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Martingales

1 Introduction

Martingales were originally introduced into probability theory as a model for ‘fair betting games’. Es-

sentially we bet on events of known probability according to these known values and the payoff is also

according to these values. Common sense tells us that in that case, in the long run, we should neither

win nor lose. The theory more or less captures this idea but there are paradoxes - for instance if you play

until you are ahead you will gain but you might need unbounded resources to reach that stage. However,

the value of martingale theory far exceeds the original reason for their coming into being. These notes

are intended to atleast partially justify this statement.

2 Preliminaries

The theory of martingales makes repeated use of the notion of conditional expectation. We review the

theory briefly.

The conditional expectation of a random variable X given that a random variable Y = y, is given by

E[X | {Y = y}] ≡
∫
x× pX|Y (x | y)dx.

In the discrete case this becomes

E[X | {Y = y}] ≡ Σixi × pX|Y (xi | y).

Therefore we have

E[X] = Σixi × pX(xi) = Σj [Σixi × pX|Y (xi | yj)]× pY (yj).

Now the expression E[X | {Y = y}] defines a function of y. Consider the function f(·) on the sample

space defined by

f(ω) ≡ E[X | {Y = Y (ω)}].

To compute the value of f(·) on a point ω in the sample space, we first compute Y (ω), then compute the

expectation E[X | {Y = Y (ω)}]. This random variable f(·) is usually denoted E[X | Y ]. Similarly, the

random variable (E[X | Y ])2 is simply the square of the random variable E[X | Y ].
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Note that, while X | {Y = y} is a random variable whose sample space is the set of all ω which map

to y under the random variable Y , the expression X | Y does not have a predetermined meaning.

Next, what meaning should we assign V ar[X | Y ]? Formally, V ar[Z] ≡ E[Z2]− (E[Z])2. So we define

V ar[X | Y ] ≡ E[X2 | Y ]− (E[X | Y ])2.

Thus V ar[X | Y ] is the random variable given by the expression on the right hand side.

We will now prove the law of total expectation:

E[E[X | Y ]] of the random variable E[X | Y ] is equal to E[X]. In the discrete case, we could first partition

the sample space into preimages under Y of the values Y (ω) = yi, find the probability associated with

each set, multiply it by E[X | {Y = yi}] and then compute the sum of all such products. Thus we get

E[E[X | Y ]] = ΣiE[X | {Y = yi}]× pY (yi).

Hence

E[E[X | Y ]] = ΣiΣjxjpX|Y (xj | yi)× pY (yi).

This, by using definition of conditional probability becomes

E[E[X | Y ]] = ΣiΣjxjpXY (xj , yi).

Interchanging summation we get

E[E[X | Y ]] = ΣjΣixjpXY (xj , yi).

We can rewrite this as

E[E[X | Y ]] = Σjxj [ΣipXY (xj , yi)],

i.e., as

E[E[X | Y ]] = ΣjxjpX(xj)] = E[X].

In martingale theory we also come across expressions of the kind E[E[X | Y, Z] | Z] and a useful

result is a form of the law of total expectation:

E[X|Z] = E[E[X | Y,Z] | Z].

We will call this the second form of the law of total expectation.

To prove this evaluate both sides for some value of Z, say Z = z1. LHS = E[X|Z = z1]. Now

(X | Z = z1) is a random variable G defined on the subset A, say, of the sample space where Z(ω) = z1.

If originally a subset B of A had a measure µ(B) now it has the measure µ(B)/µ(A), on this new

sample space. The RHS = E[E[(X | Z = z1) | Y ]] = E[E[G | Y ]]. By the law of total probability,

E[G] = E[E[G | Y ]], so that for Z = z1, both sides are equal, proving the required result.

Another way of looking at this result is as follows. Let us call the event corresponding to Y = y1, Z =

z1, in the sample space, A(y1, z1). The event A(·, z1), corresponding to Z = z1 is
⋃

yi
A(yi, z1), the union

being disjoint union of pairwise disjoint subsets. Let us call the event corresponding to X = xi, Z = z1

in the sample space, B(xi, z1). Computing E[X | Z = z1] = Σxi
xip(xi | z1) = Σxi

xip(xi, z1)/p(z1), is in
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words, computing the expectation over each B(xi, z1), and then summing it over all Xi. We could compute

instead Σxi
Σyj

xip(xi | yj , z1)p(yj) = Σxi
Σyj

xip(xi, yj , z1)/p(z1). Here we are breaking B(xi, z1) into the

family of disjoint subsets B(xi, z1)∩A(yj , z1), computing the expectation over each of these smaller sets

according to probability p(xi | yj , z1), multiplying by p(yj) and then summing the values. This latter

computation corresponds to the RHS of the equation,

E[X|Z = z1] = E[E[X | Y,Z = z1] | Z = z1].

2.1 Cautionary Remark

Martingale theory is about ‘expectations’. For reasons of easy readability we will not state conditions

such as ‘if X is integrable ’. Such a condition essentially means E[|X|] <∞. All the results, in these notes

on martingales, may be taken to be valid, unless otherwise stated, only when the expectation operation

yields a finite value on |f(X1, · · · , Xn)|, where Xi are the random variables and f(·), the function under

consideration.

3 Definition and elementary properties of martingales

Let S ≡ X0, · · · , Xn, · · · be a sequence of random variables. A second sequence of random variables

M ≡ M0, · · · ,Mn, · · · is said to be a martingale with respect to S, if E[Mn+1 | X0, · · · , Xn] = Mn. We

will replace the sequence X0, · · · , Xn, by Fn for short so that the definition reads

E[Mn+1 | Fn] = Mn.

1. (Expectation remains invariant with time)

Applying ‘expectation’ operation on both sides of the defining equation of a martingale and using

the law of total probability, we have

E[Mn+1] = E[E[Mn+1 | Fn]] = E[Mn].

2. (In the martingale definition Mn+k can replace Mn+1)

Next, we note that Fn+k = Fn, Xn+1, · · · , Xn+k.Using the second form of the law of total probabil-

ity, we have E[Mn+k | Fn] = E[E[Mn+k | Fn+1] | Fn]. Now E[Mm+r | Fm] = Mm, r = 1. Suppose

it is true that E[Mm+r | Fm] = Mm, r < k,∀m, then we must have E[Mn+k | Fn+1] = Mn+1. We

therefore have,

E[Mn+k | Fn] = E[E[Mn+k | Fn+1] | Fn] = E[Mn+1 | Fn] = Mn.

Further, by the law of total probability

E[Mn+k] = E[E[Mn+k | Fn]] = E[Mn].

3. (Orthogonality of martingale increments)

Let j ≤ k ≤ l. We then have

E[Mj(Ml −Mk)] = E[E[Mj(Ml −Mk)]|Fj ]] = E[MjE[(Ml −Mk)|Fj ]] = E[Mj(Mj −Mj)] = 0.
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Next let i ≤ j ≤ k ≤ l. We then have

E[(Mj −Mi)(Ml −Mk)] = E[E[(Mj −Mi)(Ml −Mk)]|Fj ]] = E[(Mj −Mi)E[(Ml −Mk)|Fj ]]

= E[(Mj −Mi)(Mj −Mj)] = 0.

Note that this happens even though (Mj −Mi), (Ml−Mk), are not independent random variables.

4. (Variance consequence of orthogonality)

V ar[Mm+k −Mm] = E[(Mm+k −Mm)2]− (E[Mm+k −Mm])2.

E[(Mm+k −Mm)2] = E[(Mm+k)2 + (Mm)2]− 2E[(Mm+k)(Mm)]

= E[(Mm+k)2 + (Mm)2]− 2E[(Mm)(Mm)] = E[(Mm+k)2] + E[(Mm)2]− 2E[(Mm)2]

= E[(Mm+k)2]− E[(Mm)2].

(E[Mm+k −Mm])2 = (E[Mm+k]− E[Mm])2 = (E[Mm+k])2 + (E[Mm])2 − 2(E[Mm+k])(E[Mm])

= (E[Mm+k])2 + (E[Mm])2 − 2(E[Mm])(E[Mm]) = (E[Mm+k])2 − (E[Mm])2.

So

V ar[Mm+k −Mm] = V ar[Mm+k]− V ar[Mm].

Next since V ar[M2−M1] = V ar[M2]−V ar[M1], it follows that V ar[M2] = V ar[M1]+V ar[M2−M1].

Similarly,

V ar[Mn] = V ar[M1] + Σn
2V ar[Mi −Mi−1].

4 Examples of Martingales

(a) (Generalized random walk)

Let S ≡ X0, · · · , Xn, · · · be a sequence of independent random variables with common mean

µ. Let Mn ≡ Σn
0Xi − nµ. As before, let Fn denote X0, · · · , Xn. We then have,

E[Mn+1 | Fn] = E[Mn +Xn+1 − µ | Fn] = Mn + E[Xn+1 − µ | Fn] = Mn,

making Mn a martingale with respect to S.

(b) (Products of independent random variables)

Let S ≡ X0, · · · , Xn, · · · be a sequence of independent random variables with common mean

µ, with Fn defined as before. Let Mn ≡ (µ)−nΠn
0Xi. Then

E[Mn+1 | Fn] = E[(µ)−(n+1)Πn+1
0 Xi | Fn]

= (E[(µ)−1Xn+1 | Fn])(µ)−nΠn
0Xi = (µ)−nΠn

0Xi = Mn.
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(c) (Branching processes)

We know that in the case of these processes we have µXn = E[Xn+1 | Xn] = E[Xn+1 | Fn]. If

we take Mn ≡ µ−nXn, then we find

E[Mn+1 | Fn] = E[µ−(n+1)Xn+1 | Xn] = µ−nXn = Mn.

(d) (Martingales for Markov chains)

Suppose S ≡ X0, · · · , Xn, · · · is a Markov chain. One way of associating a fair game with the

Markov chain is to bet on the next state when the chain is at a state i. The transition matrix

would be available to the bettor. The pay off would be 1/p(i, j), p(i, j) > 0, if one bets 1 dollar

on j. The expected gain would be 0, since the game is fair. One could define a martingale Mn

for this situation as a function f(i, n) of the present state i and the time n, i.e., Mn ≡ f(i, n).

In order that Mn becomes a martingale we need E[Mn+1 | Fn] = Mn. Now E[Mn+1 | Fn] =

Σjp(i, j)f(j, n + 1), and Mn = f(i, n). Therefore we must have f(i, n) = Σjp(i, j)f(j, n + 1),

as a necessary condition for Mn ≡ f(i, n) to be a martingale.

On the other hand if the function f(i, n) satisfies f(i, n) = Σjp(i, j)f(j, n + 1), the above

argument shows that Mn ≡ f(i, n) is a martingale. Thus the condition

f(i, n) = Σjp(i, j)f(j, n+ 1), (∗)

is necessary and sufficient for Mn ≡ f(i, n) to be a martingale on the Markov chain. We give

below a couple of instances of such functions.

i. Consider the ‘gamber’s ruin’ Markov chain with p(i, i+1) = p, p(i, i−1) = 1−p. It can be

verified that f(i, n) ≡ ((1 − p)/p)i satisfies the condition (*) above so that Mn ≡ f(i, n)

is a martingale.

ii. When p = 1/2 in the gambler’s ruin example another possible f(i, n) is the function i2−n.

5 Optional stopping theorem

We state this important result without proof.

First we define stopping time for a stochastic process S ≡ X0, · · · , Xn, · · · . The positive integer

valued, possibly infinite, random variable N, is said to be a random time for S, if the event {N = n} is

determined by the random variables X0, · · · , Xn, i.e., if we know the values of X0, · · · , Xn, we can say

whether {N = n} is true or not. If Pr{N < ∞} = 1, then the random time N is said to be a stopping

time.

Theorem 5.1. (Martingale Stopping Theorem)

Let S ≡ X0, · · · , Xn, · · · and let Mn be a a martingale for S. Let N be a random time for the process S.
If

• N is bounded or

• E[N ] <∞ and there is a finite M such that E[|Mn+1 −Mn| | F ] < M,

then E[MN ] = E[M0].
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