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1 Introduction

This writeup is intended to supplement material in the prescribed texts:

”Introduction to Probability Models” , 10th Edition, by Sheldon Ross,

”Essentials of Stochastic Processes”, 2nd Edition, by Richard Durrett.

The primary aim is to emphasize certain ideas and also to supply proofs of important results when not

available in the texts.

2 Preliminaries

2.1 σ-field and Probability measure

A sample space Ω and a collection F of subsets from Ω subject to the following conditions:

1. Ω ∈ F .

2. If A ∈ F , then its complement Ac ∈ F .

3. If A1, A2, ... is a finite or countably infinite sequence of subsets from F , then
⋃
Ai ∈ F .

Any collection F satisfying these postulates is termed a σ-field or σ-algebra. Two immediate consequences

of the definitions are that the empty set ∅ ∈ F and that if A1, A2, ... is a finite or countably infinite

sequence of subsets from F , then
⋂
iAi = (

⋃
iA

c
i )
c ∈ F .

The sample space Ω may be thought of as the set of possible outcomes of an experiment. Points ω in

Ω are called sample outcomes, realizations, or elements. Subsets of Ω are called Events.

Example. If we toss a coin twice then Ω = {HH,HT, TH, TT}. The event that the first toss is heads

is A = {HH,HT}.
A probability measure or distribution µ on the events in F should satisfy the properties:

1. µ(Ω) = 1.

2. µ(A) ≥ 0 for any A ∈ F .

3. µ(
⋃
iAi) = Σiµ(Ai) for any countably infinite sequence of mutually exclusive events A1, A2, ... from

F .
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A triple (Ω,F , µ) constitutes a probability space. An event A ∈ F is said to be null when µ(A) = 0 and

almost sure when µ(A) = 1. We will often use Pr(·) in place of µ(·).
Typically, the events whose probability we wish to speak of, would be assumed to belong to a σ - field

on which a probability measure of the above kind has been defined.

2.2 Sets vs Events

The following table is from A.N.Kolmogorov’s celebrated monograph ”Foundations of the Theory of

Probability” (1933), reprinted Chelsea (1956).

Theory of sets Random Events

A and B do not intersect Events A and B are incompatible

The intersection of sets A,B, · · · , N is null Events A,B, · · · , N are incompatible

X is the intersection of sets A,B, · · · , N Event X is the simultaneous occurrence of A,B, · · · , N

X is the union of sets A,B, · · · , N Event X equivalent to occurrence of atleast one of A,B, · · · , N

The complementary set Ac Ac is the nonoccurrence of the event A

A = ∅ Event A is impossible

A = Ω Event A always occurs

A ⊆ B Event A follows immediately if B occurs

Π = {A1, · · · , An} is a partition of Ω {A1, · · · , An} are the possible results of experiment Π

2.3 Conditional Probability

Given two events A,B (i.e., members of the σ field F ), and assuming that the probability Pr(B) > 0,

the conditional probability of A given that B has occurred is denoted Pr(A | B) and is defined by

Pr(A | B) = Pr(A ∩B)/Pr(B)

(the measure of the intersection A ∩ B if the measure of B is treated as 1). Observe that in general

Pr(A | B) 6= Pr(B | A).
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The event A is independent of event B if Pr(A | B) is the same as Pr(A), i.e, the event A is unaffected

by whether event B occurs or not. We then have

Pr(A) = Pr(A | B) = Pr(A ∩B)/Pr(B).

This can be rewritten as Pr(A ∩B) = Pr(A)× Pr(B). But then we also have,

Pr(B) = Pr(B | A) = Pr(A ∩B)/Pr(A),

provided Pr(A) 6= 0. Thus when A and B have nonzero probabilities, event A is independent of event B

iff event B is independent of event A.

To complete our original picture of event A being unaffected by whether B occurs or not, we need to

prove, when Pr(B) > 0, P r(Bc) > 0 and A,B are independent, that

Pr(A) = Pr(A | Bc) = Pr(A ∩Bc)/Pr(Bc).

This follows because we have, Pr(A) = Pr(A ∩ B) + Pr(A ∩ Bc) and therefore Pr(A) × Pr(Bc) =

Pr(A)× (1− Pr(B)) = Pr(A)− Pr(A)× Pr(B) = Pr(A)− Pr(A ∩B) = Pr(A ∩Bc).
We are now in a position to state and prove a version of the law of total probability:

Let A1, · · · , Ak be a partition of the sample space Ω. Let B be an event. Then

Pr(B) = Σki=1Pr(B | Ai)× Pr(Ai).

The proof follows from the facts that B =
⋃
i(B ∩Ai), and, since B ∩Ai are pairwise disjoint,

Pr(
⋃
i(B ∩Ai)) = ΣiPr(B ∩Ai).

The following important result is called ’Bayes’ Theorem. Its proof is immediate from the above

discussion.

Let A1, ..., Ak be a partition of Ω such that Pr(Ai) > 0 for each i. If Pr(B) > 0, then, for each

i = 1, ..., k

Pr(Ai | B) = Pr(B | Ai)× Pr(Ai)/(ΣjPr(B | Aj)Pr(Aj)).

We call Pr(Ai) the prior probability of A and Pr(Ai | B) the posterior probability of A.

2.4 Random Variable

A random variable X is a function from a sample space Ω into the real line R. There is a σ− field of

subsets of Ω and a probability measure µ(·) defined on the σ− field. The random variable might be

discrete or continuous.

In the discrete case the set of values the variable X takes is countable. We thus have a partition of the

sample space into countable pairwise disjoint subsets, each of which maps under X to a different value.

The probability of the variable taking a given value, say a, is the probability measure assigned to the

subset of Ω which maps to a under X. Thus Pr{X = a} ≡ µ(X−1(a)).

In the continuous case we will assume that the inverse image of a closed interval in the real line is

an event in the sample space that has a µ value already defined, i.e, the event is a set belonging to the σ-

field on which the above mentioned probability measure is defined.
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An expression such as ‘Pr{X(ω) ≤ a}’ refers to the probability measure, associated with the set in

the σ - field, whose image under X(.) lies in the interval x ≤ a. In other words we look for the set of all

points in the sample space whose real image satisfies the stated condition (in this case being less or equal

to a) and evaluate its probability measure.

Our interest is in the probability of a given random variable X(ω) (just X for brief) lying in some

range, say α ≤ x ≤ β. In the discrete case, if one is provided with the probability masses associated with

values of the random variables (i.e., the µ(·) value of the inverse image under X of values), it would be

sufficient. In the continuous case, information adequate to answer such questions is usually provided in

one of two important ways. The first is the probability density function (pdf) pX(x) of X. We have,

pX(x0) ≡ lim
ε→0,ε>0

[Pr{x0 − ε ≤ x < x0 + ε}/ε],

at all points where pX is continuous. The second is the cumulative distribution function (cdf)

FX(x) ≡ Pr{X(ω) ≤ x}.

It can be verified that the pdf of a continuous random variable is the derivative of its cdf.

2.5 The indicator function

The simplest random variable, which also is theoretically very useful, is the indicator function 1A. This

function is defined by

1A(ω) = 1, ω ∈ A,

1A(ω) = 0, ω /∈ A.

Multiplying a random variable X by 1A (denoted by 1AX) will result in a new random variable which

will have value 0 outside A and have the same value as X inside A.

2.6 Moments of random variables

If X is a discrete random variable, then its mth moment is given by

E[Xm] ≡ Σia
m
i Pr{x = ai},

where the ai are the values that the discrete random variable takes.

If X is continuous with probability density pX(·), the mth moment is given by

E[Xm] ≡
∫
x<∞

xmpX(x)dx.

The first moment is called the mean or expected value or expectation of the random variable.

The variance of X is denoted V ar{X} and is defined as

V ar{X} ≡ E[X2]− (E[X])2.
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If X is a random variable and g is a function, then Y ≡ g(X) is also a random variable, since it

also maps the sample space into the real line. If X is a discrete random variable with possible values

x1, x2, . . . , then the expectation of g(X) is given by

E[g(X)] ≡ Σig(xi)Pr{X = xi},

provided the sum converges absolutely.

If X is continuous and has the probability density function pX(·), then the expectation of g(X) is

computed from

E[g(X)] =

∫
x<∞

g(x)pX(x)dx.

2.7 Joint distribution

A pair (X,Y ) of random variables would have their joint cdf FXY defined through

FXY (x, y) ≡ Pr{X(ω) ≤ x, y(ω) ≤ y}.

We can recover the cdf of either one of them by simply setting the value of the other variable to∞. Thus

FX(x) = FXY (x,∞). These individual distributions are called marginal distributions of X,Y respectively.

If it happens that FXY (x, y) ≡ FX(x)× FY (y), for all (x, y) we say that X,Y are independent.

Suppose,instead, X and Y are jointly distributed continuous random variables having the joint prob-

ability density function pXY (x, y) . Then X,Y are independent iff pXY (x, y) = pX(x)× pY (y).

In the discrete case the same condition for independence holds treating pXY , pX , pY as probability

mass functions.

2.8 Properties of Expectations

A very useful, elementary but surprising property is the following theorem which does not require the

random variables to be independent.

If X1, · · · , Xn are random variables and a1, · · · , an are constants, then E[ΣiaiXi] = ΣiaiE[Xi].

In the discrete case, this can be proved as follows. For simplicity we work with two random variables

X,Y, and take the constants to be 1. We have

E[X + Y ] = ΣiΣj(xi + yj)× pXY (xi, yj)

= ΣiΣj(xi × pXY (xi, yj) + yj × pXY (xi, yj)) = Σixi × ΣjpXY (xi, yj) + Σjyj × ΣipXY (xi, yj)

= Σixi × pX(xi) + Σjyj × pY (yj) = E[X] + E[Y ].

The continuous case is similar, replacing summation by integration.

When the random variables are independent we have the product rule:

If X1, ..., Xn are independent random variables, then, E[ΠiXi] = ΠiE[Xi].
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In the discrete case, this can be proved as follows. Once again, for simplicity we work with two random

variables X,Y. We have

E[XY ] = ΣiΣj(xi × yj)× pXY (xi, yj)

= ΣiΣj(xi × yj)× pX(xi)× pY (yj)

= Σi(xi × pX(xi))× Σj(yj × pY (yj))

= E[X]× E[Y ].

The continuous case is similar, replacing summation by integration.

2.9 Conditional distribution

The conditional distribution of X given Y = y is given by

FX|Y (x | y) ≡ Pr{X ≤ x, Y = y}/Pr{Y = y}, P r{Y = y} > 0,

and any arbitrary discrete distribution function whenever Pr{Y = y} = 0.

The conditional density function of X given Y = y is given by pX|Y (x | y) = pxy(x, y)/pY (y) wherever

pY (y) > 0 and with an arbitrary specification where pY (y) = 0.

Note that p(x | y) satisfies

1. p(x | y) is a probability distribution function in x for each fixed y ;

2. p(x | y) is a function of y for each fixed x ; and

3. For any values x, y, Pr{X ≤ x, Y ≤ y} =
∫
η≤y[

∫
ξ≤x pX|Y (ξ | η)dξ]pY (η)dη.

Equivalently, Pr{X ≤ x, Y ≤ y} =
∫
η≤y FX|Y (x | η)pY (η)dη.

We now have the law of total probability

Pr{X ≤ x} = Pr{X ≤ x, y ≤ ∞} =

∫
η

FX|Y (x | η)pY (η)dη.

In the discrete case this becomes

Pr{X ≤ x} = Pr{X ≤ x, Y ≤ ∞} = ΣηFX|Y (x | η)Pr{Y = η}.

2.10 E[X | {Y = y}]

The conditional expectation of a random variable X given that a random variable Y = y, is given by

E[X | {Y = y}] ≡
∫
x× pX|Y (x | y)dx.

If g is a function of X, the conditional expectation of the random variable g(X) given that a random

variable Y = y, is given by

E[g(X) | {Y = y}] ≡
∫
g(x)× pX|Y (x | y)dx.
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In the discrete case this becomes

E[g(X) | {Y = y}] ≡ Σig(xi)× pX|Y (xi | y).

Therefore we have

E[g(X)] = Σig(xi)× pX(xi) = Σj [Σig(xi)× pX|Y (xi | yj)]× pY (yj).

In the continuous case the corresponding expression is

E[g(X)] =

∫
x<∞

g(x)× pX(x)dx =

∫
y<∞

[

∫
x<∞

g(x)× pX|Y (x | y)dx]× pY (y)dy.

For any bounded function h we have

E[g(X)h(Y )] =

∫
y<∞

E[g(X) | {Y = y}]× h(y)pY (y)dy.

Now the expression E[g(X) | {Y = y}] defines a function of y. Consider the function f(·) on the sample

space defined by

f(ω) ≡ E[g(X) | {Y = Y (ω)}].

To compute the value of f(·) on a point ω in the sample space, we first compute Y (ω), then compute the

expectation E[g(X) | {Y = Y (ω)}]. This random variable f(·) is usually denoted E[g(X) | Y ]. Similarly,

the random variable (E[g(X) | Y ])2 is simply the square of the random variable E[g(X) | Y ].

Note that, while g(X) | {Y = y} is a random variable whose sample space is the set of all ω which

map to y under the random variable Y , the expression g(X) | Y does not have a predetermined meaning.

What is the random variable E[g(X) | X]?

What value does it take on an an element ω of the sample space?

Note that when X(ω) = x, E[g(X) | {X = x}] is simply g(x). So E[g(X) | X] = g(X).

Next, what meaning should we assign V ar[g(X) | Y ]? Formally, V ar[Z] ≡ E[Z2] − (E[Z])2. So we

define

V ar[g(X) | Y ] ≡ E[(g(X))2/Y ]− (E[g(X) | Y ])2.

Thus V ar[g(X) | Y ] is the random variable given by the expression on the right hand side.

2.11 Laws of total expectation and total variance

We will now show that the expectation E[E[g(X) | Y ]] of the random variable E[g(X) | Y ] is equal to

E[g(X)]. This is called the law of total expectation. (We have already proved this in the last subsection

but we did not use the notation E[g(X) | Y ]. So we repeat the proof for the discrete case.) In the discrete

case, we could first partition the sample space into preimages under Y of the values Y (ω) = yi, find the

probability associated with each set, multiply it by E[g(X) | {Y = yi}] and then compute the sum of all

such products. Thus we get

E[E[g(X) | Y ]] = ΣiE[g(X) | {Y = yi}]× pY (yi).
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Analogously, in the continuous case we get,

E[E[g(X) | Y ]] =

∫
y<∞

E[g(X) | {Y = y}]× pY (y)dy.

We remind the reader that in the discrete case,

E[g(X) | {Y = y}] ≡ Σjg(xj)pX|Y (xj | y)

and in the continuous case,

E[g(X) | {Y = y}] ≡
∫
x<∞

g(x)pX|Y (x | y)dx.

Hence, in the discrete case

E[E[g(X) | Y ]] = ΣiΣjg(xj)pX|Y (xj | yi)× pY (yi).

This, by using definition of conditional probability becomes

E[E[g(X) | Y ]] = ΣiΣjg(xj)pXY (xj , yi).

Interchanging summation we get

E[E[g(X) | Y ]] = ΣjΣig(xj)pXY (xj , yi).

We can rewrite this as

E[E[g(X) | Y ]] = Σjg(xj)[ΣipXY (xj , yi)],

i.e., as

E[E[g(X) | Y ]] = Σjg(xj)pX(xj)] = E[g(X)].

The proof in the continuous case is similar, except that we interchange integrations rather than summa-

tions.

We are now in a position to state and prove the law of total variance:

V ar[X] = E[V ar[X | Y ]] + V ar[E[X | Y ]].

In the previous subsection, we defined the random variables V ar[X | Y ] and E[X | Y ]. Using these

definitions, the right side expands to

E[E[(X)2 | Y ]− (E[X | Y ])2] + E[(E[X | Y ])2]− (E[E[X | Y ]])2.

Now the expectation of the sum of two random variables is the sum of their expectation. So the above

expression reduces to

E[E[(X)2 | Y ]]− E[(E[X | Y ])2] + E[(E[X | Y ])2]− (E[E[X | Y ]])2.

This in turn, after cancellation reduces to

E[E[(X)2 | Y ]]− (E[E[X | Y ]])2.

Using the law of total expectation, this expression reduces to

E[(X)2]− (E[X])2 = V ar[X].
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