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A Regularity conditions on p and S

We make the following assumptions about p:

1. p can be extended to a function p′ that is L−Lipshitz and which is bounded above by pmax.
2. For 0 < t < t0,

min(p(x),
∫

Kt(x, y)p(y)dy) ≥ pmin.

Note that this is a property of both of the boundary ∂M and p.

We note that since p′ is L−Lipshitz over Rd, so is
∫

M
Kt(x, z)p′(z)dz.

We assume that S has condition number 1/τ . We also make the following assumption about S:-
The volume of the set of points whose distance to both S and ∂M is ≤ R, is O(R2) as R → 0. This is reasonable,
and is true if S ∩ ∂M is a manifold of codimension 2.

B Proof of Theorem 1

This follows from Theorem 4 (which is proved in a later section), by setting µ to be equal to 1−2ε
2d+2 .

C Proof of Theorem 2

In the proof we will use a generalization of McDiarmid’s inequality from [7, 8]. We start with the with the following

Definition 1 Let Ω1, . . . , Ωm be probability spaces. Let Ω =
∏m

1 Ωk and let Y be a random variable on Ω. We
say that Y is strongly difference-bounded by (b, c, δ) if the following holds: there is a “bad” subset B ⊂ Ω, where
δ = Pr(ω ∈ B). If ω, ω′ ∈ Ω differ only in the kth coordinate, and ω 6∈ B, then

|Y (ω)− Y (ω′)| ≤ c.



Furthermore, for any ω and ω′ differing only in the kth coordinate,

|Y (ω)− Y (ω′)| ≤ b.

Theorem 1 ([7, 8]) Let Ω1, . . . , Ωm be probability spaces. Let Ω =
∏m

1 Ωk and let Y be a random variable on Ω
which is strongly difference-bounded by (b, c, δ). Assume b ≥ c > 0. Let µ = E(Y ). Then for any r > 0,

Pr(|Y − µ| ≥ r) ≤ 2
(

exp
( −r2

8mc2

)
+

mbδ

c

)
.

By Hoeffding’s inequality

P [|
∑

z 6=x Kt(x, z)
N − 1

− E(Kt(x, z))| > ε1E(Kt(x, z))] < e
− 2(N−1)E(Kt(x,z))2ε21

M2
t

≤ e
− 2(N−1)p2

minε21
M2

t .

We set ε1 to be Mt/N
1−µ

2 . Let e
− 2(N−1)p2

minε21
M2

t be δ/N . By the union bound, the probability that the above event
happens for some x ∈ X is ≤ δ. The set of all ω ∈ Ω for which this occurs shall be denoted by B. Also, for any X ,
the largest possible value that

1/N
√

π/t
∑

x∈X1

∑

y∈X2

Kt(x, y)
{(∑z 6=x Kt(x, z))(

∑
z 6=y Kt(y, z))}1/2

could take is
√

π/t(N − 1). Then,

|E[β]− α| < |1− (1− ε1)−1|α + δ
√

π/t(N − 1). (1)

Let q = (pmin/Mt)2. β is strongly difference-bounded by (b, c, δ) where c = O((qN
√

t)−1), b = O(N/
√

t). We
now apply the generalization of McDiarmid’s inequality in Theorem 1. Using the notation of Theorem 1,

Pr[|β − E[β]| > r] ≤ 2
(

exp
( −r2

8mc2

)
+

Nbδ

c

)
≤ 2

(
exp

(−O(Nr2q2t)
)

+ O
(
N3q exp

(−O(Nqε21)
)))

. (2)

Putting this together with the relation between E[β] and α in (1), the theorem is proved. We note that in (1), the rate
of convergence of E[β] to α is controlled by ε1, which is Mt/N

1−µ
2 , and in (2), the rate of convergence of β to E[β]

depends on r, which we set to be
M2

t /
√

tN1−µ.

We note that in (2), the dependence on r of the probability is exponential. Since we have assumed that u =
M2

t /
√

(tN1−µ) = o(1), Mt/N
1−µ

2 = O(t
d+1
2 u). Thus the result follows.

¤

D Proof of Theorem 3

We shall prove theorem 3 through a sequence of lemmas.

Without a loss of generality we can assume that τ = 1 by rescaling, if necessary.

Let R =
√

2dt ln(1/t) and ε =
∫
‖z‖>R

Kt(0, z)dx. Using the inequality
∫

‖z‖>R

Kt(0, z)dx ≤
(

2td

R2

)−d/2

e−
R2
4t + d

2 = (et ln(1/t))d/2 (3)

2
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Figure 1: A sphere of radius 1 outside S1 that is tangent to S
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Figure 2: A sphere of radius 1 inside S1 that is tangent to S

we know that ε ≤ (et ln(1/t))d/2. For any positive real t,

ln(1/t) ≤ t
−1
e .

Therefore the assumption that
t

τ
∈

(
0,

1
(2d)

e
e−1

)

implies that R ≤
√

2dt1−1/e < 1.
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Let the point y (represented as A in figures D and D) be at a distance r < R from M . Let us choose a coordinate
system where y = (r, 0, . . . , 0) and the point nearest to it on M is the origin. There is a unique such point since
r < R < 1. Let this point be C. Let D1 lie on the segment AC, at a distance R2/2 from C. Let D2 lie on the
extended segment AC, at a distance R2/2 from C. Thus C is the midpoint of D1D2.

Definition 2 1. Denote the ball of radius 1 tangent to ∂M at C that is outside M by B1.

2. Denote the ball of radius 1 tangent to ∂M at C which is inside M by B2.

3. Let H1 be the halfspace containing C bounded by the hyperplane perpendicular to AC and passing through

D1.

4. Let H2 be the halfspace not containing C bounded by the hyperplane perpendicular to AC and passing
through D2.

5. Let H3 be the halfspace not containing A, bounded by the hyperplane tangent to ∂M at C.

6. Let B′
1 be the ball with center y = A, whose boundary contains the intersection of H1 and B1.

7. Let B′
2 be the ball with center y = A, whose boundary contains the intersection of H2 and B2.

Definition 3 1. h(r) :=
∫

H3
Kt(x, y)dx.

2. f(r) :=
∫

H2∩B′2
Kt(x, y)dx.

3. g(r) :=
∫

H1∩B′1
Kt(x, y)dx.

It follows that ∫

H1

Kt(x, y)dx = h(r −R2/2)

and ∫

H2

Kt(x, y)dx = h(r + R2/2).

Observation 1 Although h(r) is defined by an d-dimensional integral, this can be simplified to

h(r) =
∫

x1<0

e−(r−x1)
2/4t

√
4πt

dx1,

by integrating out the coordinates x2, . . . , xd.

Lemma 1 If r > R2, the radius of B′
1 is ≥ R.

Proof: By the similarity of triangles CF1D1 and CE1F1 in figure D, it follows that CF1
CE1

= CD1
CF1

. |CE1| = 2 and
|CD1| = R2/2. Therefore CF1 = R. Since CD1F1 is right angled at D1, and |CD1| = R2/2, this proves the claim.
¤

Lemma 2 The radius of B′
2 is ≥ R.

Proof: By the similarity of triangles CF2E2 and CD2F2 in figure D |CF2| = R. However, the distance of point
y := A from F2 is ≥ |CF2|. Therefore, the radius of B′

2 is ≥ R. ¤

Definition 4 Let the set of points x such that B(x, 10R) ⊆ M be denoted by M0. Let S1 ∩M0 be S0
1 and S2 ∩M0

be S0
2 . Let M −M0 = M1, S1 ∩M1 be S1

1 and S2 ∩M1 be S1
2 . We shall denote (1 + L/pmin)R) by `.
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Consider a point x ∈ M0, Then,
∫

M

Kt(x, y)p(y)dy ≥
∫

‖y−x‖<R

Kt(x, y)p(y)dy

≥ (1− ε)(p(x)− LR)
≥ (1− ε)p(x)(1− LR/pmin)
= p(x)(1−O(`))

On the other hand,
∫

M

Kt(x, y)p(y)dy ≤
∫

‖y−x‖≤2R

Kt(x, y)p(y)dy +
∫

‖y−x‖>2R

Kt(x, y)p(y)dy

≤ p(x)(1 + 2`) + Kt(0, 2R)
= p(x)(1 + O((1 + L/pmin)R))

Therefore, ψt(x) =
√

p(x)(1±O((1 + L
pmin

)R)).

Lemma 3 B(x, 5R) ⊆ M implies that d
dx

∫
Kt(x, z)p(z)dy = O(L).

Proof: Consider the function p′, which is equal to p on M , but which has a larger support and is L−Lipshitz as a
function on Rd.

∫
Kt(x, z)p′(z)dy is L−Lipshitz and on points x where B(x, 5R) ⊆ M , the contribution of points z

outside M , is o(1). Therefore d
dx

∫
Kt(x, z)p(z)dy = O(L). ¤

This implies that on the set of points x such that B(x, 5R) ⊆ M , ψt(X) is O(L)−Lipshitz.

We now estimate
∫

S1
Kt(y, z)p(z)dz for y ∈ S0

2 .

Definition 5 For a point y ∈ S0
2 , such that d(y, S1) < R < τ = 1 let π(y) be the nearest point to y in S.

Note that by the assumption that the condition number of S is 1, since R is smaller than 1, there is a unique candidate
for π(y). Let y be as in Definition 5.

Lemma 4
h(r + R2/2)− ε < f(r) ≤

∫

S1

Kt(y, z)dz.

Proof:
∫

S1

Kt(x, y)dx ≥
∫

H2∩B′2

Kt(x, y)dx(since H2 ∩B′
2 ⊆ S1)

>

∫

H2

Kt(x, y)dx−
∫

B′c2

Kt(x, y)dx

> h(r + R2/2)− ε

The last inequality follows from lemma 2. ¤

Lemma 5
∫

S1
Kt(x, y)ψt(x)ψt(y)dx > p(π(y))(1−O(`))(h(r + R2/2)− ε).
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Figure 3: The correspondence between points on ∂S1 and ∂[S1]r

Proof: ∫

S1

Kt(x, y)ψt(x)ψt(y)dx ≥
∫

H2∩B′2

Kt(x, y)ψt(x)ψt(y)dx(since H2 ∩B′
2 ⊆ S1)

> p(π(y))(1−O(`))(h(r + R2/2)− ε).

¤

Lemma 6 Let r > R2. Then,
∫

S1

Kt(x, y)ψt(x)ψt(y)dx < (1 + O(`))(h(r −R2/2)p(π(y)) + εpmax).

Proof: ∫

S1

Kt(x, y)ψt(x)ψt(y)dx ≤
∫

Rd−B1

Kt(x, y)ψt(x)ψt(y)dx

≤
∫

H1∪Rd−B′1

Kt(x, y)ψt(x)ψt(y)dx

<

∫

H1∩B′1

Kt(x, y)ψt(x)ψt(y)dx +
∫

B′c1

Kt(x, y)ψt(x)ψt(y)dx

< h(r −R2/2)p(π(y))(1 + O(`)) + εpmax(1 + O(`))
< (1 + O(`))(h(r −R2/2)p(π(y)) + εpmax)

The last inequality follows from lemma 1. ¤

Definition 6 Let [S1]r denote the set of points at a distance of ≤ r to [S1]. Let πr be map from ∂[S1]r to ∂[S1] that
takes a point P on ∂[S1]r to the foot of the perpendicular from P to ∂S1. (This map is well-defined since r < τ = 1.)

Lemma 7 Let y ∈ ∂[S1]r. Let the Jacobian of a map f be denoted by Df .

(1− r)d−1 ≤ |Dπr(y)| ≤ (1 + r)d−1.
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Proof: Let P̂Q be a geodesic arc of infinitesimal length ds on ∂S1 joining P and Q. Let π−1
r (P ) = P ′ and

π−1
r (Q) = Q′ (see Figure D.) The radius of curvature of P̂Q is ≥ 1. Therefore the distance between P ′ and Q′ is in

the interval [ds(1− r), ds(1 + r)]. This implies that the Jacobian of the map πr has a magnitude that is always in the
interval [(1 + r)1−d, (1− r)1−d]. ¤

Lemma 8 ∫

Rd−[S1]R

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdy ≤ εvol S1pmax(1 + O(`)).

Proof:
∫

Rd−[S1]R

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdy =
∫

S1

∫

Rd−[S1]R

Kt(x, y)ψt(x)ψt(y)dydx

≤
∫

S1

∫

‖z‖>R

Kt(0, z)pmax(1 + O(`))dzdx

< vol S1pmax(1 + O(`)).

≤ in line 2 holds because the distance between x and y in the double integral is always ≥ R. ¤

Lemma 9

(1− e−α2/4t)
√

π/t ≤
∫ α

0

h(r)dr ≤
√

π/t.

Proof: Using observation 1,
∫ ∞

α

h(r)dr =
∫ ∞

α

∫ 0

−∞

e−(x1−y1)
2/4t

√
4πt

dx1dy1.

Setting y1 − x1 := r, this becomes

∫ ∞

α

∫ r

α

e−r2/4t

√
4πt

dy1dr =
∫ ∞

α

e−r2/4t

√
4πt

(r − α)dr.

Making the substitution r − α := z, we have

∫ ∞

0

e−(z+α)2/4t

√
4πt

zdz ≤
∫ ∞

0

e−α2/4te−z2/4tzdz√
4πt

=

√
t

π
e−α2/4t

Equality holds in the above calculation if and only if α = 0. Hence the proof is complete. ¤

Definition 7 Let [S2]0 ∩ ∂[S1]r be ∂Mr. Let [S2]1 ∩ ∂[S1]r be ∂M1
r and [S2]1 ∩ [S1]r be M1

r .

We assume that vol(M1
R − S1) < C ′R2 for some absolute constant C ′. Since the thickness of (M1

R − S1) is O(R) in
two dimensions, this is a reasonable assumption to make. The assumption that ∂M has a d− 1−dimensional volume
implies that volS1

2 = O(R).

Putting these together to prove Theorem 3:
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∫

S1
2

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdy =
∫ ∞

0

∫

∂M1
r

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdydr

≤ O(p2
max/pmin)

∫ ∞

0

∫

∂M1
r

∫

S1

Kt(x, y)dxdydr

≤ O(p2
max/pmin)

(∫ R

0

∫

∂M1
r

∫

S1

Kt(x, y)dxdydr + volS1
2ε

)

≤ O(p2
max/pmin)

(
vol (M1

R − S1) + εvolS1
2

)
.

≤ O(p2
max/pmin)

(
C ′t1−µ + O(t1−µvol ∂M)

)

∫

S0
2

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdy =
∫ ∞

0

∫

∂Mr

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdydr

= (
∫ R

0

∫

∂Mr

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdydr)

+ (
∫ ∞

R

∫

∂Mr

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdydr)

≤ (
∫ R

0

∫

∂Mr

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdydr)

+ εvol S1pmax(1 + O(`))︸ ︷︷ ︸
E

.

(from lemma 8)

≤
∫ R2

0

∫

∂Mr

pmax(1 + O(`))dydr

+
∫ R

R2

∫

∂Mr

(1 + O(`))(h(r −R2/2)p(π(y) + εpmax)) + E

The last line follows from Lemma 6.

≤ E + R2(1 + R2)d−1pmax(1 + O(`))vol (∂M0)dr(from lemma 7)

+ (1 + R)d−1(1 + O(`))(
∫ R

0

h(r)dr

∫

∂M0

p(y)dy + εpmaxR).

≤ (1 + O(`))(
√

t/π

∫

∂M0

p(y)dy + pmax((R2 + εR)vol (∂M0) + εvol S1)).

≤ (1 + O(`))(
∫

∂M0

p(y)dy(
√

t/π +
pmax

pmin
o(t1−µ)) + pmaxεvol S1)

Similarly, we see that
∫

S0
2

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdy
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=
∫ ∞

0

∫

∂Mr

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdydr

> (
∫ R

0

∫

∂Mr

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdydr)

>

∫ R

0

∫

∂Mr

p(π(y))(1 + O(`))f(r)dxdr

>

∫ R

0

(1−R)d−1(1−O(`))(
∫

∂M0

p(y)dy)(h(r + R2/2)− ε)dr

> (1−R)d−1(1−O((1− L/pmin)R))(
∫

∂M0

p(y)dy)((
∫ R

0

(h(r)dr)− εR−R2/2)

≥ (1−O(`))(
∫

∂M0

p(y)dy)((1− e−R2/4t)
√

t/π − εR−R2/2)

≥ (1−O(`))(
∫

∂M0

p(y)dy)(
√

t/π − o(t1−µ)).

Noting only the dependence of the rate on t, and introducing the condition number τ ,√
π

t

∫

S2

∫

S1

Kt(x, y)ψt(x)ψt(y)dxdy =
(
1 + o((t/τ2))

1−µ
2

) ∫

S

p(s)ds.

¤

Proof of Theorem 4: This follows directly from Theorem 2 and Theorem 3. The only change made was that the t
d+1
2

term was eliminated since it is dominated by tε when t is small. ¤
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