes the mean of the population at time ¢,.

Auckland 2008



Dependence and Correlation

e Recall that observations are termed independent when deviation
in one variable does not predict deviation in the other variable.

> Given two subjects with the same age and gender, then the
blood pressure for patient ID=212 is not predictive of the
blood pressure for patient ID=334.

e Observations are called dependent or correlated when one

variable does predict the value of another variable.

> The LDL cholesterol of patient ID=212 at age 57 is predictive
of the LDL cholesterol of patient ID=212 at age 60.

29 Auckland 2008
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Dependence and Correlation

e | Recall: | The variance of a variable, Y;; (fix time ¢; for now) is

defined as:

E[(Yij — py)?]
E(Yij — pi)(Yij — pj)]

e The variance measures the average distance that an observation

falls away from the mean.

Auckland 2008



Dependence and Correlation

e | Define: | The covariance of two variables, Y;;, and Y (fix t;

and t;) is defined as:
ok = E|(Yij — 1) (Yie — pix)]

e The covariance measures whether, on average, departures in one
variable, Y;; — p;, “go together with” departures in a second

variable, Y;r — .

e In simple linear regression of Y;; on Y;; the regression coefficient
B1in E(Y;; | Yik) = Bo + b1 - Yig is the covariance divided by the
variance of Yj:

%k

b =—

0%

24 Auckland 2008



Dependence and Correlation

Define: | The correlation of two variables, Y;;, and Y;i (fix ¢,
and t;) is defined as:

E [(Y;j — ,uj)(Y;'k: — Nk)]

0,0k

Pik =
The correlation is a measure of dependence that takes values
between -1 and +1.

Recall that a correlation of 0.0 implies that the two measures are
unrelated (linearly).

Recall that a correlation of 1.0 implies that the two measures fall
perfectly on a line — one exactly predicts the other!

Auckland 2008



Why interest in covariance and/or correlation?

e Recall that on earlier pages our standard error for the sample

mean difference 111 — g depends on p.

e In general a statistical model for the outcomes
Y; = (Y1, Yio, ..., Yin.) requires the following:

> Means: py;

> Variances: 032-

> Covariances: o, or correlations p;y,.

e Therefore, one approach to making inferences based on
longitudinal data is to construct a model for each of these three

components.

Auckland 2008
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Something new to model...

cov(Y;)

var(Y;1)

cov(Yi1, Yi2)

cov(Y;a, Yi1) var(Y;2)

COV(Y;"M ) }/’61) COV(Y;'nz' ) }/7/2)

ol

0201 P21

| On;01Pn;1

0102012

o5

On,;02Pn;2

cov(Yi1, Yin,)
cov(Yia, Yin,)

var(Yip, )

0-2 O-ni 1027?,@'

Auckland 2008
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TLC Trial — Covariances

Placebo

yO 265.2 22.7 24.3 21.4
yl 22.7 29.8 27.0 23.4
y4 24.3 27.0 33.1 28.2
y6 21.4 23.4 28.2 31.8

Active

yO 25.2 15.5 15.1 23.0
yl 15.5 58.9 44.0 36.0
y4 15.1 44.0 61.7 33.0
y6 23.0 36.0 33.0 85.5

Auckland 2008



29

TLC Trial — Correlations

Placebo

yO 1.00 0.83 0.84 0.76
yl 0.83 1.00 0.86 0.76
y4 0.84 0.86 1.00 0.87
y6 0.76 0.76 0.87 1.00

Active

yO 1.00 0.40 0.38 0.50
yl 0.40 1.00 0.73 0.51
y4 0.38 0.73 1.00 0.45
y6 0.50 0.51 0.45 1.00

Auckland 2008
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Mean and Covariance Models for FEV1

Models:
E(;; | Xi;) = i (regression) Groups
cov(Y; | X;) = 3; = between-subjects +  within-subjects

WV WV
individual—to—individual observation—to—observation

Q: What are appropriate covariance models for the FEV1 data?

Individual-to-Individual variation?

Observation-to-Observation variation?

Auckland 2008



kland 2008

o 0 09- o 0 09~ 08 O 0 OF oy 0 o TvOT«9 TvOT«TSL

usg

40

-40

20

-40

-40 0 40

40

-60

. . . . .
. .. g
o
o by
., XTI _.ﬂ
&
- . g -

. ' N 3
g 4. N [
LN Lo, Q
. . . N .
nt g %

o« . . .
+ + P AL °
......... LI ~
o« W e
. .
-ﬂ.m..n\.a % -.. “w o °
LN el o
. . 4
s - +
-l -o . M
oy . .
&I.N... q l.. -.ftr
- A
TR vy
. -. w e
.
£
© . . .
- o . . °
om .\.. n.- -uoso . . -. ... B N
. .
a .-. .. . o
N
M .
oc- . .
0% o
S, ‘
., . .
g
. o
. “r . . . ~
.
.-c- . . ©
. “ o,
o« b, . °
©
.
. .
’ S
S e
e
C ea, ©
¢ .
Y . o
. . ©

0c 0¢- 09 ov 0 OF or 0 O 0Cc 0 ov-

30-1



31

How to build models for correlation?

Mixed models

> “random effects”
> between-subject variability

> within-subject similarity due to sharing trajectory

Serial correlation

> close in time implies strong similarity

> correlation decreases as time separation increases

Auckland 2008



Toward the Linear Mixed Model

e | Regression model:

mean response as a function of covariates.

“systematic variation”

e | Random effects:

variation from subject-to-subject in trajectory.

Individuals

“random between-subject variation”

e | Within-subject variation:

variation of individual observations over time

“random within-subject variation”

32
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Response
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subjects:

Levels of Analysis I

e We first consider the distribution of measurements within

Bo,i + B, - tij + €ij
N(0,0%)

Bo,i + B, - tij

Boi
B1.i

[1, timeij]

X8,

Auckland 2008
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Levels of Analysis I

e We can equivalently separate the subject-specific regression
coefficients into the average coefficient and the specific
departure for subject 7:

> Boi = Bo + boi
> Bi1i =01 +bi,

e This allows another perspective:

Yij = Do+ b1ty + €
= (Bo+B1-tij) + (boi+b1i-ti;)+ eij

EY;| X8, = X8 + X ;b;
N—— N——
mean model between-subject

Auckland 2008



Sample of Lines

110
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Slope Deviation (b1)

34-92

Intercepts and Slopes

-10

Intercept Deviation (b0)

10

20
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Levels of Analysis I

e Next we consider the distribution of patterns (parameters) among

subjects:
equivalently
Y, = X8 + X ;b; + €;

—— N——" —~—
mean model between-subject within-subject

Auckland 2008



beta0 + betal * time

beta0 + betal * time

35-1

10

10

Fixed intercept, Fixed slope

time

Fixed intercept, Random slope

time

beta0 + betal * time

beta0 + betal * time

10

10

Random intercept, Fixed slope

time

Random intercept, Random slope

time

Auckland

2008



36

Between-subject Variation

e We can use the idea of random effects to allow different types of

between-subject heterogeneity:

e The magnitude of heterogeneity is characterized by D:

b =

var(b;) =

Auckland 2008
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Between-subject Variation

e The components of D can be interpreted as:

> /D11 — the typical subject-to-subject deviation in the overall
level of the response.

> +/D99 — the typical subject-to-subject deviation in the change
(time slope) of the response.

> D)9 — the covariance between individual intercepts and slopes.

If positive then subjects with high levels also have high
rates of change.

If negative then subjects with high levels have low rates of
change.

Auckland 2008



beta0 + betal * time

beta0 + betal * time

37-1

10

10

Fixed intercept, Fixed slope

time

Fixed intercept, Random slope

time

beta0 + betal * time

beta0 + betal * time

10

10

Random intercept, Fixed slope

time

Random intercept, Random slope

time

Auckland
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Between-subject Variation: Examples

No random effects:

Yij

Bo + B1 - tij + €4
= [1, timez’j]:@ + €4

Random intercepts:

Yij = (Bo+B1-tij) +boi + e
— [1,timeij],3 + [ 1 ]bO,i T €ij

Random intercepts and slopes:

Yii = (Bo+PB1-tij)+boi+0bii-tij+eij
= |1, time;;]B + [1, time;;]b; + €;;

Auckland 2008



Toward the Linear Mixed Model

e | Regression model:

mean response as a function of covariates.

“systematic variation”

e | Random effects:

variation from subject-to-subject in trajectory.

“random between-subject variation”

e | Within-subject variation:

Observation

variation of individual observations over time

“random within-subject variation”

39
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Covariance Models

Serial Models

e Linear mixed models assume that each subject follows his/her own

line. In some situations the dependence is more local meaning that

observations close in time are more similar than those far apart in time.

Auckland 2008



Covariance Models

Define

€ij = Pr€ij—1 T €

This leads to autocorrelated errors:

cov(eij, eir) = apl~F

Auckland 2008
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Response

Two Subjects
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Toward the Linear Mixed Model

Regression model:

mean response as a function of covariates.
“systematic variation”

Random effects:

variation from subject-to-subject in trajectory.

“random between-subject variation”

Within-subject variation:

variation of individual observations over time
“random within-subject variation”

Auckland 2008
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Session Three Summary

e Role of correlation
> Impact proper standard errors

> Used to weight individuals (clusters)

e Models for correlation / covariance
> Regression: Group-to-Group variation
> Random effects: Individual-to-Individual variation

> Serial correlation: Observation-to-Observation variation

Auckland 2008



EXTRA: Mixed Models and Covariances/Correlation

e Q: What is the correlation between outcomes Y;; and Y;; under these

random effects models?

e | Random Intercept Model

}/?:.
Yik

var(Y;)

cov(Yi;, Yik)

43-1

Bo + Bitij + bo.i + €ij
Bo + Bitik 4+ boi + €ik

var(bo ;) + var(e;;)
Dy + o

cov(bo,i + €45, b(),z' + eik)
D1y

Auckland 2008



EXTRA: Mixed Models and Covariances/Correlation

e | Random Intercept Model

D1y
v D11 + 02v/ D11 + 02

D14 between var

D1y + 02 between var + within var

corr(Yi;, Yie) =

e Therefore, any two outcomes have the same correlation. Doesn't
depend on the specific times, nor on the distance between the mea-
surements.

e “Exchangeable’ correlation model.

2

e Assuming: var(e;;) = 0, and cov(e;;, e;r) = 0.
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EXTRA: Mixed Models and Covariances/Correlation

e | Random Intercept and Slope Model

Yij

Yir

var(Y;)

cov(Yi;, Yik)

43-3

(Bo + Bitij) + (boi + b1 itis) + €ij
(Bo + Batir) + (boi + b1 itir) + €k

var(bg ; + b14ti;) + var(e;;)
D11+ 2 Doty + D22t7,2j +0°

cov|(bo,; + b1 itij + €i5), (boi + b1itik + €ix)]
D11+ Dia(ti; + tix) + Daatijtik

Auckland 2008



EXTRA: Mixed Models and Covariances/Correlation

e | Random Intercept and Slope Model

pijk = corr(Y;;, Yir)
D11+ Dia(ti; + tix) + Daotijtik

\/Du + 2 Diatyj + Daot?; + 02 /D11 + 2 - Diatix, + Daot?, + 02

e Therefore, two outcomes may not have the same correlation. Correla-
tion depends on the specific times for the observations, and does not
have a simple form.

2

e Assuming: var(e;;) = o, and cov(e;;, e;r) = 0.
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