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MODELLING LONGITUDINAL DATA

Longitudinal data present two aspects of the data that require modelling:

(i) mean response over time, i.e., model E(Yij|Xij) = µij over time

(ii) covariance (variances at each occasion and pairwise correlations),
i.e., model Var(Yij) = σ2

j and Cov(Yij, Yik) = σjk.

Note: Corr(Yij, Yik) = Cov(Yij,Yik)√
Var(Yij)Var(Yik)

= σjk
σjσk

.

Longitudinal models must jointly specify models for mean and covariance.

We review three basic approaches:
(1) Parametric and Semi-Parametric Curves (Session 2)
(2) Covariance Models (Session 3)
(3) Linear Mixed Effects Models (Session 4)
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For the next three lectures the focus is on methods for longitudinal data
where the response variable is continuous.

The main emphasis is on linear models for longitudinal continuous
responses.

Although we discuss likelihood-based analyses for normal responses, the
normality assumption can be relaxed without substantial penalty.

Many of the key ideas extend and generalize to discrete outcomes, e.g.,
binary responses and count data:

=⇒ generalized linear models for longitudinal data (Sessions 5 and 6)

Finally, although the emphasis is on longitudinal data; generalizations to
cluster-correlated data should be apparent (e.g., data from family studies,
multilevel/hierarchical data).
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MODELLING THE MEAN:

PARAMETRIC AND SEMI-PARAMETRIC CURVES

Fitting parametric or semi-parametric curves to longitudinal data can be
justified on substantive and statistical grounds.

Substantively, in many studies true underlying mean response process
changes over time in a relatively smooth, monotonically increasing/decreasing
pattern.

Fitting parsimonious models for mean response results in statistical tests of
covariate effects (e.g., treatment × time interactions) with greater power.
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Polynomial Trends in Time

Describe the patterns of change in the mean response over time in terms of
simple polynomial trends.

The means are modelled as an explicit function of time.

This approach can handle highly unbalanced designs in a relatively seamless
way.

For example, mistimed measurements are easily incorporated in the model
for the mean response.
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Linear Trends over Time

Simplest possible curve for describing changes in the mean response over
time is a straight line.

Slope has direct interpretation in terms of a constant rate of change in mean
response for a single unit change in time.

Consider two-group study comparing treatment and control, where changes
in mean response are approximately linear:

E (Yij) = β0 + β1Timeij + β2Groupi + β3Timeij ×Groupi,

where Groupi = 1 if ith individual assigned to treatment, and Groupi = 0
otherwise; and Timeij denotes measurement time for the jth measurement
on ith individual.
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Model for the mean for subjects in control group:

E (Yij) = β0 + β1Timeij,

while for subjects in treatment group,

E (Yij) = (β0 + β2) + (β1 + β3) Timeij.

Thus, each group’s mean response is assumed to change linearly over time
(see Figure 1).
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Figure 1: Graphical representation of model with linear trends for two
groups.
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Quadratic Trends over Time

When changes in the mean response over time are not linear, higher-order
polynomial trends can be considered.

For example, if the means are monotonically increasing or decreasing over
the course of the study, but in a curvilinear way, a model with quadratic
trends can be considered.

In a quadratic trend model the rate of change in the mean response is not
constant but depends on time.

Rate of change must be expressed in terms of two parameters.
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Consider two-group study example:

E (Yij) = β0 + β1Timeij + β2Time2
ij + β3Groupi

+ β4Timeij ×Groupi + β5Time2
ij ×Groupi.

Model for subjects in control group:

E (Yij) = β0 + β1Timeij + β2Time2
ij;

while model for subjects in treatment group:

E (Yij) = (β0 + β3) + (β1 + β4) Timeij + (β2 + β5) Time2
ij.
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Figure 2: Graphical representation of model with quadratic trends for two
groups.
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Note: mean response changes at different rate, depending upon Timeij.

Using calculus, instantaneous rate of change in control group is β1 +
2β2Timeij

Thus, early in the study when Timeij = 1, rate of change is β1 + 2β2; while
later in the study, say Timeij = 4, rate of change is β1 + 8β2.

Regression coefficients, (β1 +β4) and (β2 +β5), have similar interpretations
for treatment group.

12



Linear Splines

If simplest curve is a straight line, then one way to extend the curve is
to have sequence of joined line segments that produces a piecewise linear
pattern.

Linear spline models provide flexible way to accommodate many non-linear
trends that cannot be approximated by simple polynomials in time.

Basic idea: Divide time axis into series of segments and consider piecewise-
linear trends, having different slopes but joined at fixed times.

Locations where lines are tied together are known as “knots”.

Resulting piecewise-linear curve is called a spline.

Piecewise-linear model often called “broken-stick” model.
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Figure 3: Graphical representation of model with linear splines for two
groups, with common knot.
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The simplest possible spline model has only one knot.

For two-group example, linear spline model with knot at t∗:

E (Yij) = β0 + β1Timeij + β2(Timeij − t∗)+ + β3Groupi
+ β4Timeij ×Groupi + β5(Timeij − t∗)+ ×Groupi,

where (x)+ is defined as a function that equals x when x is positive and is
equal to zero otherwise.

Thus, (Timeij − t∗)+ is equal to (Timeij − t∗) when Timeij > t∗ and is
equal to zero when Timeij ≤ t∗.
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Model for subjects in control group:

E (Yij) = β0 + β1Timeij + β2(Timeij − t∗)+.

When expressed in terms of mean response prior/after t∗:

E (Yij) = β0 + β1Timeij, Timeij ≤ t∗;

E (Yij) = (β0 − β2t
∗) + (β1 + β2)Timeij, Timeij > t∗.

Slope prior to t∗ is β1 and following t∗ is (β1 + β2).
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Model for subjects in treatment group:

E (Yij) = (β0 + β3) + (β1 + β4)Timeij + (β2 + β5)(Timeij − t∗)+.

When expressed in terms of mean response prior/after t∗:

E (Yij) = (β0 + β3) + (β1 + β4)Timeij, Timeij ≤ t∗;

E (Yij) = [(β0 + β3)− (β2 + β5)t∗)]
+ (β1 + β2 + β4 + β5)Timeij, Timeij > t∗.
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Case Study: Vlagtwedde-Vlaardingen Study

Epidemiologic study on prevalence of and risk factors for chronic obstructive
lung disease.

Sample participated in follow-up surveys approximately every 3 years for
up to 19 years.

Pulmonary function was determined by spirometry: FEV1.

We focus on a subset of 133 residents aged 36 or older at their entry into
the study and whose smoking status did not change over the 19 years of
follow-up.

Each study participant was either a current or former smoker.
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Figure 4: Mean FEV1 at baseline (year 0), year 3, year 6, year 9, year 12,
year 15, and year 19 in the current and former smoking exposure groups.
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First we consider a linear trend in the mean response over time, with
intercepts and slopes that differ for the two smoking exposure groups.

We assume an unstructured covariance matrix.

Based on the REML estimates of the regression coefficients in Table 1, the
mean response for former smokers is

E (Yij) = 3.507− 0.033 Timeij,

while for current smokers,

E (Yij) = (3.507− 0.262)− (0.033 + 0.005) Timeij

= 3.245− 0.038 Timeij.
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Table 1: Estimated regression coefficients for linear trend model for FEV1

data from the Vlagtwedde-Vlaardingen study.

Variable Smoking Group Estimate SE Z

Intercept 3.5073 0.1004 34.94
Smokei Current −0.2617 0.1151 −2.27
Timeij −0.0332 0.0031 −10.84
Smokei × Timeij Current −0.0050 0.0035 −1.42
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Thus, both groups have a significant decline in mean FEV1 over time.

But there is no discernible difference between the two smoking exposure
groups in the constant rate of change.

That is, the Smokei × Timeij interaction (i.e., the comparison of the two
slopes) is not significant, with Z = −1.42, p > 0.15.

But is the rate of change constant over time?

Adequacy of linear trend model can be assessed by including higher-order
polynomial trends.
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For example, we can consider a model that allows quadratic trends for
changes in FEV1 over time.

The maximized log-likelihoods for the models with linear and quadratic
trends are presented in Table 2.

LRT comparing quadratic and linear trend models, produces G2 = 1.3, with
2 degrees of freedom (p > 0.50).

Thus, when compared to quadratic trend model, linear trend model appears
to be adequate.

Note: likelihood ratio test is based on the ML, not REML, log-likelihood.
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Table 2: Maximized (ML) log-likelihoods for models with linear and
quadratic trends for FEV1 data from the Vlagtwedde-Vlaardingen study.

Model −2 (ML) Log-Likelihood

Quadratic Trend Model 237.2

Linear Trend Model 238.5

−2 × Log-Likelihood Ratio: G2 = 1.3, 2 df (p > 0.50)
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STATISTICAL SOFTWARE: FITTING LINEAR MODELS
TO LONGITUDINAL DATA

SAS and Stata, which are widely available, can perform all analyses
presented in these lectures.

Alternative software packages, e.g. SPSS and S-PLUS, can also be used.

Caveat: Statistical software is constantly evolving.

25



Longitudinal Data Structure

PROC MIXED in SAS and xtmixed in Stata are very general and versatile
procedure for fitting linear models to longitudinal and clustered data.

Before discussing specifics of command syntax for PROC MIXED in SAS
or xtmixed in Stata, we must discuss the appropriate way to structure the
data set.

Software for longitudinal analyses require each repeated measurement in a
longitudinal data set to be a separate “record”.
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For example, in the TLC trial, the data are recorded as follows:

(ID Group Baseline Week 1 Week 4 Week 6)
79 P 30.8 26.9 25.8 23.8
8 A 26.5 14.8 19.5 21.0

44 A 25.8 23.0 19.1 23.2
11 P 24.7 24.5 22.0 22.5
69 A 20.4 2.8 3.2 9.4
29 A 20.4 5.4 4.5 11.9
... ... ... ... ... ...

55 P 31.1 31.2 29.2 30.1

with a single “record” of the 4 repeated measurements for each child in the
study.
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The data set is in a multivariate mode (or “wide format”).

Prior to analysis, these data must be converted to a data set with 4 records
for each child, one for each measurement occasion.

In the latter form, data set is in a univariate mode (or “long format”).

This can be accomplished using the illustrative SAS and Stata commands
in Tables 3 and 4 which produced the following:
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(ID Group Time Y)
79 P 0 30.8
79 P 1 26.9
79 P 4 25.8
79 P 6 23.8
8 A 0 26.5
8 A 1 14.8
8 A 4 19.5
8 A 6 21.0
... ... ... ...

55 P 0 31.1
55 P 1 31.2
55 P 4 29.2
55 P 6 30.1
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Table 3: Illustrative commands in SAS for transforming data set with
single record for each individual to data set with multiple records for each
measurement occasion.

DATA lead;
INFILE ’tlc.dat’;
INPUT id group $ y0 y1 y4 y6;
y=y0; time=0; OUTPUT;
y=y1; time=1; OUTPUT;
y=y4; time=4; OUTPUT;
y=y6; time=6; OUTPUT;
DROP y1-y4;
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Table 4: Illustrative commands in Stata for transforming (reshaping) data
set with single record for each individual to data set with multiple records
for each measurement occasion.

. infile id str1 group y0 y1 y4 y6 using tlc.dat

. reshape long y, i(id) j(time)
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Parametric Curves using PROC MIXED in SAS

Table 5: Illustrative commands for a linear trend model using PROC
MIXED in SAS.

PROC MIXED;
CLASS id group t;
MODEL y=group time group*time / SOLUTION CHISQ;
REPEATED t / TYPE=UN SUBJECT=id R RCORR;

32



Note that the CLASS statement includes a variable t. This variable is an
additional copy of the variable time.

The difference is that while t is declared as a categorical variable on the
CLASS statement, time is not and is treated as a quantitative covariate in
the MODEL statement.

It is good practice to include, wherever possible, a REPEATED effect.

This ensures covariance is estimated correctly when the design is balanced
but incomplete due to missingness or when repeated measures are not in
same order for each subject in data set.
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Table 6: Illustrative commands for a quadratic trend model using PROC
MIXED in SAS.

PROC MIXED;
CLASS id group t;
MODEL y=group time timesqr group*time group*timesqr /S CHISQ;
REPEATED t / TYPE=UN SUBJECT=id R RCORR;
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Table 7: Illustrative commands for a spline model, with knot at time = 4,
using PROC MIXED in SAS.

PROC MIXED;
CLASS id group t;
MODEL y=group time time 4 group*time group*time 4 /S CHISQ;
REPEATED t / TYPE=UN SUBJECT=id R RCORR;

The MODEL statement includes time and time 4, where time 4 is a derived
variable for (time− 4)+.

The latter variable can easily be computed in SAS as

time 4 = max(time− 4, 0);
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