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1 Introduction

We will be closely following the book

”Essentials of Stochastic Processes”, 2nd Edition, by Richard Durrett,

for the topic ‘Finite Discrete time Markov Chains’ (FDTM). This note is for giving a sketch of the

important proofs. The proofs have a value beyond what is proved - they are an introduction to standard

probabilistic techniques.

2 Transient and recurrent

We have so far proved a number of equivalent characteristic properties of transient and recurrent states.

Theorem 2.1. A state x in a finite Markov chain is transient iff it satisfies the following equivalent

conditions:

1. The probability ρxx of returning to x, is less than 1.

2. Starting at x the expected number of returns to x, Ex(Nx) is finite.

3. In the Markov chain graph there is a directed path from x to some recurrent node y but no return

directed path.

4. For some state y, the probability of reaching in finite time from x to y is nonzero but the probability

of reaching in finite time from y to x is less than 1.

5. If π(·), is a stationary distribution of the Markov chain π(x) = 0. (Note: π(x) = 0 in every

stationary distribution, for a transient state. If there is more than one stationary distribution,

every recurrent state will have value zero in some of them, but not in all.)

Sketch of proof:

(1) is the definition. (2) is equivalent to (1) because Ex(Nx) = ρxx/(1− ρxx).

(2→ 3)

Let C be the collection of all states reachable from x by a directed path. We then have

Σy∈CEx(Ny) = Σy∈CΣ∞n p
n(x, y) = Σ∞n Σy∈Cp

n(x, y) = Σ∞n (1) =∞.
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This means at least one state in C is a recurrent state, say z. Any state that you can reach from a

recurrent state is itself recurrent. So we cannot reach x from z.

(3→ 4)

Clear.

(4→ 1)

1−ρxx = (The probability of not returning) ≥ (probability associated with a path from x to y) multiplied

by (1− ρyx), the probability of not returning to x from y, (which is nonzero). So ρxx < 1.

(1↔ 5)

Let π(·) be a stationary distribution of the Markov chain. For any state x, Ey(Nx) = Σ∞n p
n(y, x). If x

is transient we have this expression reducing to a finite value. Then we have

∞ > Σyπ(y)Ey(Nx) = Σyπ(y)Σ∞n p
n(y, x) = ΣyΣ∞n π(y)pn(y, x) = Σ∞n π(x).

But the extreme right of the above expression is finite only if π(x) = 0.

If x is recurrent, we can construct a stationary distribution where the probabilites are nonzero only in

the irreducible component in which x is present. We then have

∞ = Σyπ(y)Ey(Nx) = Σyπ(y)Σ∞n p
n(y, x) = ΣyΣ∞n π(y)pn(y, x) = Σ∞n π(x).

This implies π(x) > 0. Thus when x is not transient there is atleast one stationary distribution which

takes nonzero value on x.

Theorem 2.2. A state x in a Markov chain is recurrent iff it satisfies the following equivalent conditions:

1. The probability ρxx of returning to x, is equal to 1.

2. Starting at x the expected number of returns to x, Ex(Nx) is infinite.

3. In the Markov chain graph, if there is a directed path from x to some node y there is always a return

directed path.

4. If for some state y, the probability of reaching in finite time from x to y is nonzero then the probability

of reaching in finite time from y to x is nonzero.

5. If for some state y, the probability of reaching in finite time from x to y is nonzero then this

probability is 1, and the probability of reaching from y to x is also 1.

6. For atleast one stationary distribution π(·), of the Markov chain π(x) > 0. (If the Markov chain

has the unique stationary distribution π(·), then π(x) > 0).

3 Finite, irreducible, aperiodic Markov chains

The period of a Markov chain at a state x is the gcd of all the loop lengths at x. The Markov chain in

Figure 1 has period 2 at each of its states.

When the Markov chain is aperiodic at a particular state x, the gcd of all loop lengths at x is 1. A

consequence of this is that whenever n > N, for a large enough N, we will have a loop of length n at x.
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Figure 1: Markov chain with period 2

When the Markov chain is irreducible and finite, the gcd of loop lengths at any state x, is the same as

that at any other state y.

For a finite irreducible Markov chain, directed paths exist from any state to any other. This fact combined

with the above is sufficient to show that whenever n > N, for a large enough N, we will have a path

length n from x to any other state y.

By using Chapman- Kolmogorov Theorem, it follows that pn(i, j) > 0, whenever n > N, for a sufficiently

large N. This means that the matrix Pn is fully positive whenever n > N, for a sufficiently large N.

4 Limit Theorems

We have already seen that every irreducible Markov chain has all its states recurrent and further has

a unique stationary distribution. We remind the reader that ρxy ≡ Prx{Ty < ∞} ≡ the probability

of reaching from x to y in finite time. The following is a useful characterization of irreducible Markov

chains.

Lemma 4.1. A Markov chain is irreducible

• iff ρxy > 0, for every pair of states x, y

• iff ρxy = 1, for every pair of states x, y.

Proof of the Lemma:

The first part is a restatement of the definition of an irreducible Markov chain.

For the second, the ‘if’ part is clear.

We now prove the ‘only if’ part. All the states in the irreducible Markov chain are recurrent. Therefore

ρyy = 1, for every state y. Further there is a directed path from x to y for each pair of states x, y.

Suppose there is a path of length n from y to x. Starting from y the probability of not returning to y is

greater than or equal to pn(y, x) × (1 − ρxy). But we know this probability is zero since y is recurrent.

We conclude that ρxy = 1.

This completes the proof of the lemma.

One of the significant results about aperiodic, irreducible Markov chains is that starting from any

initial distribution and running the Markov chain we will eventually converge to the (unique) stationary

distribution. Formally,
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Theorem 4.1. Let the Markov chain be irreducible and aperiodic. Let π′(·) be an initial distribution of

the states. Then π′
T
Pn converges to the unique stationary distribution as n→∞.

However if the Markov chain has a period greater than 1, the limit does not exist. A good example

is the Markov chain in Figure 1. It is clear that this chain has the transition matrix

P =

 0 1

1 0

 . (1)

Suppose we take πT = (0, 1). Then πTPn would yield (1, 0) for n odd and (0, 1) for n even and therefore

there would be no convergence as n→∞.
Another important result about irreducible Markov chains is that if you run such a Markov chain

indefinitely, the frequency of encountering the different states (i.e., the number of times a state is en-

countered divided by the total time n) converges to the unique stationary distribution. This happens

even if the chain has a period greater than 1. For simplicity we prove a weaker version - expected value

of the quantity in question converges rather than the quantity itself- of this result for the restricted case

of aperiodic irreducible Markov chains.

Let the Markov chain be irreducible and aperiodic and let Nn(y) denote the number of visits to y at

times ≤ n.

Theorem 4.2. E(Nn(y))/n converges to π(y), as n → ∞. If the initial state is picked according to the

stationary distribution π(·), then Eπ(Nn(y))/n = π(y).

An immediate consequence is the following.

Theorem 4.3. Let f : {states of Markov chain} → <. Then E(f(y)Nn(y))/n converges to f(y)π(y),

as n→∞.

Remark

Stronger versions of these theorems are actually true. Nn(y)/n also converges to π(y), and f(y)Nn(y)/n

converges to f(y)π(y). Proofs of these stronger theorems need sophisticated techniques and exploit the

fact that times between successive visits to a state y by the Markov chain are iid random variables.

5 Proofs

5.1 Proofs of Theorems 4.2 and 4.3

We will assume Theorem 4.1 to begin with and prove Theorems 4.2 and 4.3. We need the following

lemma for which we omit the proof.

Lemma 5.1. Let a0, a1, · · · , be a sequence that converges to a. Then limn→∞(1/n)Σn−1k=0ak also equals a.

Let the Markov chain be aperiodic and irreducible. We have

lim
n→∞

π′T (Pn) = πT ,
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where π′T is an arbitrary distribution on the states and πT , is the unique stationary distribution. In

particular we could have taken π′T as the vectors (1, 0, · · · , 0), · · · , (0, · · · , 1). Therefore we conclude that

every row of Pn tends to πT , or, equivalently,

lim
n→∞

pnij = π(j).

From the lemma we know that

limn→∞(1/n)Σn−1k=0p
k
ij = limn→∞ pnij = π(j).

Now pnij is the probability of visiting the state j at the nth step starting at state i at time 0. There-

fore the mean fraction of visits E(Nn(j))/n to state j in the interval [0, n − 1] is (1/n)Σn−1k=0p
k
ij . The

long run mean weighted fraction of time that the process spends in state j is limn→∞(E(Nn(j))/n) =

limn→∞(1/n)Σn−1k=0p
k
ij = π(j).

If we pick the initial state according to the stationary distribution π(·), the subsequent state distributions

remain π(·). The expected value of Nn(y) = π(y), when n = 1. So we have Eπ(Nn(y)) = nπ(y), by using

the linearity of expectation. (Let X ′i(y) = 1, if Xi = y, and equal to zero if Xi 6= y. When the initial

distribution is picked according to π(·), P r{X ′i(y) = 1} is π(y). Now Nn(y) = X ′1(y) + · · · + X ′n(y). So

EπNn(y) = Eπ(X ′1(y) + · · ·+X ′n(y)) = Eπ(X ′1(y)) + · · ·+ Eπ(X ′n(y)) = nπ(y).)

Next let us suppose that each visit to state j incurs a cost f(j). Let Mn(j) ≡ f(j)×Nn(j) denote the

‘weighted’ number of visits to state j in the interval [0, n − 1]. Therefore the mean weighted fraction of

visits E(Mn(j))/n to state j in the interval [0, n− 1] is (1/n)Σn−1k=0f(j)pkij . The long run mean weighted

fraction of visits to state j is limn→∞E(Mn(j))/n = limn→∞(1/n)Σn−1k=0f(j)pkij = f(j)π(j).

This completes the proof of Theorems 4.2 and 4.3.

5.2 Proof of Theorem 4.1

We will first sketch the proof.

Suppose we have two identical versions of the Markov chain in question, pick the initial states according

to different distributions (in particular, we could have started at different initial states) and run them.

After some time T the two Markov chains might hit the same state. After that the probabilities that they

hit any particular state at any time n have to be the same. Therefore the difference in the probability

distributions at time n is connected to the probability that the two Markov chains have not yet hit the

same state at a time preceding n. We reach this far through the first two ‘claims’ below.

Subsequently, we show that if the original Markov chain is aperiodic and irreducible, then the proba-

bility that the two Markov chains have not yet hit the same state, at a time preceding n, tends to zero

as n tends to ∞. This is done through a trick.

We build a ‘product Markov chain’ whose states are ordered pairs (x, y) of states of the original

Markov chain and whose transition probability from (x1, y1) to (x2, y2) is p(x1, x2) × p(x2, y2), where

p(i, j) is the transition probability from i to j in the original Markov chain. We show that this product

Markov chain is irreducible and aperiodic if the original Markov chain is irreducible and aperiodic.

Now starting from two different states x1, x2 in the two identical copies is the same as starting from

(x1, x2) in the product chain. The product does have states of the kind (x, x) and, because of irreducibility,
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the probability of reaching from (x1, x2) to (x, x) in finite time is 1. This is the same as saying that the

probability that the two identical Markov chains have not hit the same state before time n tends to zero

as n tends to ∞.
Claim 1

Let Xn, Yn be two identical Markov chains. Let T be the earliest time when Xn = yn. Then

Pr{Xn = y, T ≤ n} = Pr{Yn = y, T ≤ n}.

Proof of Claim 1 :

We have

Pr{Xn = y, T ≤ n}
= Σnm=1ΣxPr{Xn = y,Xm = x, T = m}
= Σnm=1ΣxPr{Xn = y | Xm = x, T = m}Pr{Xm = x, T = m}
= Σnm=1ΣxPr{Xn = y | Xm = x}Pr{Xm = x, T = m}, by strong Markov property,

= Σnm=1ΣxPr{Yn = y | Ym = x}Pr{Ym = x, T = m}
= Σnm=1ΣxPr{Yn = y | Ym = x, T = m}Pr{Ym = x, T = m}
= Σnm=1ΣxPr{Yn = y, Ym = x, T = m}
= Pr{Yn = y, T ≤ n}.
This proves Claim 1.

Claim 2

Σy|Pr{Xn = y} − Pr{Yn = y}| ≤ 2Pr{T > n}.

Proof of Claim 2 :

Since the distributions Xn, Yn agree on {T ≤ n}, we have for each y,

|Pr{Xn = y} − Pr{Yn = y}| ≤ Pr{Xn = y, T > n}+ Pr{Yn = y, T > n}.

Summing this over all y gives

Σy|Pr{Xn = y} − Pr{Yn = y}| ≤ 2Pr{T > n}.

This proves Claim 2.

Let p, p′, denote the transition probabilities for the original Markov chain and product Markov chains,

respectively.

Claim 3

If the original Markov chain is irreducible and aperiodic the product Markov chain is irreducible and

aperiodic, i.e., for any pair of states (x1, x2), (y1, y2), there is a directed path in the Markov chain graph

from (x1, x2) to (y1, y2), i.e.,p′
n
((x1, x2), (y1, y2)), is nonzero if n ≥ N, for sufficiently large N.

Proof of Claim 3 :

Let (x1, y1), (x2, y2) be states in the product chain. In the original Markov chain whenever n ≥ N, where
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N is sufficiently large we have pn(i, j) > 0, for every pair of states i, j (including (i, i)). Thus there is a

path of length n from x1 to x2 as well as a path of length n from y1 to y2. In the product chain there is

therefore a path of length n whenever n ≥ N, from (x1, y1) to (x2, y2). If the states in the n length paths

in the original Markov chain are z1 = x1, · · · , zn = x2 and z1 = y1, · · · , zn = y2, in the product chain

the states in the n length paths are z′1 = (x1, y1), · · · , z′n = (x2, y2). Thus the product chain is irreducible

and aperiodic.

This proves Claim 3.

Claim 4

Let the two Markov chains start at states x1, y1 respectively. Let T be the first time the two Markov

chains are at the same state. Then Pr{T <∞} = 1, i.e., Pr{T > n} → 0, as n→∞.

Proof of Claim 4 :

For any state xi, because of the irreducibility of the product Markov chain we have Pr{T ′ < ∞} = 1,

where T ′ is the time to visit (xi, xi) from x1, y1 for the first time. By definition, T ≡ minxi
{T ′}. Clearly

Pr{T <∞} = 1. It follows therefore that if the two Markov chains start at states x1, y1 respectively, and

if T be the first time the two Markov chains are at the same state, then Pr{T > n} → 0, as n→∞.
This proves Claim 4.

By Claim 2, we have

Σy|Pr{Xn = y} − Pr{Yn = y}| ≤ 2Pr{T > n}. Now let us start the first Markov chain at some state

x, and let the second state be picked according to the stationary distribution π(·). Subsequently the

probability of the second chain being at y is π(y). It follows that Σy|pn(x, y)− π(y)| ≤ 2Pr{T > n} → 0

as n→∞. This proves Theorem 4.1.

6 Exit distributions and times

Consider a Markov chain with transient and recurrent states. We know that the nodes of the Markov

chain graph can be partitioned into T,R1, · · · , Rk, where T is the set of transient states and the Ri,

equivalence classes of recurrent states within each of which there are directed paths from any state to

any other state. Two natural questions arise in connection with these chains:

• For a specified transient state x, what is the probability, if one starts from it, of hitting one of the

Ri, say R1?

Example: In the ‘gambler’s ruin’, if we start with k dollars, what is the probability of winning (i.e.,

reaching N) or losing (i.e., reaching 0)?

• For a specified transient state x, what is the expected time, if one starts from it, for hitting one of

the Ri? (Here hitting implies reaching the first state in
⋃
Ri.)

Example:In the ‘gambler’s ruin’, if we start with k dollars, what is the expected time to reach N

or 0, i.e., the expected time of quitting?
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6.1 Probability of hitting R from x

For our purpose of computing the hitting probability from transient states, it is convenient to visualize

Markov chains as having transient states T and absorbing states R1, · · · , Rk. This could be done by

merging all the states in Ri into a single node Ri, with all the edges entering Ri carrying the same

probability as before.

Let i be a state in T and the absorbing state of interest be R. Let P be the transition matrix. Let

the probability of reaching R in n steps be denoted pn(i, R), and probability of reaching R be denoted

q(i, R), We then have

q(i, R) = Σ∞n=1p
n(i, R),

pn(i, R) = Σj∈TP (i, j)pn−1(j, R),

q(i, R) = p(i, R) + Σ∞n=2p
n(i, R) = p(i, R) + Σ∞n=2Σj∈TP (i, j)pn−1(j, R)

= p(i, R) + Σj∈TP (i, j)Σ∞n=2p
n−1(j, R)

= p(i, R) + Σj∈TP (i, j)q(j, R).

We thus have the set of |T | linear equations in |T | unknowns q(i, R), i ∈ T

q(i, R) = p(i, R) + Σj∈TP (i, j)q(j, R).

The quantities which are known in these equations are the p(i, R). The coefficient matrix has only

nonnegative entries P (i, j). We need to show that these equations have a unique solution for any specified

set of values of p(i, R).

Now we know that a set of linear equations Ax = b, with A square, has a unique solution iff A is

invertible or, equivalently, the only solution to Ax = 0, is x = 0.

Consider the equations

q(i, R) = Σj∈TP (i, j)q(j, R).

We have Σj∈TP (i, j) ≤ 1, since the rows of P add up to 1 and the columns corresponding to T are

not the full set (which includes Ri too). Let k ∈ T be such that q(k,R) has maximum magnitude and

this value is not 0. Since q(k,R) = Σj∈TP (k, j)q(j, R), the row sum Σj∈TP (k, j) ≤ 1, and q(k,R) has

maximum magnitude, this can happen only if (1) Σj∈TP (k, j) = 1 and (2) if j is such that P (k, j) is not

zero, then q(j, R) has the same sign and magnitude as q(k,R). Repeating this argument we see that if

there is a directed path from k to any state m in T, then we must have q(m,R) of the same sign and

magnitude as q(k,R). The node k is connected by a directed path to one of the absorbing states,say Ri

(see Theorem 2.1, part 3). Let the last node in this path which is also in T be s. In the matrix P, the

entry P (s,Ri) > 0. So Σj∈TP (s, j) < 1. Now q(s,R) has maximum magnitude but Σj∈TP (s, j) < 1. This

contradiction can be avoided only if q(s,R) = 0.

We conclude that the set of equations

q(i, R) = p(i, R) + Σj∈TP (i, j)q(j, R),

has a unique solution whatever may the value of p(i, R) be.

8



The above is the general method for calculating the probability of hitting R starting from a given

state i ∈ T. But in special situations such as the gambler’s ruin problem we can get explicit expressions

for this probability.

6.2 Expected time of hitting R from x

The analysis of this subsection is valid for the case where the states of the Markov chain can be partitioned

into T,R, where R is the single irreducible component. Equivalently, if the Markov chain is of the form

T,R1, · · ·Rk, this could be viewed as computing the expected time to reach some unspecified recurrent

state from a given transient state. (By Theorem 2.1, from any transient state we can always reach atleast

one recurrent state.) Formally if the Markov chain is of the form T,R1, · · ·Rk, we could merge all the Ri

into a single absorbing state R, leaving the probabilities of the edges entering Ri unchanged.

Let lx be the random variable denoting the number of steps from x ∈ T to hit R. From our discussion

of the previous subsection, it is clear that Pr{lx = n} = pn(x,R). Let i ∈ T. We have

pn(i, R) = Σj∈TP (i, j)pn−1(j, R), n > 1.

We note that for n = 1, the LHS is simply p(i, R). Therefore to compute the expected value E(li) we

multiply both sides of this equation by n and sum from 2 to ∞, and then add the term p(i, R). We have,

for n > 1,

n× pn(i, R) = n× (Σj∈TP (i, j)pn−1(j, R)).

= (Σj∈TP (i, j)pn−1(j, R)) + (n− 1)× (Σj∈TP (i, j)pn−1(j, R)).

Summing from 2 to ∞, we get,

Σ∞n=2n× pn(i, R) = (Σj∈TP (i, j)Σ∞n=2p
n−1(j, R)) + (Σj∈TP (i, j)Σ∞n=2(n− 1)× pn−1(j, R))

= Σj∈TP (i, j)q(j, R) + Σj∈TP (i, j)E(lj).

We remind the reader that q(j, R) is the probability of hitting R starting from j. Now

E(li) = p(i, R) + Σ∞n=2n× pn(i, R) = p(i, R) + Σj∈TP (i, j)q(j, R) + Σj∈TP (i, j)E(lj),

= q(i, R) + Σj∈TP (i, j)E(lj),

since we know q(i, R) = p(i, R) + Σj∈TP (i, j)q(j, R). In the present situation we have only one (merged)

recurrent state. It is therefore reachable from every transient state (see part 3 of Theorem 2.1). This

means that for every transient state i, we must have q(i, R) = 1.

We thus have a set of |T | equations in the |T | unknowns E(li). The coefficient matrix for the present

set of linear equations is the same as the one we obtained for computing q(i, R) in the previous subsection

and we have already proved there that it is invertible.
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