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Martingales

1 Introduction

Martingales were originally introduced into probability theory as a model for ‘fair betting games’. Es-

sentially we bet on events of known probability according to these known values and the payoff is also

according to these values. Common sense tells us that in that case, in the long run, we should neither

win nor lose. The theory more or less captures this idea but there are paradoxes - for instance if you play

until you are ahead you will gain but you might need unbounded resources to reach that stage. However,

the value of martingale theory far exceeds the original reason for their coming into being. These notes

are intended to atleast partially justify this statement.

2 Preliminaries

The theory of martingales makes repeated use of the notion of conditional expectation. We review the

theory briefly.

The conditional expectation of a random variable X given that a random variable Y = y, is given by

E[X | {Y = y}] ≡
∫
x× pX|Y (x | y)dx.

In the discrete case this becomes

E[X | {Y = y}] ≡ Σixi × pX|Y (xi | y).

Therefore we have

E[X] = Σixi × pX(xi) = Σj [Σixi × pX|Y (xi | yj)]× pY (yj).

Now the expression E[X | {Y = y}] defines a function of y. Consider the function f(·) on the sample

space defined by

f(ω) ≡ E[X | {Y = Y (ω)}].

To compute the value of f(·) on a point ω in the sample space, we first compute Y (ω), then compute the

expectation E[X | {Y = Y (ω)}]. This random variable f(·) is usually denoted E[X | Y ]. Similarly, the

random variable (E[X | Y ])2 is simply the square of the random variable E[X | Y ].
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Note that, while X | {Y = y} is a random variable whose sample space is the set of all ω which map

to y under the random variable Y , the expression X | Y does not have a predetermined meaning.

Next, what meaning should we assign V ar[X | Y ]? Formally, V ar[Z] ≡ E[Z2]− (E[Z])2. So we define

V ar[X | Y ] ≡ E[X2 | Y ]− (E[X | Y ])2.

Thus V ar[X | Y ] is the random variable given by the expression on the right hand side.

We will now prove the law of total expectation:

E[E[X | Y ]] of the random variable E[X | Y ] is equal to E[X]. In the discrete case, we could first partition

the sample space into preimages under Y of the values Y (ω) = yi, find the probability associated with

each set, multiply it by E[X | {Y = yi}] and then compute the sum of all such products. Thus we get

E[E[X | Y ]] = ΣiE[X | {Y = yi}]× pY (yi).

Hence

E[E[X | Y ]] = ΣiΣjxjpX|Y (xj | yi)× pY (yi).

This, by using definition of conditional probability becomes

E[E[X | Y ]] = ΣiΣjxjpXY (xj , yi).

Interchanging summation we get

E[E[X | Y ]] = ΣjΣixjpXY (xj , yi).

We can rewrite this as

E[E[X | Y ]] = Σjxj [ΣipXY (xj , yi)],

i.e., as

E[E[X | Y ]] = ΣjxjpX(xj)] = E[X].

In martingale theory we also come across expressions of the kind E[E[X | Y, Z] | Z] and a useful

result is a form of the law of total expectation:

E[X|Z] = E[E[X | Y,Z] | Z].

We will call this the second form of the law of total expectation.

To prove this evaluate both sides for some value of Z, say Z = z1. LHS = E[X|Z = z1]. Now

(X | Z = z1) is a random variable G defined on the subset A, say, of the sample space where Z(ω) = z1.

If originally a subset B of A had a measure µ(B) now it has the measure µ(B)/µ(A), on this new

sample space. The RHS = E[E[(X | Z = z1) | Y ]] = E[E[G | Y ]]. By the law of total expectation,

E[G] = E[E[G | Y ]], so that for Z = z1, both sides are equal, proving the required result.

Another way of looking at this result is as follows. Let us call the event corresponding to Y = y1, Z =

z1, in the sample space, A(y1, z1). The event A(·, z1), corresponding to Z = z1 is
⋃

yi
A(yi, z1), the union

being that of pairwise disjoint subsets. Let us call the event corresponding to X = xi, Z = z1 in the

sample space, B(xi, z1). Computing E[X | Z = z1] = Σxi
xip(xi | z1) = Σxi

xip(xi, z1)/p(z1), is in words,
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computing the expectation over each B(xi, z1), and then summing it over all Xi. We could compute

instead Σxi
Σyj

xip(xi | yj , z1)p(yj) = Σxi
Σyj

xip(xi, yj , z1)/p(z1). Here we are breaking B(xi, z1) into the

family of disjoint subsets B(xi, z1)∩A(yj , z1), computing the expectation over each of these smaller sets

according to probability p(xi | yj , z1), multiplying by p(yj) and then summing the values. This latter

computation corresponds to the RHS of the equation,

E[X|Z = z1] = E[E[X | Y,Z = z1] | Z = z1].

2.1 Cautionary Remark

Martingale theory is about ‘expectations’. For reasons of easy readability we will not state conditions

such as ‘if X is integrable ’. Such a condition essentially means E[|X|] <∞. All the results, in these notes

on martingales, may be taken to be valid, unless otherwise stated, only when the expectation operation

yields a finite value on |f(X1, · · · , Xn)|, where Xi are the random variables and f(·), the function under

consideration.

3 Definition and elementary properties of martingales

Let S ≡ X0, · · · , Xn, · · · be a sequence of random variables. A second sequence of random variables

M ≡ M0, · · · ,Mn, · · · is said to be a martingale with respect to S, if E[Mn+1 | X0, · · · , Xn] = Mn. We

will replace the sequence X0, · · · , Xn, by Fn for short so that the definition reads

E[Mn+1 | Fn] = Mn.

1. (Expectation remains invariant with time)

Applying ‘expectation’ operation on both sides of the defining equation of a martingale and using

the law of total expectation, we have

E[Mn+1] = E[E[Mn+1 | Fn]] = E[Mn].

2. (In the martingale definition Mn+k can replace Mn+1)

Next, we note that Fn+k = Fn, Xn+1, · · · , Xn+k.Using the second form of the law of total expecta-

tion, we have E[Mn+k | Fn] = E[E[Mn+k | Fn+1] | Fn]. Now E[Mm+r | Fm] = Mm, r = 1. Suppose

it is true that E[Mm+r | Fm] = Mm, r < k,∀m, then we must have E[Mn+k | Fn+1] = Mn+1. We

therefore have,

E[Mn+k | Fn] = E[E[Mn+k | Fn+1] | Fn] = E[Mn+1 | Fn] = Mn.

Further, by the law of total expectation

E[Mn+k] = E[E[Mn+k | Fn]] = E[Mn].

3. (Orthogonality of martingale increments)

Let j ≤ k ≤ l. We then have

E[Mj(Ml −Mk)] = E[E[Mj(Ml −Mk)]|Fj ]] = E[MjE[(Ml −Mk)|Fj ]] = E[Mj(Mj −Mj)] = 0.
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Next let i ≤ j ≤ k ≤ l. We then have

E[(Mj −Mi)(Ml −Mk)] = E[E[(Mj −Mi)(Ml −Mk)]|Fj ]] = E[(Mj −Mi)E[(Ml −Mk)|Fj ]]

= E[(Mj −Mi)(Mj −Mj)] = 0.

Note that this happens even though (Mj −Mi), (Ml−Mk), are not independent random variables.

4. (Variance consequence of orthogonality)

V ar[Mm+k −Mm] = E[(Mm+k −Mm)2]− (E[Mm+k −Mm])2.

E[(Mm+k −Mm)2] = E[(Mm+k)2 + (Mm)2]− 2E[(Mm+k)(Mm)]

= E[(Mm+k)2 + (Mm)2]− 2E[(Mm)(Mm)] = E[(Mm+k)2] + E[(Mm)2]− 2E[(Mm)2]

= E[(Mm+k)2]− E[(Mm)2].

(E[Mm+k −Mm])2 = (E[Mm+k]− E[Mm])2 = (E[Mm+k])2 + (E[Mm])2 − 2(E[Mm+k])(E[Mm])

= (E[Mm+k])2 + (E[Mm])2 − 2(E[Mm])(E[Mm]) = (E[Mm+k])2 − (E[Mm])2.

So

V ar[Mm+k −Mm] = V ar[Mm+k]− V ar[Mm].

Next since V ar[M2−M1] = V ar[M2]−V ar[M1], it follows that V ar[M2] = V ar[M1]+V ar[M2−M1].

Similarly,

V ar[Mn] = V ar[M1] + Σn
2V ar[Mi −Mi−1].

4 Examples of Martingales

(a) (Generalized random walk)

Let S ≡ X0, · · · , Xn, · · · be a sequence of independent random variables with common mean

µ. Let Mn ≡ Σn
0Xi − nµ. As before, let Fn denote X0, · · · , Xn. We then have,

E[Mn+1 | Fn] = E[Mn +Xn+1 − µ | Fn] = Mn + E[Xn+1 − µ | Fn] = Mn,

making Mn a martingale with respect to S.

(b) (Products of independent random variables)

Let S ≡ X0, · · · , Xn, · · · be a sequence of independent random variables with common mean

µ, with Fn defined as before. Let Mn ≡ (µ)−nΠn
0Xi. Then

E[Mn+1 | Fn] = E[(µ)−(n+1)Πn+1
0 Xi | Fn]

= (E[(µ)−1Xn+1 | Fn])(µ)−nΠn
0Xi = (µ)−nΠn

0Xi = Mn.
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(c) (Branching processes)

We know that in the case of these processes we have µXn = E[Xn+1 | Xn] = E[Xn+1 | Fn]. If

we take Mn ≡ µ−nXn, then we find

E[Mn+1 | Fn] = E[µ−(n+1)Xn+1 | Xn] = µ−nXn = Mn.

(d) (Martingales for Markov chains)

Suppose S ≡ X0, · · · , Xn, · · · is a Markov chain. One way of associating a fair game with the

Markov chain is to bet on the next state when the chain is at a state i. The transition matrix

would be available to the bettor. The pay off would be 1/p(i, j), p(i, j) > 0, if one bets 1 dollar

on j. The expected gain would be 0, since the game is fair. One could define a martingale Mn

for this situation as a function f(i, n) of the present state i and the time n, i.e., Mn ≡ f(i, n).

In order that Mn becomes a martingale we need E[Mn+1 | Fn] = Mn. Now E[Mn+1 | Fn] =

Σjp(i, j)f(j, n + 1), and Mn = f(i, n). Therefore we must have f(i, n) = Σjp(i, j)f(j, n + 1),

as a necessary condition for Mn ≡ f(i, n) to be a martingale.

On the other hand if the function f(i, n) satisfies f(i, n) = Σjp(i, j)f(j, n + 1), the above

argument shows that Mn ≡ f(i, n) is a martingale. Thus the condition

f(i, n) = Σjp(i, j)f(j, n+ 1), (∗)

is necessary and sufficient for Mn ≡ f(i, n) to be a martingale on the Markov chain. We give

below a couple of instances of such functions.

i. Consider the ‘gamber’s ruin’ Markov chain with p(i, i+1) = p, p(i, i−1) = 1−p. It can be

verified that f(i, n) ≡ ((1 − p)/p)i satisfies the condition (*) above so that Mn ≡ f(i, n)

is a martingale.

ii. When p = 1/2 in the gambler’s ruin example another possible f(i, n) is the function i2−n.

5 Optional stopping theorem

The optional stopping theorem is an important result in martingale theory. We state this result under

different hypotheses in this section. However the proof may be skipped at a first reading. For this course

proofs may be treated as ‘optional’. The theorem needs the definition of ‘stopping time’ before it can

be stated. Below we define stopping time for a stochastic process S ≡ X0, · · · , Xn, · · · . We distinguish

between a random time and a stopping time.

The positive integer valued, possibly infinite, random variable T, is said to be a random time for S,
if the event {T = n} is determined by the random variables X0, · · · , Xn, i.e., if we know the values of

X0, · · · , Xn, we can say whether {T = n} is true or not. If Pr{T <∞} = 1, then the random time N is

said to be a stopping time.

The stopping theorem essentially states that E[MT ] = M0 under certain conditions even if T is

unbounded. It is intuitively clear when T is bounded but most applications correspond to the unbounded

situation. Hence the effort put in to tackle that case.
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We begin with two simple lemmas whose statements can be regarded as obvious but are still being

proved to indicate the steps involved in the proof. The first lemma states that under the condition that

the stopping time is equal to k the expected value of a martingale for n ≥ k is the same as its expected

value at k. Note that in this lemma 1T=k can be replaced by any random variable 1A, as long as the

event A is fully determined by Fk.

Lemma 5.1. Let Mn be a martingale, and T, a stopping time, with respect to Fn.

Then for all n ≥ k,
E[Mn1T=k] = E[Mk1T=k].

Proof: We have, using the second form of law of total expectation and the fact that the value of the

random variable 1T=k is fully determined by the value of Fk,

E[Mn1T=k] = E[E[Mn1T=k | Fk]] = E[1T=kE[Mn | Fk]] = E[1T=kMk].

The next lemma handles the case where the stopping time cannot exceed n. Note that MT∧n refers

to a stopping time T ′ = min(T, n). So even if T is unbounded, T ′ is bounded.

Lemma 5.2. Let Mn be a martingale, and T, a stopping time, with respect to Fn.

For all n = 1, 2 · · · , E[M0] = E[MT∧n] = E[Mn].

Proof:

E[MT∧n] = Σn−1
k=0E[MT 1T=k] + E[Mn1T≥n]

= Σn−1
k=0E[Mk1T=k] + E[Mn1T≥n]

= Σn−1
k=0E[Mn1T=k] + E[Mn1T≥n]

= E[Mn].

The next lemma is a technical result needed in the proof of the optional stopping theorem for domi-

nated (i.e., bounded by a random variable with finite expectation) martingales.

Lemma 5.3. Let Z be an arbitrary random variable satisfying E[|Z|] <∞, and let T be an integer valued

random variable such that Pr{T <∞} = 1. Then limn→∞E[Z1T≤n] = E[Z] and limn→∞E[Z1T>n] = 0.

Proof: We have

E[|Z|] ≥ E[|Z|1T≤n] = Σn
k=0E[|Z| | T = k]Pr{T = k}.

If we let n→∞, since Pr{T <∞} = 1, we get

Σ∞k=0E[|Z| | T = k]Pr{T = k} = E[|Z|].

Hence

lim
n→∞

E[|Z|1T≤n] = E[|Z|] and lim
n→∞

E[|Z|1T>n] = 0.

Next we have

0 ≤ |E[Z]− E[Z1T≤n| ≤ |E[Z1T>n]| ≤ E[|Z|1T>n]

6



and

lim
n→∞

E[|Z|1T>n] = 0.

So limn→∞E[Z1T≤n] = E[Z] and limn→∞E[Z1T>n] = 0.

We will now prove the Optional Stopping Theorem for three important situations. In each case the

final conclusion is E[MT ] = E[M0]. The first is for the important case where the martingale is dominated

by a random variable whose expectation is finite. We use this to prove the second version which addresses

an important special and commonly occurring situation and the third version which is usually called the

Optional Stopping Theorem..

Theorem 5.1. (Optional Stopping Theorem for dominated martingales)

Let Mn be a martingale with respect to Fn, and let T be a stopping time, i.e., Pr{T <∞} = 1. Let Z be

a random variable such that |MT∧n| < Z ∀n and E[Z] <∞. Then E[MT ] = E[M0].

Proof: We have, since Pr{T <∞} = 1,

MT = Σ∞k=0Mk1T=k = Σ∞k=0MT∧k1T=k.

But |MT∧n| < Z so that

MT = Σ∞k=0MT∧k1T=k ≤ Σ∞k=0Z1T=k ≤ Z.

Hence,

|MT | ≤ Σ∞k=0|MT∧k|1T=k ≤ Σ∞k=0Z1T=k ≤ Z.

Therefore, E[|MT |] ≤ E[Z] <∞ and E[MT ] ≤ E[|MT |] <∞. Next we have

|E[MT∧n]− E[MT ]| ≤ E[|(MT∧n −MT )|] = E[|(MT∧n −MT )|1T>n] ≤ 2E[Z1T>n].

(Here we have used the fact thatMT∧n1T≤n = MT 1T≤n.) We know by Lemma ??, limn→∞E[Z1T>n] = 0.

Hence, limn→∞E[MT∧n] = E[MT ]. By Lemma ??, it follows that E[MT ] = E[M0].

Theorem 5.2. (Optional Stopping Theorem 2)

Let S ≡ X0, · · · , Xn, · · · and let Mn be a martingale for S. Let T be a random time for the process S. If

1. T is bounded or

2. E[T ] <∞ and there is a finite M such that E[|Mn+1 −Mn| | Fn] < M,

then E[MT ] = E[M0].

Proof:

1. T bounded case is proved in Lemma ??.

2. Define W0 = |M0| and Wn = |Mn −Mn−1|, n = 1, 2, · · · and let Z = W0 + · · ·+WT .

Then Z ≥ |M0 + (M1 −M0) + · · · (MT −MT−1)| = |MT | and

E[Z] = Σ∞n=0Σn
k=0E[Wk1T=n]

= Σ∞k=0Σ∞n=kE[Wk1T=n]
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= Σ∞k=0E[Wk1T≥k].

Now the random variable 1T≥k is fully determined by, i.e., is a function of, Fk−1. We are given that

E[Wk | Fk−1] ≤M hold if k − 1 < T. Hence

= Σ∞k=0E[Wk1T≥k] = Σ∞k=0E[E[Wk1T≥k | Fk−1]]

= Σ∞k=0E[1T≥kE[Wk | Fk−1]] ≤MΣ∞k=0Pr{T ≥ k} ≤M(1 + E[T ]) <∞.

(Here we have used the fact that E[T ] = Σ∞k=1Pr{T ≥ k}, and Pr{T ≥ 0} = 1.) We thus

have E[Z] < ∞. Since |MT∧n| ≤ |MT | < Z ∀n, we can use Theorem ?? and conclude that

E[MT ] = E[M0].

Theorem 5.3. (Optional Stopping Theorem Main)

Let S ≡ X0, · · · , Xn, · · · , let Mn be a martingale and let T be a stopping time for S. If

1. Pr{T <∞} = 1,

2. E[|MT |] <∞.

3. limn→∞E[Mn1T>n] = 0,

then

E[MT ] = E[M0].

Proof: We have for all n,

E[MT ] = E[MT 1T≤n] + E[MT 1T>n] = E[MT∧n]− E[Mn1T>n] + E[MT 1T>n].

Now E[MT∧n] = E[M0], by Lemma ??. We are given that limn→∞E[Mn1T>n] = 0. By Lemma ??,

since MT ≤ |MT |, and E[|MT |] < ∞, we conclude that limn→∞E[MT 1T>n] = 0. Thus E[MT ] =

limn→∞E[MT∧n] = E[M0].

6 Applications of OST

The optional stopping theorem is a subtle result which needs some discussion as to its limitations and its

power. Basically it says that if you stop a stochastic process according to a criterion based only on the

past then the expected value of a martingale at stopping is the same as at starting. Here is an example

of a wrong use of OST.

Example: Consider the unbounded ‘gambler’s ruin’ Markov chain on 0, · · · ,+∞. We know that

position at time n is a martingale Mn. Suppose you start at position i, then your expected position

E[Mn] will remain i. But let us use a stopping rule ‘stop as soon as you reach 0.’ After stopping the

expected position is 0, which need not be i.

What is going wrong here?

We cannot apply OST because in this case E[T ] is not finite.
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On the other hand in the ‘gambler’s ruin’ Markov chain on 0, · · · ,K, if we use the stopping rule ‘stop

as soon as you reach 0 or K.’, we can show that E[T ] is bounded, for instance solving the set of linear

equations for hitting time of Markov chains and getting a finite value. Further |Mn| < K + 1. So we can

apply OST here. The expected value E[T ], at stopping equals that at starting, the position i ≤ K. The

expected value at stopping is pK + (1 − p) × 0 = pK, where p is the probability of hitting K starting

from i. We thus have pK = i, and therefore p = i/K. This is an indirect but simple way of computing p.

6.1 Wald’s Equation

Theorem 6.1. (Wald’s equation)

Let Xi, i ≥ 1, be i.i.d random variables with E[X] = E[Xi] < ∞. Let T be a stopping time for X1, · · · ,
with E[T ] <∞. Then, E[ΣT

1Xi] = E[T ]E[X].

Proof: Let µ = E[X]. Mn ≡ Σn
1 (Xi − µ), is a martingale since E[Mn+1 | Fn] = E[Mn + [Xn+1 − µ] |

Fn] = Mn + 0. If OST is applicable we have, E[MT ] = E[ΣT
1 (Xi−µ)] = E[ΣT

1 (Xi)−Tµ] = E[ΣT
1 (Xi)]−

E[Tµ]. If E[MT ] = 0, we get E[ΣT
1 (Xi)] = E[Tµ]. This would happen if OST is applicable since then

E[MT ] = E[M1] = E[(X1 − µ)] = 0.

In order to show OST is applicable, since it is given that E[T ] < ∞, we need merely show that

E[|Mn+1−Mn| | Fn] is bounded. We have E[|Mn+1−Mn| | Fn] = E[(Xn+1−µ) | Fn] ≤ E[|X|]+µ < M,

say, since E[|X|] is bounded.

This completes the proof of Wald’s equation.

Remark: Suppose T is a random variable independent of the Xi, then Wald’s theorem is obviously

true since E[ΣT
1 (Xi)] = E[E[ΣT

1 (Xi) | T ]] = E[E[TXi | T ]] = E[TXi], and by independence of T,Xi

E[TXi] = E[T ]E[Xi]. The unusual feature of Wald’s equation is that independence of T and the Xi is

not required and something much weaker is adequate.

6.2 Expected length of sequences with a known end subsequence

Let X0, X1, · · · be a sequence of i.i.d. random variables. The problem is to find the expected length of a

sequence of values that these random variables take till the first time a specified subsequence occurs.

One way of solving this problem is to pick a ‘suitable’ martingale through a betting scheme assuming

the game is fair. It is of course necessary that the martingale should capture the essentials of the problem,

i.e, the end sequence.

We illustrate the association of a betting scheme with a martingale as follows:

You bet $1 on an event A and the event occurs you get a reward of $1/p(A). If you bet $1 at time 0, on an

event that is expected to happen at time n, we can takeM ′0 = M ′1 = · · · = M ′n−1 = 1;M ′n has value 1/p(A)

on event A of the sample space and zero on the complement. Then E[M ′n+1 | X0, · · · , Xn,M
′
0] = 1 = M ′n.

The expected gain in this transaction is 1/p(A)×p(A)+0×(1−p(A))−1 = 0. This is what the expression

E[M ′n+1 || Fn]−M ′n = 0 means. The other and more convenient way of defining the martingale for our

problem is to take the profit of the gambler or the casino as the martingale. This new martingale Mn is

related to the above martingale by Mn = M ′n − 1.
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Let us now work with a specific example. Let Xi, i = 0, 1, 2, · · · take values 0, 1, 2, · · · with probabilites

p0, p1, · · · , respectively. Let us find the expected length of a sequence which ends with 0, 2, 0.

We will build our martingale Mn as a sum of such elementary martingales, which may be considered

as individual bettors profits. Let mk
n be the martingale defined as follows:

mk
i = 0, i = 0, 1, . . . , k − 1; k ≥ 1.

mk
k takes value 1/p0 − 1 on the event corresponding to Xk = 0 and −1 if the event does not occur.

mk
k+1 takes value 1/p0 × 1/p2 − 1, if Xk = 0, Xk+1 = 2 and −1 if the event does not occur.

mk
k+2 takes value 1/p0 × 1/p2 × 1/p0 − 1, if Xk = 0, Xk+1 = 2, Xk+2 = 0 and −1 if the event does not

occur.

mk
i = mk

k+2, i > k + 2.

We now define a composite martingale by

Mn = m0
n + · · ·mn

n.

In the terminology introduced in class, the money that the ith bettor transfers to the Casino is mi
n,

and the money that the casino receives totally is the Martingale Mn. Now we use the stopping rule ‘stop

the process when you reach 0, 2, 0.′ What would E[MT ] be?

In order to apply Theorem ?? we need E[T ] <∞ and E[|Mn+1 −Mn| | Fn] < M. The former can be

shown by Markov chain arguments and the latter follows from the way we have defined the martingale.

At stopping time all bettors have lost $1 and some have gained, i.e, MT = Σi=T
i=0m

i
T = −1 × T +

terms corresponding to payoff. The (T −2)th bettor has pay off 1/p0×1/p2×1/p0, the (T )th bettor has

pay off 1/p0, and none of the others have any payoff. Therefore E[MT ] = E[T ]−1/p0−1/p0×1/p2×1/p0,

i.e., E[T ] = 1/p0 + 1/p0 × 1/p2 × 1/p0.
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