Appendix to: On the Relation Between Low Density Separation, Spectral Clustering and Graph Cuts

Hariharan Narayanan Department of Computer Science University of Chicago Chicago IL 60637 hari@cs.uchicago.edu Mikhail Belkin Department of Computer Science and Engineering The Ohio State University Columbus, OH 43210 mbelkin@cse.ohio-state.edu

Partha Niyogi Department of Computer Science University of Chicago Chicago IL 60637 niyogi@cs.uchicago.edu

A Regularity conditions on p and S

We make the following assumptions about *p*:

- 1. p can be extended to a function p' that is L-Lipshitz and which is bounded above by p_{max} .
- 2. For $0 < t < t_0$,

 $\min(p(x), \int K_t(x, y)p(y)dy) \ge p_{min}.$

Note that this is a property of both of the boundary ∂M and p.

We note that since p' is L-Lipshitz over \mathbb{R}^d , so is $\int_M K_t(x, z)p'(z)dz$.

We assume that S has condition number $1/\tau$. We also make the following assumption about S:-The volume of the set of points whose distance to both S and ∂M is $\leq R$, is $O(R^2)$ as $R \to 0$. This is reasonable, and is true if $S \cap \partial M$ is a manifold of codimension 2.

B Proof of Theorem 1

This follows from Theorem 4 (which is proved in a later section), by setting μ to be equal to $\frac{1-2\epsilon}{2d+2}$.

C Proof of Theorem 2

In the proof we will use a generalization of McDiarmid's inequality from [7, 8]. We start with the with the following

Definition 1 Let $\Omega_1, \ldots, \Omega_m$ be probability spaces. Let $\Omega = \prod_1^m \Omega_k$ and let Y be a random variable on Ω . We say that Y is strongly difference-bounded by (b, c, δ) if the following holds: there is a "bad" subset $B \subset \Omega$, where $\delta = Pr(\omega \in B)$. If $\omega, \omega' \in \Omega$ differ only in the kth coordinate, and $\omega \notin B$, then

$$|Y(\omega) - Y(\omega')| \le c.$$

Furthermore, for any ω and ω' differing only in the kth coordinate,

$$|Y(\omega) - Y(\omega')| \le b.$$

Theorem 1 ([7, 8]) Let $\Omega_1, \ldots, \Omega_m$ be probability spaces. Let $\Omega = \prod_1^m \Omega_k$ and let Y be a random variable on Ω which is strongly difference-bounded by (b, c, δ) . Assume $b \ge c > 0$. Let $\mu = E(Y)$. Then for any r > 0,

$$Pr(|Y - \mu| \ge r) \le 2\left(\exp\left(\frac{-r^2}{8mc^2}\right) + \frac{mb\delta}{c}\right)$$

By Hoeffding's inequality

$$P[|\frac{\sum_{z \neq x} K_t(x, z)}{N - 1} - E(K_t(x, z))| > \epsilon_1 E(K_t(x, z))] < e^{-\frac{2(N - 1)E(K_t(x, z))^2 \epsilon_1^2}{M_t^2}} \le e^{-\frac{2(N - 1)E(K_t(x, z))^2 \epsilon_1^2}{M_t^2}}.$$

We set ϵ_1 to be $M_t/N^{\frac{1-\mu}{2}}$. Let $e^{-\frac{2(N-1)p_{min}^2\epsilon_1^2}{M_t^2}}$ be δ/N . By the union bound, the probability that the above event happens for some $x \in X$ is $\leq \delta$. The set of all $\omega \in \Omega$ for which this occurs shall be denoted by B. Also, for any X, the largest possible value that

$$1/N\sqrt{\pi/t} \sum_{x \in X_1} \sum_{y \in X_2} \frac{K_t(x,y)}{\{(\sum_{z \neq x} K_t(x,z))(\sum_{z \neq y} K_t(y,z))\}^{1/2}}$$

could take is $\sqrt{\pi/t}(N-1)$. Then,

$$|E[\beta] - \alpha| < |1 - (1 - \epsilon_1)^{-1}| \alpha + \delta \sqrt{\pi/t} (N - 1).$$
(1)

Let $q = (p_{min}/M_t)^2$. β is strongly difference-bounded by (b, c, δ) where $c = O((qN\sqrt{t})^{-1})$, $b = O(N/\sqrt{t})$. We now apply the generalization of McDiarmid's inequality in Theorem 1. Using the notation of Theorem 1,

$$\Pr[|\beta - E[\beta]| > r] \le 2\left(\exp\left(\frac{-r^2}{8mc^2}\right) + \frac{Nb\delta}{c}\right) \le 2\left(\exp\left(-O(Nr^2q^2t)\right) + O\left(N^3q\exp\left(-O(Nq\epsilon_1^2)\right)\right)\right).$$
(2)

Putting this together with the relation between $E[\beta]$ and α in (1), the theorem is proved. We note that in (1), the rate of convergence of $E[\beta]$ to α is controlled by ϵ_1 , which is $M_t/N^{\frac{1-\mu}{2}}$, and in (2), the rate of convergence of β to $E[\beta]$ depends on r, which we set to be

$$M_t^2/\sqrt{tN^{1-\mu}}$$

We note that in (2), the dependence on r of the *probability* is exponential. Since we have assumed that $u = M_t^2/\sqrt{(tN^{1-\mu})} = o(1), M_t/N^{\frac{1-\mu}{2}} = O(t^{\frac{d+1}{2}}u)$. Thus the result follows.

D Proof of Theorem 3

We shall prove theorem 3 through a sequence of lemmas.

Without a loss of generality we can assume that $\tau = 1$ by rescaling, if necessary.

Let $R = \sqrt{2dt \ln(1/t)}$ and $\epsilon = \int_{\|z\|>R} K_t(0, z) dx$. Using the inequality

$$\int_{\|z\|>R} K_t(0,z) dx \le \left(\frac{2td}{R^2}\right)^{-d/2} e^{-\frac{R^2}{4t} + \frac{d}{2}} = \left(\operatorname{et}\ln(1/t)\right)^{d/2} \tag{3}$$

Figure 1: A sphere of radius 1 outside S_1 that is tangent to S

Figure 2: A sphere of radius 1 inside S_1 that is tangent to S

we know that $\epsilon \leq (\mathrm{e}t \ln(1/t))^{d/2}.$ For any positive real t,

$$\ln(1/t) \le t^{\frac{-1}{\mathrm{e}}}$$

Therefore the assumption that

$$\frac{t}{\tau} \in \left(0, \frac{1}{(2d)^{\frac{\mathrm{e}}{\mathrm{e}-1}}}\right)$$

implies that $R \leq \sqrt{2dt^{1-1/\mathrm{e}}} < 1.$

Let the point y (represented as A in figures D and D) be at a distance r < R from M. Let us choose a coordinate system where y = (r, 0, ..., 0) and the point nearest to it on M is the origin. There is a unique such point since r < R < 1. Let this point be C. Let D_1 lie on the segment AC, at a distance $R^2/2$ from C. Let D_2 lie on the extended segment AC, at a distance $R^2/2$ from C. Thus C is the midpoint of D_1D_2 .

Definition 2 1. Denote the ball of radius 1 tangent to ∂M at C that is outside M by B_1 .

- 2. Denote the ball of radius 1 tangent to ∂M at C which is inside M by B_2 .
- 3. Let H_1 be the halfspace containing C bounded by the hyperplane perpendicular to AC and passing through D_1 .
- 4. Let H_2 be the halfspace not containing C bounded by the hyperplane perpendicular to AC and passing through D_2 .
- 5. Let H_3 be the halfspace not containing A, bounded by the hyperplane tangent to ∂M at C.
- 6. Let B'_1 be the ball with center y = A, whose boundary contains the intersection of H_1 and B_1 .
- 7. Let B'_2 be the ball with center y = A, whose boundary contains the intersection of H_2 and B_2 .

Definition 3 1. $h(r) := \int_{H_3} K_t(x, y) dx$.

- 2. $f(r) := \int_{H_2 \cap B'_2} K_t(x, y) dx.$
- 3. $g(r) := \int_{H_1 \cap B'_t} K_t(x, y) dx.$

It follows that

and

$$\int_{H_1} K_t(x, y) dx = h(r - R^2/2)$$
$$\int_{H_2} K_t(x, y) dx = h(r + R^2/2).$$

Observation 1 Although h(r) is defined by an d-dimensional integral, this can be simplified to

$$h(r) = \int_{x_1 < 0} \frac{e^{-(r-x_1)^2/4t}}{\sqrt{4\pi t}} dx_1,$$

by integrating out the coordinates x_2, \ldots, x_d .

Lemma 1 If $r > R^2$, the radius of B'_1 is $\geq R$.

Proof: By the similarity of triangles CF_1D_1 and CE_1F_1 in figure D, it follows that $\frac{CF_1}{CE_1} = \frac{CD_1}{CF_1}$. $|CE_1| = 2$ and $|CD_1| = R^2/2$. Therefore $CF_1 = R$. Since CD_1F_1 is right angled at D_1 , and $|CD_1| = R^2/2$, this proves the claim.

Lemma 2 The radius of B'_2 is $\geq R$.

Proof: By the similarity of triangles CF_2E_2 and CD_2F_2 in figure D $|CF_2| = R$. However, the distance of point y := A from F_2 is $\geq |CF_2|$. Therefore, the radius of B'_2 is $\geq R$.

Definition 4 Let the set of points x such that $B(x, 10R) \subseteq M$ be denoted by M^0 . Let $S_1 \cap M^0$ be S_1^0 and $S_2 \cap M^0$ be S_2^0 . Let $M - M^0 = M^1$, $S_1 \cap M^1$ be S_1^1 and $S_2 \cap M^1$ be S_2^1 . We shall denote $(1 + L/p_{min})R)$ by ℓ .

Consider a point $x \in M^0$, Then,

$$\int_{M} K_{t}(x,y)p(y)dy \geq \int_{\|y-x\| < R} K_{t}(x,y)p(y)dy$$
$$\geq (1-\epsilon)(p(x) - LR)$$
$$\geq (1-\epsilon)p(x)(1 - LR/p_{min})$$
$$= p(x)(1 - O(\ell))$$

On the other hand,

$$\int_{M} K_{t}(x,y)p(y)dy \leq \int_{\|y-x\| \le 2R} K_{t}(x,y)p(y)dy + \int_{\|y-x\| > 2R} K_{t}(x,y)p(y)dy$$

$$\leq p(x)(1+2\ell) + K_{t}(0,2R)$$

$$= p(x)(1+O((1+L/p_{min})R))$$

Therefore, $\psi_t(x) = \sqrt{p(x)} (1 \pm O((1 + \frac{L}{p_{min}})R)).$

Lemma 3 $B(x,5R) \subseteq M$ implies that $\frac{d}{dx} \int K_t(x,z)p(z)dy = O(L)$.

Proof: Consider the function p', which is equal to p on M, but which has a larger support and is L-Lipshitz as a function on \mathbb{R}^d . $\int K_t(x,z)p'(z)dy$ is L-Lipshitz and on points x where $B(x,5R) \subseteq M$, the contribution of points z outside M, is o(1). Therefore $\frac{d}{dx} \int K_t(x,z)p(z)dy = O(L)$.

This implies that on the set of points x such that $B(x, 5R) \subseteq M$, $\psi_t(X)$ is O(L)-Lipshitz.

We now estimate $\int_{S_1} K_t(y,z) p(z) dz$ for $y \in S_2^0$.

Definition 5 For a point $y \in S_2^0$, such that $d(y, S_1) < R < \tau = 1$ let $\pi(y)$ be the nearest point to y in S.

Note that by the assumption that the condition number of S is 1, since R is smaller than 1, there is a unique candidate for $\pi(y)$. Let y be as in Definition 5.

Lemma 4

$$h(r+R^2/2) - \epsilon < f(r) \le \int_{S_1} K_t(y,z) dz$$

Proof:

$$\begin{split} \int_{S_1} K_t(x,y) dx &\geq \int_{H_2 \cap B'_2} K_t(x,y) dx (\text{since } H_2 \cap B'_2 \subseteq S_1) \\ &> \int_{H_2} K_t(x,y) dx - \int_{B'^c_2} K_t(x,y) dx \\ &> h(r+R^2/2) - \epsilon \end{split}$$

The last inequality follows from lemma 2.

Lemma 5 $\int_{S_1} K_t(x,y)\psi_t(x)\psi_t(y)dx > p(\pi(y))(1-O(\ell))(h(r+R^2/2)-\epsilon).$

Figure 3: The correspondence between points on ∂S_1 and $\partial [S_1]_r$

Proof:

$$\begin{split} \int_{S_1} K_t(x,y)\psi_t(x)\psi_t(y)dx &\geq \int_{H_2\cap B_2'} K_t(x,y)\psi_t(x)\psi_t(y)dx (\text{since } H_2\cap B_2'\subseteq S_1) \\ &> p(\pi(y))(1-O(\ell))(h(r+R^2/2)-\epsilon). \end{split}$$

Lemma 6 Let
$$r > R^2$$
. Then,

$$\int_{S_1} K_t(x, y)\psi_t(x)\psi_t(y)dx < (1 + O(\ell))(h(r - R^2/2)p(\pi(y)) + \epsilon p_{max}).$$
Proof:

$$\int_{S_1} K_t(x, y)\psi_t(x)\psi_t(y)dx \leq \int_{\mathbb{T}^d - \mathbb{T}} K_t(x, y)\psi_t(x)\psi_t(y)dx$$

$$\begin{split} \int_{S_1} K_t(x,y)\psi_t(x)\psi_t(y)dx &\leq \int_{\mathbb{R}^d - B_1} K_t(x,y)\psi_t(x)\psi_t(y)dx \\ &\leq \int_{H_1 \cup \mathbb{R}^d - B_1'} K_t(x,y)\psi_t(x)\psi_t(y)dx \\ &< \int_{H_1 \cap B_1'} K_t(x,y)\psi_t(x)\psi_t(y)dx + \int_{B_1'^c} K_t(x,y)\psi_t(x)\psi_t(y)dx \\ &< h(r - R^2/2)p(\pi(y))(1 + O(\ell)) + \epsilon p_{max}(1 + O(\ell)) \\ &< (1 + O(\ell))(h(r - R^2/2)p(\pi(y)) + \epsilon p_{max}) \end{split}$$

The last inequality follows from lemma 1.

Definition 6 Let $[S_1]_r$ denote the set of points at a distance of $\leq r$ to $[S_1]$. Let π_r be map from $\partial[S_1]_r$ to $\partial[S_1]$ that takes a point P on $\partial[S_1]_r$ to the foot of the perpendicular from P to ∂S_1 . (This map is well-defined since $r < \tau = 1$.)

Lemma 7 Let $y \in \partial [S_1]_r$. Let the Jacobian of a map f be denoted by Df.

$$(1-r)^{d-1} \le |D\pi_r(y)| \le (1+r)^{d-1}.$$

Proof: Let \widehat{PQ} be a geodesic arc of infinitesimal length ds on ∂S_1 joining P and Q. Let $\pi_r^{-1}(P) = P'$ and $\pi_r^{-1}(Q) = Q'$ (see Figure D.) The radius of curvature of \widehat{PQ} is ≥ 1 . Therefore the distance between P' and Q' is in the interval [ds(1-r), ds(1+r)]. This implies that the Jacobian of the map π_r has a magnitude that is always in the interval $[(1+r)^{1-d}, (1-r)^{1-d}]$.

Lemma 8

$$\int_{\mathbb{R}^d - [S_1]_R} \int_{S_1} K_t(x, y) \psi_t(x) \psi_t(y) dx dy \le \epsilon \text{vol } S_1 p_{max}(1 + O(\ell))$$

Proof:

$$\begin{split} \int_{\mathbb{R}^{d}-[S_{1}]_{R}} \int_{S_{1}} K_{t}(x,y)\psi_{t}(x)\psi_{t}(y)dxdy &= \int_{S_{1}} \int_{\mathbb{R}^{d}-[S_{1}]_{R}} K_{t}(x,y)\psi_{t}(x)\psi_{t}(y)dydx \\ &\leq \int_{S_{1}} \int_{\|z\|>R} K_{t}(0,z)p_{max}(1+O(\ell))dzdx \\ &< \text{vol } S_{1}p_{max}(1+O(\ell)). \end{split}$$

 \leq in line 2 holds because the distance between x and y in the double integral is always $\geq R$.

Lemma 9

$$(1 - e^{-\alpha^2/4t})\sqrt{\pi/t} \le \int_0^\alpha h(r)dr \le \sqrt{\pi/t}$$

Proof: Using observation 1,

$$\int_{\alpha}^{\infty} h(r)dr = \int_{\alpha}^{\infty} \int_{-\infty}^{0} \frac{e^{-(x_1 - y_1)^2/4t}}{\sqrt{4\pi t}} dx_1 dy_1$$

Setting $y_1 - x_1 := r$, this becomes

$$\int_{\alpha}^{\infty} \int_{\alpha}^{r} \frac{\mathrm{e}^{-r^{2}/4t}}{\sqrt{4\pi t}} dy_{1} dr = \int_{\alpha}^{\infty} \frac{\mathrm{e}^{-r^{2}/4t}}{\sqrt{4\pi t}} (r-\alpha) dr.$$

Making the substitution $r - \alpha := z$, we have

$$\int_0^\infty \frac{\mathrm{e}^{-(z+\alpha)^2/4t}}{\sqrt{4\pi t}} z dz \leq \int_0^\infty \frac{\mathrm{e}^{-\alpha^2/4t} \mathrm{e}^{-z^2/4t} z dz}{\sqrt{4\pi t}}$$
$$= \sqrt{\frac{t}{\pi}} \mathrm{e}^{-\alpha^2/4t}$$

Equality holds in the above calculation if and only if $\alpha = 0$. Hence the proof is complete.

Definition 7 Let $[S_2]^0 \cap \partial [S_1]_r$ be ∂M_r . Let $[S_2]^1 \cap \partial [S_1]_r$ be ∂M_r^1 and $[S_2]^1 \cap [S_1]_r$ be M_r^1 .

We assume that $\operatorname{vol}(M_R^1 - S_1) < C'R^2$ for some absolute constant C'. Since the thickness of $(M_R^1 - S_1)$ is O(R) in two dimensions, this is a reasonable assumption to make. The assumption that ∂M has a d - 1-dimensional volume implies that $\operatorname{vol}S_2^1 = O(R)$.

Putting these together to prove Theorem 3:

$$\begin{split} \int_{S_2^1} \int_{S_1} K_t(x,y) \psi_t(x) \psi_t(y) dx dy &= \int_0^\infty \int_{\partial M_r^1} \int_{S_1} K_t(x,y) \psi_t(x) \psi_t(y) dx dy dr \\ &\leq O(p_{max}^2/p_{min}) \int_0^\infty \int_{\partial M_r^1} \int_{S_1} K_t(x,y) dx dy dr \\ &\leq O(p_{max}^2/p_{min}) \left(\int_0^R \int_{\partial M_r^1} \int_{S_1} K_t(x,y) dx dy dr + \operatorname{vol} S_2^1 \epsilon \right) \\ &\leq O(p_{max}^2/p_{min}) \left(\operatorname{vol} \left(M_R^1 - S_1 \right) + \epsilon \operatorname{vol} S_2^1 \right) . \\ &\leq O(p_{max}^2/p_{min}) \left(C' t^{1-\mu} + O(t^{1-\mu} \operatorname{vol} \partial M) \right) \end{split}$$

$$\begin{split} \int_{S_2^0} \int_{S_1} K_t(x,y) \psi_t(x) \psi_t(y) dx dy &= \int_0^\infty \int_{\partial M_r} \int_{S_1} K_t(x,y) \psi_t(x) \psi_t(y) dx dy dr \\ &= (\int_0^R \int_{\partial M_r} \int_{S_1} K_t(x,y) \psi_t(x) \psi_t(y) dx dy dr) \\ &+ (\int_R^\infty \int_{\partial M_r} \int_{S_1} K_t(x,y) \psi_t(x) \psi_t(y) dx dy dr) \\ &\leq (\int_0^R \int_{\partial M_r} \int_{S_1} K_t(x,y) \psi_t(x) \psi_t(y) dx dy dr) \\ &+ \underbrace{\operatorname{evol} S_1 p_{max}(1+O(\ell))}_E. \end{split}$$

(from lemma 8)

$$\leq \int_0^{R^2} \int_{\partial M_r} p_{max}(1+O(\ell)) dy dr + \int_{R^2}^R \int_{\partial M_r} (1+O(\ell)) (h(r-R^2/2)p(\pi(y)+\epsilon p_{max})) + E$$

The last line follows from Lemma 6.

$$\leq E + R^{2}(1+R^{2})^{d-1}p_{max}(1+O(\ell))\operatorname{vol}(\partial M_{0})dr(\operatorname{from \ lemma 7})$$

$$+ (1+R)^{d-1}(1+O(\ell))(\int_{0}^{R}h(r)dr\int_{\partial M_{0}}p(y)dy + \epsilon p_{max}R).$$

$$\leq (1+O(\ell))(\sqrt{t/\pi}\int_{\partial M_{0}}p(y)dy + p_{max}((R^{2}+\epsilon R)\operatorname{vol}(\partial M_{0}) + \epsilon \operatorname{vol} S_{1})).$$

$$\leq (1+O(\ell))(\int_{\partial M_{0}}p(y)dy(\sqrt{t/\pi} + \frac{p_{max}}{p_{min}}o(t^{1-\mu})) + p_{max}\epsilon\operatorname{vol} S_{1})$$

Similarly, we see that

$$\int_{S_2^0} \int_{S_1} K_t(x, y) \psi_t(x) \psi_t(y) dx dy$$

$$\begin{split} &= \int_{0}^{\infty} \int_{\partial M_{r}} \int_{S_{1}} K_{t}(x,y)\psi_{t}(x)\psi_{t}(y)dxdydr \\ &> (\int_{0}^{R} \int_{\partial M_{r}} \int_{S_{1}} K_{t}(x,y)\psi_{t}(x)\psi_{t}(y)dxdydr) \\ &> \int_{0}^{R} \int_{\partial M_{r}} p(\pi(y))(1+O(\ell))f(r)dxdr \\ &> \int_{0}^{R} (1-R)^{d-1}(1-O(\ell))(\int_{\partial M_{0}} p(y)dy)(h(r+R^{2}/2)-\epsilon)dr \\ &> (1-R)^{d-1}(1-O((1-L/p_{min})R))(\int_{\partial M_{0}} p(y)dy)((\int_{0}^{R} (h(r)dr)-\epsilon R-R^{2}/2) \\ &\geq (1-O(\ell))(\int_{\partial M_{0}} p(y)dy)((1-e^{-R^{2}/4t})\sqrt{t/\pi}-\epsilon R-R^{2}/2) \\ &\geq (1-O(\ell))(\int_{\partial M_{0}} p(y)dy)(\sqrt{t/\pi}-o(t^{1-\mu})). \end{split}$$

Noting only the dependence of the rate on t, and introducing the condition number τ ,

$$\sqrt{\frac{\pi}{t}} \int_{S_2} \int_{S_1} K_t(x, y) \psi_t(x) \psi_t(y) dx dy = \left(1 + o((t/\tau^2))^{\frac{1-\mu}{2}}\right) \int_S p(s) ds.$$

Proof of Theorem 4: This follows directly from Theorem 2 and Theorem 3. The only change made was that the $t^{\frac{d+1}{2}}$ term was eliminated since it is dominated by t^{ϵ} when t is small.

References

- [1] M. Belkin and P. Niyogi (2004). "Semi-supervised Learning on Riemannian Manifolds." In *Machine Learning* 56, Special Issue on Clustering, 209-239.
- [2] M. Belkin and P. Niyogi. "Toward a theoretical foundation for Laplacian-based manifold methods." COLT 2005.
- [3] A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph mincuts", ICML 2001.
- [4] O.Chapelle, J. Weston, B. Scholkopf, "Cluster kernels for semi-supervised learning", NIPS 2002.
- [5] O. Chapelle and A. Zien, "Semi-supervised Classification by Low Density Separation", AISTATS 2005.
- [6] Chris Ding, Spectral Clustering, ICML 2004 Tutorial.
- [7] Samuel Kutin, Partha Niyogi, "Almost-everywhere Algorithmic Stability and Generalization Error.", UAI 2002, 275-282
- [8] S. Kutin, TR-2002-04, "Extensions to McDiarmid's inequality when differences are bounded with high probability." Technical report TR-2002-04 at the Department of Computer Science, University of Chicago.
- [9] S. Lafon, Diffusion Maps and Geodesic Harmonics, Ph. D. Thesis, Yale University, 2004.
- [10] M. Hein, J.-Y. Audibert, U. von Luxburg, From Graphs to Manifolds Weak and Strong Pointwise Consistency of Graph Laplacians, COLT 2005.
- [11] J. Shi and J. Malik. "Normalized cuts and image segmentation."
- [12] U. von Luxburg, M. Belkin, O. Bousquet, *Consistency of Spectral Clustering*, Max Planck Institute for Biological Cybernetics Technical Report TR 134, 2004.
- [13] X. Zhu, J. Lafferty and Z. Ghahramani, *Semi-supervised learning using Gaussian fields and harmonic functions*, ICML 2003.