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2 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

1. Introduction

We are increasingly confronted with very high dimensional data from speech, images, and genomes and
other sources. A collection of methodologies for analyzing high dimensional data based on the hypothesis
that data tend to lie near a low dimensional manifold is now called "Manifold Learning". (see Figure 1.1)
We refer to the underlying hypothesis as the "Manifold Hypothesis." Manifold Learning, in particular, fitting
low-dimensional nonlinear manifolds to sampled data points in high-dimensional spaces, has been an area
of intense activity over the past two decades. These problems have been viewed as optimization problems
generalizing the projection theorem in Hilbert Space. We refer the interested reader to a limited set of papers
associated with this field; see [3, 8, 9, 11, 16, 20, 26, 31, 32, 41, 43, 47, 50, 52, 55| and the references therein.
Section 2 contains a brief review of Manifold Learning.

The goal of this paper is to develop an algorithm that tests the manifold hypothesis.

Examples of low-dimensional manifolds embedded in high-dimensional spaces include: image vectors repre-
senting 3D objects under different illumination conditions, and camera views and phonemes in speech signals.
The low-dimensional structure typically arises due to constraints arising from physical laws. A recent empir-
ical study [9] of a large number of 3 x 3 images represented as points in R? revealed that they approximately
lie on a two-dimensional manifold knows as the Klein bottle.

One of the characteristics of high-dimensional data of the type mentioned earlier is that the number of
dimensions is comparable to, or larger than, the number of samples. This has the consequence that the
sample complexity of function approximation can grow exponentially. On the positive side, the data exhibits
the phenomenon of “concentration of measure” [19, 33] and asymptotic analysis of statistical techniques
is possible. Standard dimension reduction techniques such as Principal Component Analysis and Factor
Analysis, work well when the data lies near a linear subspace of high-dimensional space. They do not work
well when the data lies near a nonlinear manifold embedded in the high-dimensional space.

In this paper, we take a “worst case” viewpoint of the Manifold Learning problem. Let H be a separable
Hilbert space, and let P be a probability measure supported on the unit ball By of H. Let | - | denote the
Hilbert space norm of H and for any x,y € H let d(x,y) = [x —y|. For any x € By and any M C By,
a closed subset, let d(x, M) = infyepm [x —y| and LM, P) = [ d(x, M)*dP(x). We assume that i.i.d data
is generated from sampling P, which is fixed but unknown. This is a worst-case view in the sense that no
prior information about the data generating mechanism is assumed to be available or used for the subsequent
development. This is the viewpoint of modern Statistical Learning Theory [54].

In order to state the problem more precisely, we need to describe the class of manifolds within which we
will search for the existence of a manifold which satisfies the manifold hypothesis.

Let M be a submanifold of H. The reach T > 0 of M is the largest number such that for any 0 < r < T,
any point at a distance T of M has a unique nearest point on M.

Let G = G(d,V, 1) be the family of d-dimensional C2—submanifolds of the unit ball in H with volume < V
and reach > 1. We will assume that T < 1. We consider a bound on the reach to be a natural constraint
since if data lies within a distance less than the reach of the manifold, it can be denoised by mapping data
points to the nearest point on the manifold.

Let P be an unknown probability distribution supported on the unit ball of a separable (possibly infinite-
dimensional) Hilbert space and let (x7,%2,...) be i.i.d random samples sampled from P.

Let B be a black-box function which when given the labels £(v), {(w) of two vectors v,w € H outputs the
inner product

B(l(u),L(v)) =< v,w >.
Note, that while we permit the Hilbert space to be infinite dimensional, we require the labels to be finite
dimensional for the finiteness of the algorithm.

The test for the Manifold Hypothesis answers the following affirmatively:

Given error ¢, dimension d, volume V|, reach T and confidence 1—29, is there an algorithm that takes a number
of samples depending on these parameters and with probability 1— 98 distinguishes between the following two
cases (at least one must hold):
(a) whether there is a

MeG=G(d,CV,t/C)
such that

Jd(M,x)zdP(x) < Ce,
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(b) whether there is no manifold
M e gG(d,V/C,Cn)
such that
Jd(M,x)zdP(x) <e/C.

Here d(M, x) is the distance from a random point x to the manifold M, C is a constant depending only on
d.

The basic statistical question is:

What is the number of samples needed for testing the hypothesis that data lie near a low-dimensional
manifold?

The desired result is that the sample complexity of the task depends only on the “intrinsic” dimension,
volume and reach, but not the “ambient” dimension.

We approach this by considering the Empirical Risk Minimization problem.

Let

£IMP) = [ s M2aP(x),
and define the Empirical Loss

1 s
I—eInp(M) = g Z d(Xi) M)z
i=1

where (x1,...,Xs) are the data points. The sample complexity is defined to be the smallest s such that there
exists a rule A which assigns to given (x1,...,%s) a manifold M 4 with the property that if xq,...,xs are
generated i.i.d from P, then

P [L(MA,P) - Al/lneng(M,P) > s} < 8.

We need to determine how large s needs to be so that
1 S
P lsup ‘g Z d(xi, M)? —E(M,P)‘ < 8] >1-20.
g v

The answer to this question is given by Theorem 1 in the paper.

The proof of the theorem proceeds by approximating manifolds using point clouds and then using uniform
bounds for k—means (Lemma 6 of the paper).

The uniform bounds for k—means are proven by getting an upper bound on the Fat Shattering Dimension
of a certain function class and then using an integral related to Dudley’s entropy integral. The bound on
the Fat Shattering Dimension is obtained using a random projection (along with the Johnson Lindenstrauss
lemma) and the Sauer-Shelah Lemma. The use of random projections in this context appears in Chapter
4, [35] and in [40]. However due to the absence of chaining, the bounds derived there are weaker. The
Johnson-Lindenstrauss lemma has been used previously in the context of manifolds in [2, 13, 28], where
random projections of low dimensional submanifolds of a high dimensional space are shown (after a suitable
dilation) to be nearly isometric to the original manifold with high probability.

The algorithmic question can be stated as follows:

Given N points xq,...,xyN in the unit ball in R™, distinguish between the following two cases (at least one
must be true):

(a) whether there is a manifold M € G = G(d, CV, C—'1) such that

N

1

N Z d(xy, M)Z < Ce
i=1

where C is some constant depending only on d.
(b) whether there is no manifold M € G = G(d, V/C, Ct) such that

N

1

N 2 dxi M)? < e/C
i=1

where C is some constant greater than 1 depending only on d.
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The key step to solving this problem is to translate the question of optimizing the squared-loss over a family
of manifolds to that of optimizing over sections of a disc bundle. The former involves an optimization over a
non-parameterized infinite dimensional space, while the latter involves an optimization over a parameterized
(albeit infinite dimensional) set.

The proof of correctness of our algorithm requires showing two things:

(1) If a "good manifold" exists, then our algorithm is guaranteed to find "good local sections" close to
pieces of this manifold. Therefore, if the algorithm is unable to find good local sections, then there
is no good manifold.

(2) If good local sections are found by our algorithm, then these local sections can be patched together
to form a manifold in the class of interest, such that each local section is close to a piece of this
manifold.

These good local sections are local sections of a disc bundle. We introduce the notion of a cylinder packet in
order to define a disc bundle. A cylinder packet is a finite collection of cylinders satisfying certain alignment
constraints. An example of a cylinder packet corresponding to a d—manifold M of reach T (see Definition 1)
in R™ is obtained by taking a net (see Definition 6) of the manifold and for every point p in the net, throwing
in a cylinder centered at p isometric to 2T(B4 X By,_4) whose d—dimensional central cross-section is tangent
to M. In general, p need not be at the center of the cylinder, but would lie inside the cylinder. Here
T = ct for some appropriate constant ¢ depending only on d, while B4 and B, _4 are d—dimensional and
(n — d)—dimensional balls respectively.

On every cylinder cyl; in the packet, we define a function f; that is the squared distance to the d—
dimensional central cross section of cyl;. These functions are put together using a partition of unity defined
on Uicyl;. The resulting function f is an “approximate-squared-distance-function" (see Definition 15). The
base manifold is the set of points x at which the gradient 0f is orthogonal to the eigenvectors corresponding
to the top n — d eigenvalues of the Hessian Hess f(x). The fiber of the disc bundle at a point x on the base
manifold is defined to be the (n — d)—dimensional Euclidean ball centered at x contained in the span of the
aforementioned eigenvectors of the Hessian. The base manifold and its fibers together define the disc bundle.
The base manifold is a temporary approximation to the manifold that we are searching for.

We next perform an optimization over sections of the disc bundle in order to certify the existence of the
desired manifold, if it exists. This optimization proceeds as follows. We fix a cylinder cyl; of the cylinder
packet. We optimize the squared loss over local sections corresponding to jets whose C?— norm is bounded
above by -, where ¢ is a controlled constant. The corresponding graphs are each contained inside cyl;.
The optimization over local sections is performed by minimizing squared loss over a space of CZ—jets (see
Definition 22) constrained by inequalities developed in [24]. The resulting local sections corresponding to
various i are then patched together using the disc bundle and a partition of unity supported on the base
manifold, to yield the actual manifold. The last step is performed implicitly, since we do not actually need to
produce a manifold, but only need to certify the existence or non-existence of a manifold possessing certain
properties.

The optimizations are performed over a large ensemble of cylinder packets. Indeed the size of this ensemble
is the chief contribution in the complexity bound.

The results of this paper together with those of [24] lead to an algorithm for fitting a manifold to the data
as well; the main additional step is to construct local sections from jets, rather than settling for the existence
of good local sections as we do here.

1.1. Definitions.

Definition 1 (reach). Let M be a subset of H. The reach of M is the largest number T to have the property
that any point at a distance v < T from M has a unique nearest point in M.

Definition 2 (Tangent Space). Let H be a separable Hilbert space. For a closed A C H, and a € A, let the
“tangent space” Tan®(a, A) denote the set of all vectors v such that for all € > 0, there exists b € A such that
0O<la—b|<e€ and ‘v/lvl — ‘g:—m < €. Let Tan(a,A) denote the set of all x such that x —a € Tan®(a, A).
For a set X CH and a point p € H, let d(p, X) denote the Euclidean distance of the nearest point in X to p.

The following result of Federer (Theorem 4.18, [22]), gives an alternate characterization of the reach.
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Proposition 1. Let A be a closed subset of R™. Then,
(1) reach(A) ™' = sup {2|b — a| ?d(b, Tan(a,A))|a,b € A,a #b}.

1.2. Constants: d is a fixed integer. Constants c,C,C’ etc depend only on d. These symbols may denote
different constants in different occurrences, but d always stays fixed.

1.3. d—planes: H denotes a fixed Hilbert space, possibly infinite-dimensional, but in any case of dimension
> d. A d—plane is a d—dimensional vector subspace of H. We write TT to denote a d—plane and we write
dPL to denote the space of all d—planes. If TI,TT’ € dPL, then we write dist(TT,TT’) to denote the infimum of
IT —I|| over all orthogonal linear transformations T : H — # that carry TT to TT’. Here, the norm ||A|| of a
linear map A : H — H is defined as

AV

vervoy VIl

One checks easily that (dPL, dist) is a metric space. We write TT+ to denote the orthocomplement of TT in .
1.4. Patches: Suppose Brr(0, 1) is the ball of radius r about the origin in a d—plane TT, and suppose
Y:Bp(0,1) — T+
is a C?—map and hence a C"'—map, with W(0) = 0. Then we call
N={x+V¥x):xeBn(O,7r)} CH

a patch of radius r over TT centered at 0. We define

[9¥(x) — o¥(y)|,

IMler o = distinctxs,lleéBn(O,r] Ix =yl )
Here,
QW(x) : TT — TT+
is a linear map, and for linear maps A : TT — TT+, we define ||A| as
[AV]
vermoy VI

If also

ovY(0) =0

then we call " a patch of radius r tangent to IT at its center 0. If [y is a patch of radius r over TT centered at
0 and if z € H, then we call the translate I' = Ty + z C H a patch of radius r over TT, centered at z. If T} is
tangent to TT at its center O, then we say that I is tangent to TT at its center z.

1.5. Imbedded manifolds:

Definition 3. Let M C H be a "compact imbedded d—manifold" (for short, just a "manifold”) if the following
hold:

o M is compact.

o There exists an v1 > 12 > 0 such that for every z € M, there exists T, M € dPL such that M N
Bx(z,12) = TN By(z,12) for some patch T over T,(M) of radius v1, centered at z and tangent to
T,(M) at z. We call T,(M) the tangent space to M at z.

We say that M has infinitesimal reach > p if for every p’ < p, there is a choice of r1 > 12 > 0 such that
for every z € M there is a patch T over T, (M) of radius 1, centered at z and tangent to T,(M) at z which
has C"'—norm at most %.

Definition 4 (A class of imbedded C? d—manifolds). Let By be the unit ball in H. Let G = G(d,V,T) be the
family of imbedded C* d—submanifolds of By having volume less or equal to V and reach greater or equal to
T. We assume as mentioned before, T < 1.
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FIGURE 1. Data lying in the vicinity of a two dimensional torus.

Let H be a separable Hilbert space and P be a probability distribution supported on its unit ball By.
Let | - | denote the Hilbert space norm on H. For x,y € H, let d(x,y) := |x —y|. For any x € By and any
M C By, let d(x, M) = infyer [x —yl, and

L(M,P) = Jd(x,M)zdP(x).

Let B be a black-box function which when given the labels £(v), {(w) of two vectors v,w € H outputs the
inner product
Be(u),L(v)) =<v,w >.
We develop an algorithm which for given 6,¢e € (0,1), V> 0, integer d and T > 0 takes i.i.d random samples
from P as input, and determines which of the following two is true (at least one must be):
(1) there exists M € G(d, CV, &) such that L(M,P) < Ce,
(2) there exists no M € G(d, V/C, Ct) such that £L(M,P) < &.
The answer is correct with probability at least 1 — 6. Here, C depends on d alone and is greater than 1.
The number of data points required (Theorem 1) is of the order of
N, In* (%) +In(s )
n:=

e2
where

1 1
Np ::V<Td+€d/2rtd/2)’

and the number of arithmetic operations is

exp (C (’Xl) nin(t! )) .

(Corollary 2 shows that N, is an upper bound on the size of a \/eT—net of M.) The number of calls made
to B is O(n?).
We say that such an algorithm tests the manifold hypothesis.

If one wishes to ascertain the mean of a bounded random variable to within e, it requires 1/e? samples.
However for more complicated questions such as estimating a manifold to within e in Hausdorff distance,
there is an upper and lower bound of O(e —5r ), ([12]). Thus our upper bound of e~%¢/272
this bound.

The outline of the paper is as follows.

Section 2 is a brief survey of the literature on manifold learning.

Section 3 introduces sample complexity and has the statement of Theorem 1 which is our main result on

sample complexity of testing the manifold hypothesis. This theorem is about the number of samples needed

is not far from
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to fit a manifold of certain reach, volume and dimension to an arbitrary probability distribution supported
on the unit ball.

Section 4 contains the proof of Theorem 1. We reduce the problem to a uniform bound over a space of
manifolds relating the empirical risk (or loss) to the true risk (i.e. expected squared distance between a
random point to the manifold). Covering numbers at small scales play an important role. Here, by a covering
number we mean the minimal size of a finite subset (net) of a manifold M such that every point of M is within
€ of some point of the net. Primary tools include the Johnson-Lindenstrauss Lemma, Vapnik-Chervonenkis
theory (Lemma 3 and Lemma 4) and tools from empirical processes (Lemma 5 and Lemma 6).

In Lemma 9 of Section 5, a uniform bound over the space of k-tuples of affine subspaces is obtained relating
the empirical risk to the true risk.

In Section 6, we perform a dimension reduction that maps the manifold into a subspace spanned by a
net of the manifold. This dimension reduction maps a manifold onto another with a similar reach, volume
and equal dimension. Further, the Hausdorff distance between the two manifolds is small. Since we are not
assuming that the dimension on the ambient space is finite, such a dimension reduction is essential to obtain
a finite algorithm. Our results are stated for separable Hilbert spaces. Once the dimension reduction is done,
without loss of generality, we assume that the ambient space is R™.

In Section 7, we provide an overview of the algorithm for testing the manifold hypothesis.

In Section 8, we give the formal definitions of the disc bundles we use in our algorithm.

Section 9 contains the key technical result of the paper - Theorem 13.

In this theorem we consider, as a function ¢ of an open subset of the ambient space, the gradient of an
approximate-squared-distance-function F°. For each point x in the domain of ¢, we project ¢(x) to the
subspace spanned by the eigenvectors of the Hessian of F°(x) corresponding to large eigenvalues, and we use
the Implicit Function Theorem on the zeros of that set. Specifically, we consider the set of points where ¢
is orthogonal to the span of these eigenvectors. We construct a disc bundle with a manifold (the "putative
manifold") as the base space, with the fiber at a base point being given by the span of the eigenvectors
corresponding to the large eigenvalues of the Hessian of F° intersected with a ball of radius T. Every point in
the disc bundle can be expressed uniquely as a base point on the putative manifold plus a vector in the fiber
corresponding to that basepoint. This unique decomposition is used later to patch together local sections
to form a global section of the disc bundle. A key component is a lower bound on the gap between the top
(n — d) eigenvalues and bottom d eigenvalues of the Hessian of F°, that is given by a controlled constant.
This gap affects both the reach of the manifold and the radius T of the fibers.

At this point our goal is to perform an optimization over the space of manifolds G(d,V,T) in order to
certify the existence or non-existence of a manifold having a certain least square error with respect to the
data. Unfortunately this space is not equipped with a vector space structure and is difficult to optimize
on. Our approach to handling this difficulty is to express it as the union of classes of manifolds, each class
consisting of those manifolds that are near a given putative manifold. Each manifold in a fixed class can be
associated with a section of a disc bundle over the relevant putative manifold. These sections enjoy a convex
structure. Since the squared loss function is a convex function, we can use convex optimization techniques
over the manifolds in a given class. It remains to describe how we come up with an exhaustive collection of
disc bundles such that every manifold in G(d, V,T) corresponds to a section of some disc bundle.

In Section 10, it is shown how to construct cylinder packets consisting of cylinders isometric to T(BgxBn_q)
that satisfy certain alignment constraints.

In Section 11, an approximate-squared-distance-function (asdf) is defined and it is shown how to construct
a disc bundle from such a function. It is further shown that if an asdf has certain properties with respect to
a manifold then the manifold is the graph of a section of the corresponding disc bundle.

In Section 12 it is shown how to construct an asdf using cylinder packets. Each such function defines a
disc bundle over a base putative manifold. A subset of the manifolds in G correspond to sections of this disc
bundle. It is further shown that if the cylinder packet is "admissible" with respect to a manifold, then the
corresponding disc bundle has a section of which this manifold is the graph.

In Section 13 results on Whitney interpolation are used to give a polyhedral description of the collection
of jets that correspond to local sections with the appropriate bound on the C? norm. Vaidya’s algorithm
[63] is then used to optimize over the polytope thus constructed to estimate the optimal mean-squared error
with respect to the data. The complexity of testing the existence of good local sections for a given cylinder
packet is polynomial in the size of the data.
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In Section 14 we describe how local sections are patched together to give global sections, using a partition
of unity supported on a putative manifold.

In Section 15 we show that the reach of the manifold constructed in the previous step is of the order of T.

In Section 16, we show that the mean-square error in approximating the data is within a controlled constant
C of the optimal.

In Section 17, we provide bounds on the the number of arithmetic operations required by the algorithm.

The Appendix contains proofs of some of the results in the main text.

1.6. A note on controlled constants. In this section, and the following sections, we will make frequent
use of constants ¢, C,Cy,C2,¢C1,...,C17 and cq2 etc. These constants are "controlled constants" in the sense
that their value is entirely determined by the dimension d unless explicitly specified otherwise (as for example
in Theorem 13). Also, the value of a constant can depend on the values of constants defined before it, but
not those defined after it. This convention clearly eliminates the possibility of loops.

2. Literature on manifold learning

At present there are available a number of methods which aim to transform data lying near a d—dimensional
manifold in an N dimensional space into a set of points in a low dimensional space close to a d—dimensional
manifold. A comprehensive review of Manifold Learning can be found in the recent book [35]. The most
basic method is ‘Principal Component Analysis’ (PCA), [45, 27] where data points are projected on to the
span of the eigenvectors corresponding to the top d eigenvalues of the (N x N) covariance matrix of the data
points. A variation is the kernel PCA [49] where one works in the ‘feature space’ rather than the original
ambient space.

In the case of ‘Multi-Dimensional Scaling’ (MDS) [15], only pairwise distances between points are at-
tempted to be preserved when projecting to a lower dimensional space.

‘Tsomap’ [52] attempts to improve on MDS by trying to capture geodesic distances between points while
projecting.For each data point a ‘neighbourhood graph’ is constructed using its k neighbours (k could be
varied based on other criteria), the edges carrying the length between points. Now shortest distance between
points is computed in the resulting global graph containing all the neighbourhood graphs using a standard
graph theoretic algorithm such as Dijkstra’s. It is this ‘geodesic’ distance which the method tries to preserve
when projecting to a lower dimensional space.

‘Maximum Variance Unfolding’ (MVU) [55] also constructs the neighbourhood graph as in the case of
Isomap but tries to maximize distance between projected points keeping distance between nearest points
unchanged after projection.

In ‘Diffusion Maps’ [14], a complete graph on the N data points is built. Each edge is assigned a weight
based on a gaussian. The matrix is normalized to make it into a transition matrix of a Markov chain. The
d nontrivial A; and their eigenvectors v; of Pt are computed and the d eigenvectors form the rows of d x N
matrix and the columns of this matrix constitute th lower dimensional representation of the data points.

‘Local Linear Embedding’ (LLE) [47] preserves solely local properties of the data once again using the
neighbourhood graph of each data point.

In the case of the ‘Laplacian Eigenmap’ [3], [30] again, a nearest neighbor graph is formed. This could either
be an undirected k— nearest neighbor graph, or there could be a parameter € that determines neighborhoods
based on points that are within a Euclidean distance of €. Weights are assigned to the edges as indicated
below and a Laplacian matrix is computed and a certain quadratic function based on the Laplacian minimized
through the solution of a generalized eigenvalue problem. The top d— eigenvectors constitute a representation
of the data.

Hessian LLE (HLLE) (also called Hessian Eigenmaps) [20] and ‘Local Tangent Space Alignment’ (LTSA)
[66] attempt to improve on LLE by also taking into consideration the curvature of the higher dimensional
manifold while preserving the local pairwise distances.

The alignment of local coordinate mappings also underlies some other methods such as ‘Local Linear
Coordinates’ (LLC) [46] and ‘Manifold Charting’ [7].

Methods which map higher dimensional data points to lower dimensional constructs (principal sets) more
general than manifolds are described in [44] and studied more formally in [25]. Another line of research
starts with principal curves/surfaces [26] and topology preserving networks [36]. Manifolds of probability
distributions and connections to the work of Amari [1] have been studied in the work of Newton [42]. Uniform
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rectifiability offers an alternative to reach as a way of distinguishing complicated sets from simple ones (see
[17]).

Some of the algorithms are known to perform correctly under the hypothesis that data lie on a manifold
of a specific kind. In Isomap and LLE, the manifold has to be an isometric embedding of a convex subset of
Euclidean space. In the case of [10], [4], the manifold is a simplicial complex and witness complex respectively.
In the limit as number of data points tends to infinity, when the data approximate a manifold, then one can
recover the geometry of this manifold by computing an approximation of the Laplace-Beltrami operator.
Laplacian Eigenmaps and Diffusion maps rest on this idea. LTSA works for parameterized manifolds and
detailed error analysis is available for it.

3. Sample complexity of manifold fitting

In this section, we show that if we randomly sample sufficiently many points as in the above mentioned
algorithm and then find the least square fit manifold to this data, we obtain an almost optimal manifold.

Definition 5 (Sample Complexity). Given error parameters €,8, a space Y and a set of functions (henceforth
function class) F of functions f: Y — R, we define the sample complexity s = s(€,8,F) to be the least number
such that the following is true. There exists a function A:Y® — F such that, for any probability distribution
P supported on Y, if (X1,...,%Xs) € Y* is a sequence of i.i.d draws from P, then four = A((X1,...,%Xs))
satisfies

P ]Ex—|7>fout(x) < (fhel‘g__Ex%Pf(x)) +e|l >1-0.

We state below, a sample complexity bound when mean-squared error is minimized over G(d, V,T). Thus
the function class F consists of functions fq(x) := d(x, M)? indexed by M. The manifold that minimizes
the empirical risk will be denoted My (X), erm standing for Empirical Risk Minimization. This manifold
is a function of X = (x1,...,Xs), a sequence of i.i.d points from P. The minimization involved is of a quantity
L(M,Px). The theorem as stated is true only if s, the number of data points is greater or equal to sg (€, d).
This theorem says that instead of optimizing £(M,P) over manifolds M, if s is sufficiently large, we might
as well optimize £(M, Px) over manifolds M, where Px is the empirical measure equally distributed over
the data set x1,...,%xs. The constant C > 1 in the definition of Ug(1/€) depends on the volume of a ball in
d—dimensional Euclidean space. The constant C’ > 1 in sg(€, §) is a universal constant.

Theorem 1. Forr >0, let

cv cv
Let
_ ~r(Ug(1/€) 4 (Ug(1/€) 1 1
sg(e,8):=C < 2 log - + 2 log 5]
Let s > sg(€,8) and X = (x1,...,xs) be a sequence of i.i.d points from P and Px be the uniform probability

measure over X. Let Merm(X) denote a manifold in G(d,V,T) that approximately minimizes the quantity

LIM,Px) =s"") d(xi, M)?

i=1

in the sense that

£(Merm(x))7)X) - inf E(M>PX) <
Meg(d,V,T)

N ™

Then,

P|L( Merm(X),P) — inf LIM,P)<e|>1-=5%.
MEeEG(d,Vyr)
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3.1. Sketch of the Proof of Theorem 1: The first step involves obtaining new dimension independent
bounds for the sample complexity of k—means, or in other words the problem of fitting k points to a
probability distribution supported on the unit ball in a Hilbert space. This is essentially done in Lemma 6.
Recall that given a data set {x1,...,Xs}, kK—means is the problem of producing k—centers ¢ = {c1,...,cx}
with the property that for any other set of k centers c’,

(For the best previously known bound of O (t—;) for the sample complexity of k—means in a ball in a

Hilbert space, see [38].)

The second step involves upper bounding (see Lemma 7), the sample complexity of fitting the best mani-
fold in G(d, V,T) to a probability distribution supported on the unit ball, by the sample complexity of fitting
Ug(1/€) points in a least squares sense to the same probability distribution. This argument involves approx-
imating manifolds in G(d, V,T) to within € using point sets with respect to Hausdorff distance. This is done
in Claim 1 and Corollary 2.

4. Proof of Theorem 1

Let M € G(d,V,T). For x € M denote the orthogonal projection from H to the affine subspace Tan(x, M)
by TTx. We will need the following claim to prove Theorem 1.

Claim 1. Suppose that M € G(d,V,T). Let
U = {yly — Myl < t/CIN{y|lx — Tyy| < /C},

for a sufficiently large controlled constant C. There exists a C11 function Fx u from TTx(U) to T (TT,(0))
such that

U+Fouly e (Wl=Mmnu
and further such that the Lipschitz constant of the gradient of Fy u is bounded above by %

The above claim is proved in the Appendix.

4.1. A bound on the size of an e¢—net.

Definition 6. Let (X,d) be a metric space, and v > 0. We say that Y is an v—net of X if Y C X and for
every x € X, there is a pointy € Y such that d(x,y) < r.

Corollary 2. Let
Ug . RJF — R

be given by

1 1
Let M € G(d,V,T), and M be equipped with the metric dy of the Hilbert space H. Then, for any v > 0,
there is a \/Tr—net of M consisting of no more than Ug(1/r) points.

Proof. Tt suffices to prove that for any r < T, there is an r—net of M consisting of no more than CV (T]—d + rid),
since if r > T, a T—net is also an r—net. Suppose Y = {y1,yaz,...} is constructed by the following greedy
procedure. Let y; € M be chosen arbitrarily. Suppose yi,...yx have been chosen. If the set of all y such
that minj<i<x [y —yil > v is non-empty, let yx+1 be an arbitrary member of this set. Else declare the
construction of Y to be complete.

We see that that Y is an r—net of M. Secondly, we see that the distance between any two distinct points
Yi,Yj € Y is greater or equal to r. Therefore the two balls M N By (yi,1/2) and M N By (yj,1/2) do not
intersect.



TESTING THE MANIFOLD HYPOTHESIS 11
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>3, d(@i M)?
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M

FIGURE 2. A uniform bound (over G) on the difference between the empirical and true loss.

By Claim 1, and the fact that the reach of M is greater or equal to T, it follows that for each y € Y, there
are controlled constants 0 < ¢ < 1/2 and 0 < ¢’ such that for any r € (0, 7], the volume of M N By (y,cr) is
greater than ¢’r4. See footnote'.(In involking Claim 1, the Lipschitz property of the gradient is not needed.)

Since the volume of

{z e Mld(z,Y) <r/2}

is less or equal to V the cardinality of Y is less or equal to C,% for all r € (0, T]. The corollary follows. O

4.2. Tools from empirical processes. In this subsection, unless otherwise stated, data (x1,...,%s) will
be a sequence of i.i.d draws from a probability measure P (or p) supported on the unit ball By, of a Hilbert
space H. In order to prove a uniform bound of the form

i)

S

— E'pF(X)

(2) P [sup
FeF

<e]>1—5,

it suffices to bound a measure of the complexity of F known as the Fat-Shattering dimension of the function
class F. The metric entropy (defined below) of F can be bounded using the Fat-Shattering dimension, leading
to a uniform bound of the form of (2).

Definition 7 (metric entropy). Given a metric space (Y, p), we call Z CY ann—net of Y if for everyy €Y,
there is a z € Z such that p(y,z) < 1. Let P be a measure supported on a metric space X, and F a class
of functions from X to R. Let N(n,F,L2(P)) denote the minimum number of elements that an n—net of
F could have, with respect to the metric imposed by the Hilbert space L(P). Here, the distance between
fi:X—=Randf : X— R is

If1 —f2llz, ) = \/J(ﬁ (x) — f2(x))?dP.

We call InN(n, F, L2(P)) the metric entropy of F at scale n with respect to L1 (P).

Definition 8 (Fat-shattering dimension). Let F be a set of real valued functions. We say that a set of points

X1y...yXk 18 Y—shattered by F if there is a vector of real numbers t = (t1,...,tx) such that for all binary
vectors b = (by,...,by) , there is a function fy,+ satisfying,

N >t 4y, ifbi=1;
(3) fb,‘t(xl) - { <ti—v, ’Lf by = 0.

For eachy > 0, the Fat-Shattering dimension faty (F) of the set F is defined to be the size of the largest
Yy—shattered set if this is finite; otherwise fat, (F) is declared to be infinite.

The supremum taken over (ti,...,tx) of the number of binary vectors b for which there is a function
fo,t € F which satisfies (3), is called the y—shatter coefficient of (x1,...,xx). (Thus the y—shatter coefficient
of a k—element set that is y—shattered is 2%.)

We will also need to use the notion of VC dimension, and some of its properties. These appear below.

1This is because the area of a surface is no less than than the area of a projection of it onto a subspace
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¢ Ras
» Ry
Random ;l .
> 2
map R 1.
4 Ry
4 j‘?.’]’.’:g

FicURE 3. Random projections are likely to preserve linear separations.

Definition 9. Let A be a collection of measurable subsets of R™. For xq1,...,xx € R™, let the number of
different sets in{{x1,...,xkJNH; H € A} be denoted the shatter coefficient Na(x1,...,xk) of (X1,...,xk). The
VC dimension VCa of A is the largest integer k such that there exist X1, ...xx such that Na(x1,...,xx) = 2¥.

The following result concerning the VC dimension of halfspaces is well known (Corollary 13.1, [18]).
Lemma 3. Let A be the class of halfspaces in R9. Then VCA =g+ 1.

We state the Sauer-Shelah Lemma below.
Lemma 4 (Theorem 13.2, [18]). Let A be a collection of measurable subsets of R9. For any x1,...,xx € RY,

NA(x1yeyx) < YV (5). (Note that () =0 if i > k.)

1

For VCp > 2, ¥ V5 (%) < ke,
The lemma below follows from existing results from the theory of Empirical Processes in a straightforward
manner, but does not seem to have appeared in print before. We have provided a proof in the appendix.

Lemma 5. Let u be a probability measure supported on X, F be a class of functions f: X — R. Let x1,...,Xs
be independent random variables drawn from w and ws be the uniform measure on x :={x1,...,Xs}. If

=5 ((

P [sup ‘Eus f(xi) —E.f
feF

oo 2
J faty(]:)dy) +log1/6> ,

Ce

then,

2€}§1—6.

A key component in the proof of the uniform bound in Theorem 1 is an upper bound on the fat-shattering
dimension of functions given by the maximum of a set of minima of collections of linear functions on a ball
in H. We will use the Johnson-Lindenstrauss Lemma [29] in its proof.

Let ] be a finite dimensional vectorspace of dimension greater or equal to g. In what follows, by "uniformly
random g—dimensional subspace in J," we mean a random variable taking values in the set of g—dimensional
subspaces of |, possessing the property that its distribution is invariant under the action of the orthogonal
group acting on J.

Johnson-Lindenstrauss Lemma: Let yi,...,Yys be points in the unit ball in R™ for some finite m. Let R be

I?Ygze for some y > 0, and an

an orthogonal projection onto a random g—dimensional subspace (where g = C
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absolute constant C > 1). Then,

m 2% 1
Pl sup () (Ryi, Ry;) — (Y, v5)| > 2] <3
i,je(1,...,0} g

Lemma 6. Let u be a probability distribution supported on By = {x € H : ||x|| < 1}. Let x1,...,x5 be
independent random variables drawn from w and ys be the uniform measure on x :={x1,...,xs}. Let Fi ¢ be
the set of all functions f from H to R, such that for some k€ vectors vit,...,vi¢ € By,

f(x) = max min(vy; - x).

j i
Then,
(1) faty (Fi,e) < %logz %

2 s> S <k€1n4(k€/ez) +1n1/5), then P [supger,  [Ep. f0xi) —Epf| > €] <1-86.

The proof of this lemma has been shifted to the Appendix.

In order to prove Theorem 1, we relate the empirical squared loss s~ 2;1 d(xi, M)? and the expected
squared loss over a class of manifolds whose covering numbers at a scale € have a specified upper bound. Let
U:Rt — Z" be a real-valued function. Let G be any family of subsets of the unit ball By, in a Hilbert space
H such that for all v > 0 every element M € G can be covered using U(%) open Euclidean balls.

A priori, it is unclear if

Zif:] d(xb M)z

S

(4) sup —Epd(x, M)?

MeG
is a random variable, since the supremum of a set of random variables is not always a random variable
(although if the set is countable this is true). Let dyaus represent Hausdorff distance. For each n > 1,

Gn be a countable set of finite subsets of H, such that for each M € G, there exists M’ € Gy, such that
dpans (M, M’) < 1/n, and for each M’ € G,,, there is an M” € G such that dyaus(M ", M') < 1/n. For each

n, such a G, exists because H is separable. Now (4) is equal to

Zi:] d(Xi) Mn)z

S

b

lim sup —Epd(x, Mp)?

N7 MreGn
and for each n, the supremum in the limits is over a countable set; thus, for a fixed n, the quantity in
the limits is a random variable. Since the pointwise limit of a sequence of measurable functions (random

variables) is a measurable function (random variable), this proves that

Zi:] d(Xi) M)Z

S

)

sup —Epd(x, M)?

MeG

b

is a random variable.

Lemma 7. Let € and & be error parameters. Let Ug : Rt — R be a function taking values in the positive
reals. Suppose every M € G(d,V,T) can be covered by the union of some Ug(%) open FEuclidean balls of radius

\/ﬁ, for every r > 0. If

16
Ug(1/€) 4 (Ug(1/€) 1 1
s>C( = log — —I—?logg ,
Then,
S d(x 2
P sup ZL](X“/\/l)—I[<I7>d(x,./\/l)2‘<€ >1-04.
MEeG(d, V1) S
Proof. Given a collection ¢ :={cq,...,cy} of points in H, let
(5) fe(x) := min |[x — cjlz.
cjEcC

Let F denote the set of all such functions for
C:{Ch'-->0k}g B?—L»

B« being the unit ball in the Hilbert space.
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Consider M € G = G(d,V,7). Let ¢(M,€) ={¢1,...,C¢} be a set of K := Ug(1/e€) points in M, such
that M is contained in the union of Euclidean balls of radius y/Te/16 centered at these points. Suppose
x € By. Since ¢(M, e) C M, we have d(x, M) < d(x,c(M,€)). To obtain a bound in the reverse direction,
let y € M be a point such that [x —y| = d(x, M), and let z € c(M, €) be a point such that [y —z| < \/T€/16.
Let z’ be the point on Tan(y, M) that is closest to z. By the reach condition, and Proposition 1,

|Z_Z/| = d(Za Tﬂn(y»/\/l))

o 2P

- 2T
€

< -

- 512

Therefore,
2<y—z,x—y> = 2<y_ZI+Z/_Z>X_y>

= 2(z' —z,x—vy)

< 2z—z[x —yl
€

< —.

- 128

In the last line above, we use the fact that both x and M > y belong to the unit ball and hence [x —y| < 2.
Thus

d(x,c(M,€))? < Ix —z|?

< =yl +2(y —z,x—y) +ly — 2
<d(x, M)? + 155 + 5.
Since T < 1, this shows that

d(x, M)? < d(x,¢(M, €))% < d(x, M) + —

64°
Note that
d(Xa C(M) e))l = f‘c(./\/l‘e)(x)-
Therefore,
(6) P {sup M —Epd(x, M)?| < e] >P [ sup Zizi felxi) —Epfe(xi)| < 61 .
MeG s feC€Fy $ 3

Inequality (6) reduces the problem of deriving uniform bounds over a space of manifolds to a problem of
deriving uniform bounds for k—means.
Let

O:x—27"2(x,1)
map a point x € H to one in H @ R, which we equip with the natural Hilbert space structure. For each 1, let

el
2

The factor of 27'/2 (which could have been replaced by a slightly larger constant) is present because we want
¢; to belong to to the unit ball. Then,

fe(x) = x> +4min((®(x), 1), ..., (D(x), E)).

(7) Cii=27"%(—cy, ).

Let Fo be the set of functions that map H to R having the form 4min]f:1 ®(x) - ¢; where ¢; is given by
(7) and
C:{Ch'-wck}g Bx.
The metric entropy of the function class obtained by translating Fq by adding |x|*> to every function in it is

the same as the metric entropy of F¢. However, this translated function class has the unit ball of a separable
Hilbert space as its domain as well.
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Therefore the integral of the square root of the metric entropy of functions of the form (5) in Fy can be
bounded above, and by Lemma 6, if

k 4 [k 1 1
= (G (o () + g

Zi:] d(xh M)z

S

then

P [sup
Meg

EPd(X,M)Z‘ < e] >1-20.

Proof of Theorem 1. This follows immediately from Corollary 2 and Lemma 7.

5. Fitting k affine subspaces of dimension d

A natural generalization of k-means was proposed in [6] wherein one fits k d—dimensional planes to data
in a manner that minimizes the average squared distance of a data point to the nearest d—dimensional plane.
For more recent results on this kind of model, with the average p'" powers rather than squares, see [34]. We
can view k—means as a 0—dimensional special case of k—planes.

In this section, we derive an upper bound for the generalization error of fitting k—planes. Unlike the
earlier bounds for fitting manifolds, the bounds here are linear in the dimension d rather than exponential in
it. The dependence on k is linear up to logarithmic factors, as before. In the section, we assume for notation
convenience that the dimension m of the Hilbert space is finite, though the results can be proved for any
separable Hilbert space.

Let P be a probability distribution supported on B :={x € R™| ||x|| < 1}. Let H := Hy,q be the set whose
elements are unions of not more than k affine subspaces of dimension < d, each of which intersects B. Let
Fi,a be the set of all loss functions F(x) = d(x, H)? for some H € H (where d(x, S) := infyes [[x —y]|) .

We wish to obtain a probabilistic upper bound on

S
®) sp | == 1))
FEFv,a S

where {x;}] is the train set and EpF(x) is the expected value of F with respect to P. Due to issues of
measurability, (8) need not be random variable for arbitrary F. However, in our situation, this is the case
because F is a family of bounded piecewise quadratic functions, continuously parameterized by Hy 4, which
has a countable dense subset, for example, the subset of elements specified using rational data. We obtain
a bound that is independent of m, the ambient dimension. We will need the following form of Hoeffding’s
inequality.

Lemma 8 (Hoeffding’s Inequality). Let Xj,...,Xs be i.i.d copies of the random variable X whose range is
[0,1]. Then,

9) P [

.I S
() o

< 61 > 1—2exp(—2se?).

Lemma 9. Let xq,...,Xs be i.i.d samples from P, a distribution supported on the ball of radius 1 in R™. If
dk . 4 /dk d 1
s>C <€210g (e) Jr(_:zlogé) ,
thenP | sup |E=I0U _EoF(x)| <e| >1-06.
FG]:k‘d

Proof. Any F € Fy 4 can be expressed as F(x) = minj<i<i d(x, H;)? where each H; is an affine subspace of
dimension less or equal to d that intersects the unit ball. In turn, min;<i<y d(x, H;)? can be expressed as

. el —(x — e VAT AL (v — )
min ([x—eif? = (= e A A —c0))
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where A; is defined by the condition that for any vector z, (z — (Aiz))T and Ajiz are the components of z
parallel and perpendicular to H;, and c; is the point on H; that is the nearest to the origin (it could have
been any point on H;). Thus

F(x) := min <||><H2 —2chx + [lei|? = xTATA X + 2¢]ATAx — CIAIAiCi) .
1

Now, define vector valued maps ® and ¥ whose respective domains are the space of d dimensional affine
subspaces and H respectively.

@(Hi) = < ]

vd-+5

) (||Ci||2»AIAi> QATA ¢ *Zci)f)
and

Y(x):= <\}§> (1,xxt,x"),

where AIAi and xx' are interpreted as rows of m? real entries.
Thus,

min (HXHZ —2chx + flei]? = xTATAx + 2¢TATA X — ciAIAicO
1
is equal to

[x/|? + v/3(d +5) min @ (Hy) - ¥(x).

We see that since ||x|| < 1, |[W(x)|| < 1. The Frobenius norm HAI/—\iHZ is equal to Tr(Ai/-\IAiAI), which is
the rank of A; since A; is a projection. Therefore,
(d+5)[|O(HY|I? < flesl|* + [ATAL? + 1201 - A]Aves %,

which, is less or equal to d + 5.
Uniform bounds for classes of functions of the form min; ®(H;) - W¥(x) follow from Lemma 6. We infer from
Lemma 6 and the Hoeffding’s inequality that if

K ooa/k\ 11
sZC(ezlog (€)+€210g6>)

then P [ sup w —EpF(x)| < +/3(d+5)e| > 1—20. The last statement can be rephrased as follows.
FEFk,a
If
dk . 4, /dk d 1
S Z C (ezlog (e) +€210g6> y
then P | sup M—EPF(X) <e|>1-%. O
FG]“k‘d
6. Dimension reduction
Suppose that X = {x1,...,xs}is a set of i.i.d random points drawn from P, a probability measure supported

on the unit ball By of a separable Hilbert space H. Let Mcrm(X) denote a manifold in G(d,V,T) that
(approximately) minimizes

> dlxi, M)?
i=1

over all M € G(d,V, 1) and denote by Px the probability distribution on X that assigns a probability of 1/s
to each point. More precisely, we know from Theorem 1 that there is some function s¢g(€, 8) of €,9,d,V and
T such that if

s> Sg (6, 6)
then,

(10) B | L(Merm(X),Px) = inf LIM,P) <e| >1-8.
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Lemma 10. Suppose € < ct. Let W denote an arbitrary 2sg(e,8) dimensional linear subspace of H con-
taining X. Then

(11) inf LM, Px) < Ce—+ inf LM, Px).
G(a,Vir(1=c))sMCW MeG(d,V,T)

Proof. Let M, € G:=G(d,V,T) achieve

(12) L(M2,Px) < Ai/llggﬁ(/\/lapx) +e€.

Let N denote a set of no more than sg(€,0) points contained in M that is an e—net of M,. Thus for
every x € My, there is y € N such that [x —y| < e. Let O denote a unitary transformation from H to H

that fixes each point in X and maps every point in N to some point in W. Let TT\y denote the map from H
to W that maps x to the point in W nearest to x. Let M3 := OM,;. Since O is an isometry that fixes X,

(13) L{Ms,Px) = LMz, Px) < inf LIM, Px]) +e.

Since Px is supported on the unit ball and the Hausdorff distance between TTyy M3 and M3 is at most €,

|L(Mw M3, Px) — LIM3,Px)| < Expy|d(x, TTwM3)? —d(x, M3)?|
< Expyd]d(x, TTwM3) — d(x, M3)|
< e
By Lemma 11, we see that TTy, M3 belongs to G(d, V, (1 — ¢)), thus proving the lemma. O

By Lemma 10, it suffices to find a manifold G(d,V,T) 3 Merm(X) C V such that

L(Merm(X),Px) < Ce+ inf LM, Px).
VOMeG(4,V,t)

Lemma 11. Let M € G(d,V, 1), and let TT be a map that projects H orthogonally onto a subspace containing
the linear span of a cet—net S of M. Then, the image of M, is a d—dimensional submanifold of H and

(M) € G(d,V,t(1 — C\e)).

Proof. The volume of TT(M) is no more than the volume of M because TT is a contraction. Since M is
contained in the unit ball, TT(M) is contained in the unit ball.

Claim 2. For any x,y € M,
Mx—y)l > (1 —CVe)lx—yl.
Proof. First suppose that [x —y| < /et. Choose X € S that satisfies

Ix —x| < Cyert.

Let z:=x+ wg(f)x\/l& By linearity and Proposition 1,
(14) d(z, Tan(x, M)) = d(y,Tan(x, M)) <|y\fefcx|)
2
(15) < Ix—yl* [ Vet
2t ly — x|
€T
16 < —.
(16) < ¢
Therefore, there is a point § € Tan(x, M) such that
ly —x|

By Claim 1, there is a point §j € M such that

Yy —@’ < Czet.

Let g € S satisfy
[y — 1yl < cer.
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Then,
‘g_ (i—i—W) ’ < Cyer,
ly —x|
i.e.
‘(U—X>_(U—X) §C4\/E

€T ly —x|
Consequently,

y—x
17 —-1<C .
" (& )|-reeme

We now have
as b)) = o) e e =)
ly—xI’ Vet y—xI" ly — x| y—x"\ ver ly—x
y—x (Yy—X yYy-—x
].9 = 1+ s _
19) <y—x| (\/ET |y—x|>>
(20) > 1—Cygve.

Since x and g belong to the range of TT, it follows from (17) and (20) that

Mx—y)l > (1 —CVe)lx—yl.
Next, suppose that [x —y| > 1/eT, Choose X, € S such that [x —X| + [y — | < 2ceT. Then,

X—y X—-y\ _ /x—y x—y o/ X=Y oo
<x—y|’li—9|> <x—y|’|>2—g|>+(|" ul )<|X_y|,(x x)— (9 y)>
> 1-Cye,

and the claim follows since X and § belong to the range of TT. O

By Claim 2, we see that
(21) Vx € M, Tan®(x, M) Nker(IT) = {0}.

Moreover, by Claim 2, we see that if x,y € M and TI(x) is close to TT(y) then x is close to y. Therefore, to
examine all TT(x) in a neighborhood of TI(y), it is enough to examine all x in a neighborhood of y. So by
Definition 3, it follows that TT(M) is a submanifold of . Finally, in view of Claim 2 and the fact that TT is
a contraction, we see that

r - () — TT(y)2
(22) cach(M)) = Sup 2 a(0), Tan(T(y), M)
Ix —yl?
(23) = (1= CVe) S0 3dt, Tan(y, M)
(24) = (1 —Cv/€e)reach(M),

the lemma follows. O

7. Overview of the algorithm for testing the manifold hypothesis

Given a set X := {x1,...,xs} of points in R™, we give an overview of the algorithm that finds a nearly
optimal interpolating manifold.

Definition 10. Let M € G(d,V,T) be called an e—optimal interpolant if
N

N
25 d(xi, M)? < se+ inf d(xi, M')?
(25) S dls M7 sser it doa MO
where C is some constant depending only on d.

Given d, T, V, e and &, our goal is to output an implicit representation of a manifold M and an estimated
error € > 0 such that
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i

FIGURE 4. A disc bundle Do ¢ prorm

(1) With probability greater than 1 — 6, M is an e—optimal interpolant and
(2)
_ € _
se < Zd(x,./\/l)2 <s (E + e).
xeX
Thus, we are required to perform an optimization over the set of manifolds G = G(d, T, V). This set G can
be viewed as a metric space (G, dpaus) by defining the distance between two manifolds M, M’ in G to be
the Hausdorff distance between M and M’. Our strategy for producing an approximately optimal manifold
will be to execute the following steps. First identify a O(t)—net Sg of (G, dnaus). Next, for each M’ € Sg,
construct a disc bundle D’ that approximates its normal bundle. The fiber of D’ at a point z € M’ is

a n — d—dimensional disc of radius O(t), that is roughly orthogonal to Tan(z, M’) (this is formalized in
Definitions 11 and 12). Suppose that M is a manifold in G such that

(26) dhaus(M)M/) < O(T)'

As a consequence of (26) and the lower bounds on the reaches of M and M/, it follows (as will be shown in
Lemma 17) that M must be the graph of a section of D’. In other words M intersects each fiber of D’ in
a unique point. We use convex optimization to find good local sections, and patch them up to find a good
global section. Thus, our algorithm involves two main phases:

(1) Construct a set D™ of disc bundles over manifolds in G(d, CV,t/C) which is rich enough that every
e—optimal interpolant is a section of some member of D™,

(2) Given D»™ ¢ D™ yse convex optimization to find a minimal € such that D™™ has a section
(i. e. a small transverse perturbation of the base manifold of D®°™) which is a €—optimal interpolant.
This is achieved by finding the right manifold in the vicinity of the base manifold of D*°™ by finding
good local sections (using results from [23, 24]) and then patching these up using a gentle partition
of unity supported on the base manifold of D»°™,

8. Disc Bundles

The following definition specifies the kind of bundles we will be interested in. The constants have been
named so as to be consistent with their appearance in (79) and Observation 3. Recall the parameter r from
Definition 3.

Definition 11. Let D be an open subset of R™ and M be a submanifold of D that belongs to G(d,t,V) for
some choice of parameters d,T,V. Let 7 be a C* map w: D — M such that for any z € M, n(z) = z and
1 (z) is isometric to a Euclidean disc of dimension n— d, of some radius independent of z. We then say
D 55 M is a disc bundle. When M is clear from context, we will simply refer to the bundle as D. We refer
to D, ;=7 '(z) as the fiber of D at z. We call s : M — D a section of D if for any z € M, s(z) € D, and
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for some #,V >0, s(M) € G(d,%, V). Let U be an open subset of M. We call a given C2—map sioc : U — D
a local section of D if for any z € U, s(z) € D, and {(z, s10c(2))|z € U} can locally be expressed as the graph
of a C*>—function.

Definition 12. For reals 2,V > 0, let D(d,%, V) denote the set of all disc bundles D™™ -5 M with the
following properties.

(1) D™™ is a disc bundle over the manifold M € G(d,%,V).

(2) Letzo € M. Forzo € M, let D} := 71 (2zo) denote the fiber over zo, and T1,, denote the projection
of R™ onto the affine span of D3™. Without loss of generality assume after rotation (if necessary)
that Tan(zo, M) = R @ {0} and Nor,, a1 = {0} @ R"~ 4. Then, D™™ N B(zo,C11%) is a bundle over
a graph {(z,‘i’(z))}zeglo where the domain Q,, is an open subset of Tan(zg, M).

(3) Any z € By (z0,C11%) may be expressed uniquely in the form (x,¥(x)) +v with x € B4(zo,C10%),V €
T w(x)) Bn—alx, E‘Z"%). Moreover, x and v here are CX~2—smooth functions of z € By (x,¢11%), with
derivatives up to order k — 2 bounded by C in absolute value.

(4) Letx € Ba(zo,C10%), and let v € Ty wx))R™. Then, we can express v in the form

(27) v =Twe) V7
where v € {0} @ R4 and v#| < 2Iv|.

Definition 13. For any D™™ — My € D(d,8,V), and « € (0,1), let «D(d, %, V) denote a bundle over
Myese, whose every fiber is a scaling by o« of the corresponding fiber of D™™.

9. A key result

Given a function with prescribed smoothness, the following key result allows us to construct a bundle
satisfying certain conditions, as well as assert that the base manifold has controlled reach. We decompose R™
as RY@R™ 4, The theorem roughly says that given a sufficiently smooth function F with bounded derivatives,
that resembles the squared distance to the intersection of the ball with a d—dimensional subspace, we can
construct from it a map VW that maps a neighborhood of the origin in R9 to a neighborhood of the origin in
R™ 4, whose graph is the intersection of a smooth manifold M with a neighborhood of the origin in R™.
Further one can also construct a disc bundle over the manifold M using the large eigenspace of the Hessian of
the function F. When we write (x,y) € R™, we mean x € RY and y € R*~¢. We will need Taylor’s Theorem
(see [39]), which we state below.

Theorem 12 (Taylor’s Theorem). Let Q be open in R™, and f € C*(Q). Then, if x,y € Q and the closed
line segment [x,y] joining x to y is also contained in Q, we have
D*f(y) D*f(()
fx)= Y Lx—y)*+ ) —=x—y)"

ol o
[o|<k—1 lx|=k

where  is a point of [x,y].

Theorem 13. Let the following conditions hold.
(1) Suppose F:B,(0,1) — R is C*—smooth.
(2)
(28) 05 yFx,y) < Co

for (x,y) € Bu(0,1) and || < k.
(3) Forx € RY andy € R*% and (x,y) € B(0,1), suppose also that

(29) crlyl® + 0?1 < [F(x,y) + p%] < Cillyl* + p%],
where
(30) O<p<c

where ¢ s a small enough constant determined by Co,cq1,Cq,k,n.

Then there exist constants c3,...,c7 and C determined by Co,c1,Cq,k,n, such that the following hold.
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(1) For z € B,(0,c2), let N(z) be the subspace of R™ spanned by the eigenvectors of the Hessian 9*F(z)
corresponding to the (n—d) largest eigenvalues. Let TThi(z) : R™ — N (z) be the orthogonal projection
from R™ onto N(z). Then |0%TIhi(z)] < C for z € Bn(0,c2),la] < k—2. Thus, N(z) depends
C*—2—smoothly on z.

(2) There is a map

(31) W:Ba(0,cq) — Brn_al(0,c3),
with the following properties
(32) [W(0)] < Cps[0*W| < C!™
on Ba(0,cq), for 1 <|of < k—2. The set of all z= (x,y) € Bq(0,c4) x Br_qa(0,c3), such that
{zMhi(2)0F(z) = 0} = {(x, ¥(x))|x € Ba(0,ca)}
is a C*—2—smooth graph.

Proof. We first study the gradient and Hessian of F. Taking (x,y) = (0,0) in (29), we see that

(33) c1p? < F(0,0) + p* < Cypt.

A standard lemma in analysis asserts that non-negative F satisfying (28) must also satisfy

1

|0F(2)| < C(F(2))?
In particular, applying this result to the function F + p?, we find that

(34) |0F(0,0)| < Cp.
<

Next, we apply Taylor’s theorem : For (|x|2 + \y|2)% p%, for z = (z1,...,2n) = (x,y), estimates (28)

and (33) and Taylor’s theorem yield
n
[F,y) + F(—x,—y) — Y 35F(0,0)ziz;| < Cp?.
‘)j 1

Hence, (29) implies that

clyl? — Cp? < Z 95F(0,0)ziz5 < C(lyl* + p?).
i,j=1
Therefore,

ciyl — Coa < 3 ORF(0,0)ziz < C (1 + 923127
=1
for |z| = p?/3, hence for all z € R™. Thus, the Hessian matrix (aisz(O)) satisfies

(35) ( G110 ) < (04F(0,0)) = ( +HCPPLI O )
That is, the matrices
(33F(0,0) — [~Cp* 3555 + ciyLi5a] )
and
(C [pm&ﬁ + 6ij1i,j>d} - aij(o,O)) .
are positive definite, real and symmetric. If (Aj;j) is positive definite, real and symmetric, then

[As” < AuAy,

< A Ay >
Ajt Ajj

for i # j, since the two-by—two submatrix
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must also be positive definite and thus has a positive determinant. It follows from (35) that
|03F(0,0)] < Cp*?,

ifi <d, and
[05F(0,0)| < C
for any j. Therefore, if i < d and j > d, then

04F(0,0)|* < [9&F(0,0) + Cp?/3| - [0%F(0,0) — c| < Cp*/>.

Thus,
(36) |05F(0,0)| < Cp'/?

if1T<i<dand d+ 1 <j<n. Without loss of generality, we can rotate the last n — d coordinate axes in
R™, so that the matrix

(35F(0,0))

i,j=d+1,...,n
is diagonal, say,

Aag1 - O
2 . ) .
(aijF(o)o))i,j:dH,...,n = :
0 An
For an n x n matrix A = (ay;), let
A oo == sup lagjl.

(i,j)em]x ]
Then (35) and (36) show that

Oaxda | Oax1 -+ Oaxi
O1xa | Aav1 - 0
2 1/3
(37) (aljF(O) 0))1’1':]‘_“’“ - : : .. : S Cp /
01x4 0 - An -
and
(38) c<A <C

foreachj=d+1,...,n.
For A; satisfying (38), let ¢ be a sufficiently small controlled constant. Let Q be the set of all real
symmetric 1 X n matrices A such that

Oaxa | Oax1 -+ Oax1
(30) A 01:><d 7\d:+1 0 ot
Oea| 0 - A /I
We can pick controlled constants so that (37), (38) and (28), (30) imply that
(40) (aisz(Z))i,jzl,...,n €Q

for |z| < C4. Here Ogxq, 01xq and Ogx1 denote all-zero d x d,1 x d and d x 1 matrices respectively.

Definition 14. If A € Q, let TThi(A) : R™ — R™ be the orthogonal projection from R™ to the span of
the eigenspaces of A that correspond to eigenvalues in [C2, C3l, and let TTi, : R™ — R™ be the orthogonal
projection from R™ onto the span of the eigenspaces of A that correspond to eigenvalues in [—Cq,C1].

Then, A — TTh;(A) and A +— TTi,(A) are smooth maps from the compact set Q into the space of all real
symmetric n X n matrices. For a matrix A, let |A| denote its spectral norm, i.e.

Al := sup [|Avu].

flull=1
Then, in particular,
(41) ITThi(A) = TThi(A)]| + [T (A) =TT (A7) < C|A = A
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for A,A’ € Q, and

(42) [0ATThi(A)] + [04TTo (A)| < C
for A € Q, | < k. Let

(43) TMhi(z) = Thi (9%F(2)
and

(44) Mo (z) =T (9%F(2))

for z < €4, which make sense, thanks to the comment following (39). Also, we define projections Mg : R™ —
R™ and TT,,_q : R™ — R™ by setting

(45) Ma:(z1y..eyzn) — (21y...,24,0,...,0)
and

(46) Maoa:(z1yeeeyzn) = 0y 0,0, Za 11y oy Zn)-
From (37) and (41) we see that

(47) Mhi(0) = TTh—a| < Cp'/3.

Also, (28) and (42) together give

(48) 05 Tha(2)] < €

for |z| < €4, <k —2. From (47), (48) and (30), we have

(49) Mhi(z) — Mhoal < Cp'/?

for |z| < p'/3. Note that TTni(z) is the orthogonal projection from R™ onto the span of the eigenvectors of
02F(z) with (n — d) highest eigenvalues; this holds for |z| < T4. Now set

(50) ((z) = TTh—alThi0F(z)

for |z| < C4. Thus

(51) U(z) = (Cas1(2)y..., Cnl2)) € RN,
where

(52) Z Mhi(z L]az,F z)

fori=d+1,...,n,lz| <C4. Here, [IThi(z)]y is the ij entry of the matrix TThi(z). From (48) and (28) we see
that

(53) [0%C(z) < C

for |z| < €4,]a| < k—2. Also, since TT,,_4 and TTp;i(z) are orthogonal projections from R™ to subspaces of
R™, (34) and (50) yield

(54) 12(0)] < cp.
From (52), we have

0% )y _ = 9 = 9?F(z)
(55) 0z ¥ = g oz, iy a )+ 2 M=)l 0z,0z;

j
for |zl <C4andi=d+1,...,n,{=1,...,n. We take z =10 in (55). From (34) and (48), we have
‘ 0
0z

for z = 0. Also, from (47) and (37), we see that
|Mhi(2)]i — 84| < Cp?

U—[hl 1)’ <C
and

az)
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forz=0i=d+1,...,n,j=d+1,...,m
[Mhi(2)]y] < Cp'/?

forz=0,andi=d+1,...,mand j=1,...,d; and
| 0°F

0z;0z¢
forz=0,j=1,...,n,{=d+1,...,n.
In view of the above remarks, (55) shows that
| aCl

aZe

(2) = 8jehe| < Co*,

(56) (0) — A¢die| < Cp'/3

for i, =d+1,...,n. Let Bq(0,1),Bn,_q(0,7) and B,,(0,1) denote the open balls about 0 with radius r in
R4, R ¢ and R™ respectively. Thanks to (30), (38), (53), (54), (56) and the implicit function theorem (see
Section 3 of [39]), there exist controlled constants €g < €5 < %64 and a C*~2—map

(57) Y:Bqa(0,C6) — Bn_a(0,Cs),
with the following properties:

(58) 0%y < C

on B4(0,¢¢), for |of < k—2.

(59) [¥(0)| < Cop.

Let z = (x,y) € B4(0,¢6) X B;,_q(0,C5). Then

(60) ¢(z) = 0if and only ify = W¥(x).

According to (47) and (48), the following holds for a small enough controlled constant ¢;. Let z € B,,(0,¢7).
Then TThi(z) and TT,,_gqlThi(z) have the same nullspace. Therefore by (50), we have the following. Let
z € B (0,€7). Then (z) =0 if and only if TTy;(z)0F(z) = 0. Consequently, after replacing €5 and Tg in (57),
(58), (59), (60) by smaller controlled constants Ty < Ts < 3C7, we obtain the following results:

(61) Y:Ba4(0,C9) — Br_qa(0,Cs)
is a C*~2—smooth map:;
(62) %W < C
on B4(0,¢9) for |of < k —2;
(63) (0)] < Cp;
Let
z=(x,y) € Bq(0,Co) x By,_4q(0,Cs).
Then,
(64) Thi(z)0F(z) =0

if and only if y = W¥(x). Thus we have understood the set {IThi(z)0F(z) = 0} in the neighborhood of 0 in R™.
Next, we study the bundle over {TTn;(z)0F(z) = 0} whose fiber at z is the image of TTy;(z). For x € B4(0,¢Co)
and v =(0,...,0,V411,...,vn) € {0} @R ¢, we define

(65) E(x,v) = (x,¥(x)) + [Mhilx, ¥(x))lv € R™
From (48) and (58), we have
(66) 0% JE(x,v)| < C

for x € B4(0,Co),v € Byy_q(0,C3), || < k— 2. Here and below, we abuse notation by failing to distinguish
between R4 and R4 @ {0} € R™. Let E(x,v) = (E1(%,V),..., En(x,v)) € R™. Fori=1,...,d, (65) gives

(67) Ei(x,v) = xi + thi(X»W(X))]i]‘Vj-

i=1
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Fori=d+1,...,n, (65) gives
n

(68) Ei(x,v) =¥i(x) + thi(xa‘y(x))]ﬁ\’ja

i=1

where we write W(x) = (Way1(x),..., ¥Yn(x)) € R4, We study the first partials of Ei(x,v) at (x,v) = (0,0).
From (67), we find that

OE;
(69) TX;(XN) = 8y
at (x,v) = (0,0), for ,j =1,...,d. Also, (63) shows that |(0,¥(0))| < cp; hence (49) gives
(70) Mhi(0,¥(0)) = Tna| < Cp'/?,
forie{l,...,d} and j € {1,...,n}. Therefore, another application of (67) yields
OE;
(71) (x,v)| < Cp'/?

|aT)-

forie[dl,j e{d+1,...,n}and (x,v) = (0,0). Similarly, from (70) we obtain
| (0, ¥(0))]y5 — 8| < Cp'/3

fori=d+1,...,nand j=d+1,...,n. Therefore, from (68), we have

OE;
(72) 3y, (o) = 8] < Co'
for ,j = d+1,...,n, (x,v) = (0,0). In view of (66), (69), (71), (72), the Jacobian matrix of the map
(X1y..eyXdyVdarly---sVn) — E(x,V) at the origin is given by
Iq O(p'/3)
(73) )

O(1) | In—a +0(p'?)

where 14 and I,,_4 denote (respectively) the d x d and (n—d) x (n— d) identity matrices, O(p'/3) denotes
a matrix whose entries have absolute values at most Cp'/3; and O(1) denotes a matrix whose entries have
absolute values at most C.

A matrix of the form (73) is invertible, and its inverse matrix has norm at most C. (Here, we use (30).) Note

also that that [E(0,0)] = [(0,¥(0))| < Cp. Consequently, the inverse function theorem (see Section 3 of [39])
and (66) imply the following.

There exist controlled constants €1p and €77 with the following properties:

(74) The map E(x,V) is one-to-one when restricted toB4(0,€10) X Bn_a(0,C10).
(75) The image of E(x,v) : Bq(0,C10) X Bn_a(0, 0170) — R™contains a ball B,,(0,¢11).
(76) In view of (74), (75), the map
-1 — — C10
E™" :Bn(0,C11) — Ba(0,€10) X Bn-al0, 7)
is well-defined.
(77) The derivatives of E~' of order < k — 2 have absolute value at most C.

Moreover, we may pick Cyp in (74) small enough that the following holds.
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Observation 1.

(78) Let x € Bq(0,¢C10), and letv € T (x, ¥(x))R™.

(79) Then, we can express vin the form v = TThi(x, P(x))v* wherev? € {0} & R™ % and [v¥| < 2.

Indeed, if x € B4q(0,C10) for small enough T, then by (30), (62), (63), we have |(x,¥(x))| < ¢ for small c;
consequently, (79) follows from (47), (48). Thus (74), (75), (76), (77) and (79) hold for suitable controlled
constants Cyo,c11. From (75), (76), (79), we learn the following.

Observation 2. Let x,X € Bq(0,¢10), and let v,v € By,_4(0, %Em). Assume that v € TThi(x, Y(x))R™ and
Vv e Thi(x, Y(x))R™. If (x,¥(x)) +v = (X, ¥Y(X)) +V, then x =X and v = V.

Observation 3. Anyz an(O,E1 1) may be expressed uniquely in the form (x, ¥(x))4+v withx € Bq(0,¢10),Vv €
i (%, W(x))R™ N B, (0, 52). Moreover, x and v here are C*2—smooth functions of z € Byn(0,C11), with
derivatives up to order k — 2 bounded by C in absolute value.

This concludes the proof of the lemma. O

10. Constructing cylinder packets

Let R4 and R™¢ respectively denote the spans of the first d vectors and the last n — d vectors of the
canonical basis of R™. Let B4 and B,,_g4 respectively denote the unit Euclidean balls in RY and R™*~ 4. Let

(80) T:=1C127T.

Let TT4 be the map given by the orthogonal projection from R™ onto RY. Let cyl := T(Bgq x Bn,_gq), and
cyl? = 2%(Bgq x Bn_q). Suppose that for any x € 2TB4 and y € 2TB,,_q, $eyr2 is given by

d)cylz (X»U) = |1J|2)
and for any z ¢ cy1?,
d)cylz (Z) =0.

Suppose for each i € [N] := {1,...,N}, x; € Bn(0,1) and o; is a proper rigid body motion, i.e.the
composition of a proper rotation and translation of R™ and that 0i(0) = x;.

For each i € [N], let cyl; := oi(cyl), and cyl? := o0i(cyl?). Note that x; is the center of cyl,.

We say t%lat a set of cylinders C,, := {cyl%, N cylzﬂ} (where each <:yli2 is isometric to cyl?) is a cylinder
packet in C*(d, V,T) (or simply a cylinder packet) if the following conditions hold true.

(1) The number of cylinders N be less or equal to Tld

(2) Let S; :={cyl?,...,cylZ_ } be the set of cylinders that intersect cyliz. Translate the origin to the

DR syl
center of cy1? (i.e.x;) and perform a proper Euclidean transformation that puts the d—dimensional
central cross-section of cyl? in RY.

There exist proper rotations Uj,,...,U 2

is, respectively of the cylinders cyliz] yee CYLE in S;
such that Uy, fixes the center x;; of cylizj and translations Try,,..., Tri‘si‘ such that
(a) For each j € [ISi]], Tri, U, cylfj is a translation of cyli2 by a vector contained in RY whose
Euclidean norm is at least %
(b) The set {Tri; Uy, \jﬁe ISiln cyli2 is a gfnet of RinN cyliz.
(c) | (Id - Uij) v| <2 (%) Iv —xi;, for each j in {1,...,[Si[}, and any vector v.

(d) [Tri, (0)] < Z for each j in {1,...,ISi]}.

Observation 4. Any point in B4(0, (5/2)T) is within T/2 of a point in B4(0,27), which in turn is within
T/2 of some Trixy;. It therefore follows that Uj (Tri; Uy, (o (RY) N cyly, )) 2 Bal0,(5/2)7).

We call {01,...,0x} a packet of rigid body motions or simply a packet if {o7(cyl),...,ox(cyl)} is a
cylinder packet.
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11. Constructing a disc bundle possessing the desired characteristics

11.1. Approximate squared distance functions. Suppose that M € G(d,V,T) is a submanifold of R™.
For T > 0, let

Mz :={zeR" inf |z—17Z| < T}.
zeM

Note that M3z is a tubular neighborhood of the manifold M. Let d be a suitable large constant depending
only on d, and which is a monotonically increasing function of d. Let

(81) d := min(n, d).

We use a basis for R™ that is such that RY is the span of the first d basis vectors, and R4 is the span of the
first d basis vectors. We denote by TTg, the corresponding projection of R™ onto R¢. Recall that

T:=C12T.

Definition 15. Let asdffw denote the set of all functions F: Mz — R such that the following is true. For
every z € M, there exists an isometry ©, of R™ that fizes the origin, and maps R to a subspace parallel to
the tangent plane at z such that £, : Bn(0,1) = R given by

F(z+ 10, (w))
(s2) Row) = EE )
satisfies the following.
ASDF-1 F, satisfies the hypotheses of Theorem 13 for a sufficiently small controlled constant p which will be
specified in Equation 85 in the proof of Lemma 14. The value of k equals v + 2, where v = 2 is the
degree of smoothness of the manifolds in Definition 3.

ASDF-2 There is a function F, : R — R such that for any w € By (0,1),
(83) F.(w) = F2 (Mg (w)) + w — TTg (w) 2,
where R C R4 C R™, and d is a function of d alone.
Let
(84) o = {w|TT5; (w)dF. (w) = 0},
where TT%; is as in Theorem 13 applied to the function ..

Lemma 14. Suppose that M € G(d,V,T) is a submanifold of R™. Let F be in asdf}y, and let T, and ©, be
as in Definition 15.
(1) The graph T, is contained in R,
(2) Let ca and cs be the constants appearing in (31) in Theorem 13, once we fiz Co in (28) to be 10, and
the constants ¢1 and Cy in (29) to 1/10 and 10 respectively. The set

Mput = {Z S Mmin(C4,C5)’f|nhi(z’)aT:(Z) = 0} )
is a submanifold of R™ and has a reach greater than ct, where ¢ is a constant depending only on d.

Hergﬁhi(z) 18 the orthogonal projection onto the eigenspace corresponding to eigenvalues in the interval
[C2, C2] that is specified in Definition 14.

Proof. To see the first part of the lemma, note that because of (83), for any w € By (0,1), the span of
the eigenvectors corresponding to the eigenvalues of the Hessian of F = F, that lie in (€2, C3) contains the
orthogonal complement of RY in R™ (henceforth referred to as R“‘a). Further, if w ¢ R4, there is a vector
in R*—4 that is not orthogonal to the gradient oF.(w). Therefore

r, C R4,

We proceed to the second part of the Lemma. We choose €1, to be a small enough monotonically decreasing
function of d (by (81) and the assumed monotonicity of a, C12 is consequently a monotonically decreasing
function of d) such that for every point z € M, F, given by (83) satisfies the hypotheses of Theorem 13
with p < % where C is the constant in Equation 32 and where ¢ is a sufficiently small controlled constant.
Suppose, for the purpose of reaching a contradiction, that there is a point 2 in My such that d(Z, M) is
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greater than M, where ¢4 and c5 are the constants in (31). Let z be the unique point on M nearest

to Z. We apply Theorem 13 to F,. By Equation 32 in Theorem 13, there is a point Z € My such that
(85) |z—2Z| < Cp < ClemT.

The constant ciem is controlled by ¢ and can be made as small as needed provided it is ultimately controlled
by d alone. We have an upper bound of C on the first-order derivatives of ¥ in Equation 32, which is a
function whose graph corresponds via ©, to Mpy in a 3—neighborhood of z. Any unit vector v € Tan®(z),
is nearly orthogonal to z — 2 in that

|<i -2, V>| 2Clem
E8 ~ mincacs)’

(86)

We can choose ciem small enough that (86) contradicts the mean value theorem applied to ¥ because of the
upper bound of C on [0¥| from Equation 32.
This shows that for every Z € My its distance to M satisfies

min(cq,Cs5)T

(87) d(z, M) < 2

Recall that
M‘put = {Z S Mmin(C4,C5)f|nhi(Z)a?(Z) = O} .
Therefore, for every point Z in My, there is a point z € M such that
. min(ca,c5)T _ _
(88) Bn (Z) (;)5)) co, (Bd(O)C4T) X and(O)CST)) .
We have now shown that M lies not only in Mnin(c,,cs)e but also in Mmin(cy,c5)2. Recall that T = ¢q21
2

by (80). This fact, in conjunction with (32) and Proposition 1 implies that My is a manifold with reach
greater than ct.

O
Let
(89) D%r — Mput
be the bundle over My wherein the fiber at a point Z € M., consists of all points z such that
(1) 2—2zl <7, and B
(2) z— 2 lies in the span of the top n — d eigenvectors of the Hessian of F evaluated at 2.
Observation 5. By Theorem 13, M is a C*—smooth section of Dg”f and the controlled constants cq,...,¢7

and C and depend only on c1,Cq,Co,k and n (these constants are identical to those in Theorem 13). By
(83), we conclude that the dependence on n can be replaced by a dependence on d.

11.2. The disc bundles constructed from approximate-squared-distance-functions are good.
In this subsection, we prove that any approximate-squared-distance-function defined on a cylinder packet
corresponds to a putative manifold and a disc bundle having good properties. By Lemma 17 of the next
section and Observation 5, it will follow that every manifold in G(d, V, T) is achieved as the graph of a section
of a disc bundle constructed from some element of C*(d,V,T).

Suppose that C € C*(d,V,T) is a cylinder packet corresponding to 6 = {01,...,0x}. Let A be the union
over 1 of the discs A; := 0i(R% N cyl?). For T > 0, let

Az ={z e R" inf |z—z| < T}.
ze A
Note that Az is a neighborhood of the set M. As before, let d be a suitable large constant depending only
on d, and which is a monotonically increasing function of d. Let
(90) d := min(n, d).

As was the case earlier, we use a basis for R™ that is such that R? is the span of the first d basis vectors, and
RY is the span of the first d basis vectors. We denote by TTg, the corresponding projection of R™ onto R49.
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Definition 16. Let asdff;‘ denote the set of all functions F : Ax — R such that the following is true. For
everyi € N and z € 0i(R4) N cyliz, there exists an isometry ©, of R™ that fizes the origin, and maps R to
a subspace parallel to 0i(RY) containing z such that B, : Bn(0,1) = R given by

F(z + 10, (w))
(91) Fo(w) = f—zz>
satisfies the following.
ASDFA —1 F, satisfies the hypotheses of Theorem 13 for a sufficiently small controlled constant p which will be
specified in Equation 94 in the proof of Lemma 15. The value of k equals v + 2, where v = 2 is the
degree of smoothness of the manifolds in Definition 3.

ASDFA —2 There is a function F, : R — R such that for any w € B, (0,1),
(92) Fo(w) = F2 (TTg(w)) + w — T (w) 2,
where R C R4 C R™, and d is a function of d alone.
Let
(93) I = (w5 (w)dF. (w) = 0},
where TT%; is as in Theorem 13 applied to the function T}Z.

Lemma 15. Let F be in asdfz and let T, and ©, be as in Definition 16.

(1) The graph T, is contained in RY.
(2) Let cqa and cs be the constants appearing in (31) in Theorem 13, once we fiz Co in (28) to be 10, and
the constants c¢1 and Cy in (29) to 1/10 and 10 respectively. The set

Mput = {Z S Amin(%csﬁmhi(z)a?(z) = O},
is a submanifold of R™ and has a reach greater than ct, where ¢ is a constant depending only on d.

Here ﬂhi(z)ls the orthogonal projection onto the span of eigenvectors corresponding to eigenvalues in the
interval [C2, C2] that is specified in Definition 14.

Proof. The proof of this lemma closely follows the proof of Lemma 14.

To see the first part of the lemma, note that because of (92), for any w € By (0,1), the span of the
eigenvectors corresponding to the eigenvalues of the Hessian of F = F. that lie in (c2,C3) contains the
orthogonal complement of R4 in R™ (henceforth referred to as R™4). Further, if w ¢ R4, there is a vector
in R4 that is not orthogonal to the gradient 9F,(w). Therefore

r, C R4,

We proceed to the second part of the Lemma. We choose €12 to be a small enough monotonically decreasing
function of d (by (81) and the assumed monotonicity of d, T2 is consequently a monotonically decreasing
function of d) such that for every point z € A, F, given by (92) satisfies the hypotheses of Theorem 13
with p < % where C is the constant in Equation 32 and where ¢ is a sufficiently small controlled constant.
Suppose, for the purpose of reaching a contradiction, that there is a point 2 in My such that d(Z,.A) is
greater than M, where ¢4 and cs are the constants in (31). Since Z belongs to Auin(c,,c5)x € U; €yls,
by Observation 4 and (b) of Section 10 it is possible to choose a point z on 0;(R%) N cyl; for some i such
that 2min(cq,c5) > d(z,2) > min(c4,¢5)T and z — 2 is orthogonal to every vector in (z — 0;(R%)) . We apply
Theorem 13 to F,. By Equation 32 in Theorem 13, there is a point z € My such that

(94) lz—z] < Cp < ClemT.

The constant ciem is controlled by ¢ and can be made as small as needed provided it is ultimately controlled
by d alone. We have an upper bound of C on the first-order derivatives of ¥ in Equation 32, which is a
function whose graph corresponds via @, to Myt in a 3—neighborhood of z. Any unit vector v € Tan®(z),
is nearly orthogonal to z — 2 in that

chem |i — /Z\|

(95) (z—2,v)| < minlea ca)
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We can choose e small enough that (95) contradicts the mean value theorem applied to ¥ because of the
upper bound of C on [0¥| from Equation 32.
This shows that for every 2 € My its distance to A satisfies
(96) d(/Z\,A) < HllIl(C;,Cs)T
Recall that
Mput = {Z € Amin(c4)c5)f|ﬂhi(2)a?(l) = 0} .

Therefore, for every point Z in M, there is a point z € A such that
. min(c4,c5)T _ _
(97) Bn (Z, (3’5)) C O, (Ba(0,c47T) x Bn—al(0,c57)).

We have now shown that My lies not only in Anyin(c,,c5)e bPut also in Amin(c,,c5)«. Recall that T = Ci2T

2
by (80). This fact, in conjunction with (32) and Proposition 1 implies that My is a manifold with reach
greater than cT. O

Observation 6. By Theorem 13, the graph of any function f : 0i(R9) N eyl; — oi(R™9) N cyl; such
that T:x — (1/7)(x/T) has C* norm less than a sufficiently small controlled constant, (see Definition 22)
corresponds to a C*—smooth local section of the disc bundle DE”T (see (89)) and the controlled constants
C1y...,¢7 and C and depend only on c1,Cq, Co, k and n (these constants are identical to those in Theorem 13).
By (83), we conclude that the dependence on n can be replaced by a dependence on d.

12. Constructing an exhaustive family of disc bundles

We wish to construct a family of functions F defined on open subsets of B, (0,2) such that for every
M € G(d,V,T) such that M C B, (0, 1), there is some F € F such that the domain of F contains Mz and the
restriction of F to M is contained in asdff\/l.

We now show how to construct a set D of disc bundles rich enough that any manifold M € G(d,, V)
corresponds to a section of at least one disc bundle in D. The constituent disc bundles in D will be obtained
from cylinder packets.

Define

(98) 0:RY—[0,1]

to be a bump function that has the following properties for any fixed k for a controlled constant C.
(1) For all « such that 0 < |af <k, for all x € {0} U (—o0,—1] U [1,00)

0%0(x) =0,
and for all x € (—oo, —1] U [1, 00)
0(x) = 0.
(2) for all x,
|0*0(x)| < C,
and for [x| < %,
0(x) =1.

Definition 17. Given a Packet 6 :={o1,...,0x}, define F° : |J; cyl; = R by
Y beyz(07(2))8 (Taloy '(2))/(27))

= cyliz Sz

(99) Fo(z) =

> 8 (Malo'(2))/(27))

cyl% >z
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Definition 18. Let Ay and Ay be two d—dimensional affine subspaces of R™ for somen > 1, that respectively
contain points x1 and x3. We define <(A1,A3), the "angle between A7 and A", by

<(Aq,A) = sup < inf arccos (M>> .

x14vi€EAT\xT \X2TV2EA2\X2 ”V]HHVZ”

Lemma 16. Let {cyl,,..., cyly} be a cylinder packet.
Then,
F® € asdfy.
Proof. Recall that asdfz denotes the set of all F: A - R (where T =€y2T and Mx is a T—neighborhood of
M) for which the following is true:
e For every z € Aj, there exists an isometry © of H that fixes the origin, and maps R9 to a subspace
parallel to A; satisfying the conditions below.
Let F, : Bn(0,1) — R be given by

Fuw) = TEFTO0N),

Then, T}Z
(1) satisfies the hypotheses of Theorem 13 with k =1+ 2 =4.
(2) For any w € By,

(100) Fo(w) = F2 (IMg(w)) + w — TTa(w)/%,
where R™ D R4 D R4, and T3 is the projection of R™ onto R4,
For any fixed z € Aj, it suffices to check that there exists an isometry © of H which satisfies :
(A) The hypotheses of Theorem 13 are satisfied by

(101) Pow) = T2 O
and
B)
Fo(w) = F2 (Mg (w)) + Iw — TTg(w) 2,
where R™ D R4 D R4, and TTg is the projection of R™ onto R4,

We begin by checking the condition (A). It is clear that ?Q :Bn(0,1) = R is Ck—smooth.
Thus, to check condition (A), it suffices to establish the following claim.

Claim 3. There is a constant Co depending only on d and k such that
C4.1A 3% FO(x,y) < Co for (x,y) € Bn(0,1) and 1 < |« < k.

xXy'z

C4.2A For (x,y) € BL(0,1),
crllyl? + 0% < [F(x,y) + 0% < Crllyl? + 02,

where, by making €12 sufficiently small we can ensure that p > 0 is less than any constant determined
by Co,c1,Cayk, d.

Proof. That the first part of the claim, i.e. (C4.14) is true follows from the chain rule and the definition of
?S (x,y) after rescaling by T. We proceed to show (C4.2A). For any i’ € [N] and any vector v in R4, for
p taken to be the value from Theorem 13, for (x,y) € Bn(0,1), the corresponding z’ € By (z,T) belongs
to some cyl?. Suppose without loss of generality that i = 1 and the other cylinders that contain z’ are
2,...,t. Then, F° is a convex combination of d(z’,A7)?,...d(z’, A¢)?. Note that y = d(z’,.41)/(27). Thus,
it suffices to prove that for each j > 1, |d(z’, A;) — d(z’, A1) < Tp?/8. It follows from (c) and (d) of
Section 10 that there is a rigid body motion of cylj2 that maps it to an isometric image such that no point
of cylj2 is moved by more than 1672 /7, such that the image of Aj; is contained inside o7 (RY). It follows that
ld(z’, A;) — d(z/,.A1)| < 16T%/7, which in turn by a proper choice of T12 can be made less than Tp?/8 as we
desire. This ends the proof of Claim 3. d
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We proceed to check condition (B). This holds because for every point z in .4, the number of i such that
the cylinder cyl; has a non-empty intersection with a ball of radius 2v/2(%) centered at z is bounded above
by a controlled constant (i.e.a quantity that depends only on d). It follows from (a) of Section 10 that,
we can choose © so that @(TT;(w)) contains the linear span of the d—dimensional cross-sections of all the
cylinders containing z. This, together with the fact that H is a Hilbert space, is sufficient to yield condition
(B). The lemma now follows. O

Let M belong to G(d,V,t). Let Y := {y1,...,yx} be a maximal subset of M with the property that
no two distinct points are at a distance of less than % from each other. We construct an ideal cylinder
packet {cyl%, ceny cylzﬁ} by fixing the center of cyli2 to be yi, and fixing their orientations by the condition
that for each cylinder cyl?, the d—dimensional central cross-section is a tangent disc to the manifold at y;.
Given an ideal cylinder packet, an admissible cylinder packet corresponding to M is obtained by perturbing
the the center of each cylinder by less than E]‘—OZT and applying arbitrary unitary transformations to these

cylinders whose difference with the identity has operator norm less than 45-. It is not difficult to check that

an admissible cylinder packet is a cylinder packet as per the definition in Section 10.

Lemma 17. Let M belong to G(d,V,T) and let {cyly,..., cylyg} be an admissible packet corresponding to
M.
Then,
FO € asdf},.
Proof. Recall that asdff\,l denotes the set of all F: Mz — R (where T =Cy,1 and M3z is a T—neighborhood
of M) for which the following is true:

e For every z € M, there exists an isometry © of H that fixes the origin, and maps R9 to a subspace
parallel to the tangent plane at z satisfying the conditions below.
Let F, : Bn(0,1) — R be given by
F(z +TO(w))
?Z (W) = 772.
T

Then, .

(1) satisfies the hypotheses of Theorem 13 with k =r1+2 =4.

(2) For any w € By,
(102) Fo(w) = F2 (TTa(w)) + w —TT5(w)P?,

where R™ D R4 D R4, and TTg is the projection of R™ onto R4,
For any fixed z € M, it suffices to check that there exists a proper isometry © of H such that :
(A) The hypotheses of Theorem 13 are satisfied by
Fo(z +TO(w))
T2

(103) Fo(w) ==

b

and
B)
B2 (w) = B2 (Mg (w) + lw — TTa(w)P,
where R™ D R4 D RY, and T3 is the projection of R™ onto RY,
We begin by checking the condition (A). It is clear that ?g :Bn(0,1) — R is C*—smooth.
Thus, to check condition (A), it suffices to establish the following claim.

Claim 4. There is a constant Co depending only on d and k such that
c4.1 0% Fo(x,y) < Co for (x,y) € Bn(0,1) and 1 < |af < k.

XYz

C4.2 For (x,y) € B (0,1),
cillyl? + % < Fo(x,y) + 021 < Ciliyl? + p],

where, by making €12 sufficiently small we can ensure that p > 0 is less than any constant determined
by CO» C1y Cq )k) d.
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Proof. That the first part of the claim, i.e.(C4.1) is true follows from the chain rule and the definition of
?S (x,y) after rescaling by T. We proceed to show (C4.2). For any i € [N] and any vector v in R%, For p
taken to be the value from Theorem 13, we see that for a sufficiently small value of €2 = % (controlled by
d alone), (104) and (105) follow because M is a manifold of reach greater or equal to T, and consequently

Proposition 1 holds true.

2=
P°T
(104) |Xl - ﬂMXll < m.
pZ
(105) < (0i(RY), Tan (T (i), M)) < 100"

Making use of Proposition 1 and Claim 1, we see that for any xi,x; such that |x; —x;| < 37,

3 2
(106) < (Tan(Mag(x:), M), Tan(Maglx;), M)) < o
The inequalities (104), (105) and (106) imply (C4.2), completing the proof of the claim. O

We proceed to check condition (B). This holds because for every point z in M, the number of i such that
the cylinder cyl; has a non-empty intersection with a ball of radius 2v/2(%) centered at z is bounded above
by a controlled constant (i.e.a quantity that depends only on d). This, in turn, is because M has a reach
of T and no two distinct yi,yj are at a distance less than % from each other. Therefore, we can choose ® so
that ©(TT5(w)) contains the linear span of the d—dimensional cross-sections of all the cylinders containing z.
This, together with the fact that H is a Hilbert space, is sufficient to yield condition (B). The Lemma now
follows. U

Definition 19. Let F be set of all functions F° obtained as {cyl%}ie[m ranges over all cylinder packets
centered on points of a lattice whose spacing is a controlled constant multiplied by T and the orientations are
chosen arbitrarily from a net of the Grassmannian manifold Gry (with the usual Riemannian metric) of scale
that is a sufficiently small controlled constant.

By Lemma 17 F has the following property:

Corollary 18. For every M € G that is a C"—submanifold, there is some FeF that is an approrimate-
squared-distance-function for M, i. e. the restriction 0f1E to M is contained in asdf),.

13. Finding good local sections

Definition 20. Let (x1,y1),..., (xN,YN) be ordered tuples belonging to Bq X Bn_q, and let v € N. Recall
that by definition 3, the value of v is 2. However, in the interest of clarity, we will use the symbol v to denote
the number of derivatives. We say that that a function

f: Bd — and
is an e—optimal interpolant if the C'—norm of f (see Definition 22)) satisfies
[fller < ¢,

and

N

N
107 If(xi) —yi|* <CNe+  inf If(xi) —yil?,
(107) Z k {f:nfucrsc%}z k

i=1 i=1

where ¢ and C > 1 are some constants depending only on d.



34 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

FI1GURE 5. Optimizing over local sections.

13.1. Basic convex sets. We will denote the codimension n—d by n. It will be convenient to introduce the
following notation. For some i € N, an "i—Whitney field" is a family P = {P*}xcE of i dimensional vectors
of real-valued polynomials P, indexed by the points x in a finite set E C RY. We say that P= (Px)xcE is a
Whitney field "on E", and we write Whl'(E) for the vector space of all i—Whitney fields on E of degree at
most T.

Definition 21. Let C"(RY) denote the space of all real functions on RS that are T—times continuously
differentiable and
sup sup |6°‘f|x| < oo0.
Jo|<r xeRd
For a closed subset U € RY such that U is the closure of its interior U°, we define the C"™—norm of a
function f: U — R by

(108) ]

cr(u)) i= Sup sup Ia"‘f’XI.
| <rxeue

When U is clear from context, we will abbreviate ||f||cr(u) to ||f]lcr-

Definition 22. We define C"(Bg,Bn) to consist of all f: Bq — Bn such that f(x) = (f'(x),...,f*(x)) and
for each i € i, f; : Bq — R belongs to CT(Bg). We define the C*—norm of f(x) := (f1(x),...,f(x)) by
Ifllcr (B4,Bx) = Sup sup sup |6°‘(<f,v>)|xl.
lx|<TvEBa XxEB4
Suppose F € C"(Bq), and x € By, we denote by J(F) the polynomial that is the v order Taylor approzi-

mation to F at x, and call it the “jet of F at x".

IfP = {Px}xeE is an n—Whitney field, and F € C"(Bg, B ), then we say that “F agrees with P " or “F is an
extending function for P ", provided Jx(F) = Py for each x € E. If ET D E, and (P{)xce+ is an i—Whitney
field on EY, we say that Pt “agrees with P on E" if for all x € E, P, = P{. We define a C"—norm on
n—Whitney fields as follows. If Pe WhI'(E), we define

—

(109) IIP|

cr(e) = mf[Fllergy,80))
where the infimum is taken over all F € C"(Bq4, Bs) such that F agrees with P.

We are interested in the set of all f € C"(Bg,Bn) such that |[f|[cr(g,,B,) < 1. By results of Fefferman (see
page 19, [24]) we have the following.

Theorem 19. Given € > 0, a positive integer v and a finite set E C RY, it is possible to construct in time
and space bounded by exp(C/€)|E| (where C is controlled by d and r), a set ET and a convez set K having the
following properties.
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o Here K is the intersection of m < exp(C/e)[E| sets {x|(xi(x))? < Bi}, where oi(x) is a real valued
linear function such that «(0) =0 and By > 0. Thus

K= {x|Vi € [m], (i (x))* < Bi} C WRL(ET).
e IfP € WAl (E") such that |P|

P on E.
o Conversely, if there exists a Whitney field Pt €K that agrees with P on E, then ||ﬁ||CT(E) <T+e.

cr(e) < 1—g¢, then there exists a Whitney field Pt e K, that agrees with

For our purposes, it would suffice to set the above € to any controlled constant. To be specific, we set €
to 3. By Theorem 1 of [23] we know the following.

Theorem 20. There exists a linear map T from CT(E) to C"(RY) and a controlled constant C such that
Tf|E = f and HTf”C"(Rd) S C”f”CT(E)

Definition 23. For{x;} as in Theorem 19, let K C @?:1 Whl(ET) be the set of all (x1,...,Xs) € @?:1 Whl(ET)
(where each x; € Whl(E")) such that for each i € [m]

3 (o)) < Bs.
j=1
Thus, K is an intersection of m convex sets, one for each linear constraint ;. We identify @?:1 Whl(E’L)
with Wh'(E") via the natural isomorphism. Then, from Theorem 19 and Theorem 20 we obtain the following.
Corollary 21. There is a controlled constant C depending on v and d such that
o If P is a i— Whitney field on E such that ||ﬁ| cr(Ern) < C~', then there exists a — Whitney field

P+ € K, that agrees with P on E.
e Conversely, if there exists a i— Whitney field PT € K that agrees with P on E, then ||P|

cr(ern) < C.
13.2. Preprocessing. Let € > 0 be an error parameter.
Notation 1. For n € N, we denote the set {1,...,n} by [n]. Let {x1,...,xn} C R9.

Suppose X1,...,Xn is a set of data points in RY and yi,...,yn are corresponding values in R™. The
following procedure constructs a function p : [N] — [N] such that {x,)}iern) is an €—net of {x7,...,xn}.
For 1 =1 to N, we sequentially define sets S;, and construct p.

Let Sy :={1} and p(1) :=1. For any i > 1,

(1) if{j :j € Si—q and |xj—xi| < €} # 0, set p(i) to be an arbitrary element of {j : j € Si_7 and [x; —xi| < €},
and set S; :=S;_1,
(2) and otherwise set p(i) :=1 and set S; := S;_7 U{i}.
Finally, set S := Sy, N = |S| and for each i, let

h(i):={j: p(j) =i}
For i € S, let p; := N~'|h(i)|, and let

o 1 .
(110) v (|hm> 2 v
jen(i)

It is clear from the construction that for each i € [N], [x, (i) —xi| < €. The construction of S ensures that
the distance between any two points in S is at least €. The motivation for sketching the data in this manner
was that now, the extension problem involving E = {x;|i € S} that we will have to deal with will be better
conditioned in a sense explained in the following subsection.

13.3. Convex program. Let the indices in [N] be permuted so that S = N]. For any f such that ||f||c2 <
C~'c, and |x —y| < €&, we have [f(x) — f(y)| < €, (and so the grouping and averaging described in the
previous section do not affect the quality of our solution), therefore we see that in order to find a é—optimal
interpolant, it suffices to minimize the objective function

R
= Z Wil — P, (x0)1%,
iz
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over all P € K C Wh(E™), to within an additive error of €, and to find the corresponding point in K. We
note that C is a convex function over K.

Lemma 22. Suppose that the distance between any two points in E is at least €. Suppose Pe Whl(E") has
the property that for each x € E, every coefficient of P is bounded above by c'€2. Then, if ¢’ is less than
some controlled constant depending on d,

[Pllez ey < 1.
Proof. Let

fx)=Y @ (10(x€ ZJ) P2 (x).

z€E

By the properties of 8 listed in Section 12, we see that f agrees with P and that ||f]|c- ra) < 1if ¢’ is bounded
above by a sufficiently small controlled constant. O

Let zopt € K be any point such that
C(Zopt) = inf ((z )
z’eK

2 centered at the

Observation 7. By Lemma 22 we see that the set K contains a Euclidean ball of radius c’€
origin, where ¢’ is a controlled constant depending on d.

It follows that K contains a Euclidean ball of the same radius c'€% centered at the origin. Due to the fact
that the the magnitudes of the first m derivatives at any point in E* are bounded by C, every point in K is

at a Euclidean distance of at most cN from the origin. We can bound N from above as follows:

C
Ngé—d.

=2

Thanks to Observation 7 and facts from Computer Science, we will see in a few paragraphs that the
relevant optimization problems are tractable.

13.4. Complexity. Since we have an explicit description of K as in intersection of cylinders, we can construct
a “separation oracle", which, when fed with z, does the following.

o Ifz € Kithen the separation oracle outputs “Yes."
e If z ¢ K then the separation oracle outputs “No" and in addition outputs a real affine function
a:Wh™(E™) — R such that a(z) < 0 and vz’ € K a(z’) > 0.

To implement this separation oracle for K, we need to do the following. Suppose we are presented with a
point x = (x1,...,xs) € Wh(E"), where each x; € Wh](E*').
(1) If, for each i € [m],

n
Z(X‘LX] S[‘)’l

j=1

holds, then declare that x € K.
(2) Else, let there be some iy € [m] such that

(0t (%5))% > Bio-

M

1

j
Output the following separating half-space :

{(yl)-- 'Y Z(xlo X] 0(10 j Xj) < O}

The complexity Ag of answering the above query is the complexity of evaluating o (x;) for each i € [m]
and each j € [n]. Thus

(111) Ao < Am(dim(K)) < CnR2,
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Claim 5. For some a € K,
B(a,27") C {z € K[((2) — C[zopt) < €} C B(0,2"),
where L can be chosen so that L < C(1 + |log(€)l).

Proof. By Observation 7, we see that the diameter of K is at most Cé~¢ and K contains a ball By of radius
2-T. Let the convex hull of By and the point Zopt be Ky. Then,

{z € Knlg(2) — C(zopt) < €} € {z € K[¢(2) — L(2opt) < €}

because K is convex. Let the set of all P € Wh™ (E™) at which

C _Zulhjl_ Xi X1)| =0

be the affine subspace H. Let f: Whl'(E*) — R given by
f(X) = d(X, ZO‘pt) = |X - Zopt|>

where | - | denotes the Euclidean norm. We see that the magnitude of the gradient of ¢ is bounded above by
CN at Zopt, and the Hessian of ¢ is bounded above by the Identity. Therefore,

{z € Knl¢(z) — U(zopt) < €} 2 {z € Kn|2CN(f(2)) < &}
We note that

€
€ Kn|2CN(f(2)) < €} =Kn NB ( zopt, —= | ,
{z € Ky €} =Kp (z pt 2CN>

where the right hand side denotes the intersection of K}, with a Euclidean ball of radius %1@ and center zopt.

By the definition of Ky, Ky N B (zopt, zciﬂ) contains a ball of radius 272", This proves the claim. a

K))

Given a separation oracle for K € R™Mdim(K)) and the guarantee that for some a € K,

(112) B(a,27") C{z € K|¢(z) — G(zopt) < €} C B(0,2"),
if € > €+ {(zopt), Vaidya’s algorithm (see [53]) finds a point in KN {z|{(z) < €} using
O(dim(K)AoL’ + dim(K)3-38L")

arithmetic steps, where L’ < C(L + |log(€))|). Here A is the number of arithmetic operations required to
answer a query to the separation oracle.
Let €, denote the smallest real number such that

(1)
€yq > €.
(2) For any € > €,q, Vaidya’s algorithm finds a point in K N{z|{(z) < €} using
O(dim(K)AoL’ + dim(K)3-38L")

arithmetic steps, where L’ < C(1 + |log(€))]).

A consequence of (112) is that €,, € 275, 21, Tt is therefore clear that €, can be computed to within
an additive error of € using binary search and C(L + |In €]) calls to Vaidya’s algorithm.
The total number of arithmetic operations is therefore O(dim(K)AyL? + dim(K)3-3312) where L < C(1 +

[log(€)]).
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FIGURE 6. Patching local sections together: base manifold in blue, final manifold in red,
local sections in yellow

14. Patching local sections together

This section starts by defining local sections (to be called Mk, later) and concludes with the definition

of the final manifold Min, which is obtained by patching local sections together.
For any i € [N], recall the cylinders cyl; and Euclidean motions o; from Section 10.
Let base(cyl;) := 0i(cyl NRY) and stalk(cyl;) := 0i(cyl NR"™ ). Let f; : B4 — Bn_q be an arbitrary
C? function such that
g 2T
(113) Ifilles < =
Let f; : base(cyl) — stalk(cyl) be given by
(114) fi(x) = ©f; (%)

Now, fix an i € [N]. Without loss of generality, we will drop the subscript i (having fixed this 1), and
assume that o; := id, by changing the frame of reference using a proper rigid body motion. Recall that Fo
was defined by (103), i.e.

T2
(now 0 and o; = id play the role that z and © played in (103)). Let N(z) be the linear subspace spanned by
the top n — d eigenvectors of the Hessian of FO at a variable point z. Let the intersection of

Bd(0)1) X and(o)])
with
{£|(dF°|,v) = Ofor allv € TT,i(2)(R™)}

be locally expressed as the graph of a function g;, where

(115) gi:Ba(0,1) - R4,
For this fixed i, we drop the subscript and let g : B4(0,1) — R™¢ be given by
(116) g = gi.

As in (84), we see that
I = {w|TThi(w)aF° (w) = 0}

lies in Ra, and the manifold M obtained by patching up all such manifolds for i € [N] is, as a consequence
of Proposition 1 and Theorem 13 a submanifold, whose reach is at least ct. Let

D2 — Mot
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be the bundle over My, defined by (89).
Let s; be the local section of D" := D}3™ defined by

(117) {z+5si(z)lz € Ui} =04 ({X + fi(x)}xebase(cyl)) )

where U := U; € My is an open set fixed by (117). The choice of % in (113) is small enough to ensure
that there is a unique open set U and a unique s; such that (117) holds (by Observations 1, 2 and 3). We

define Uj for any j € [N] analogously. Next, we construct a partition of unity on Mp¢. For each j € [N], let
0j : Mput — [0,1] be an element of a partition of unity defined as follows. For x € cyly,

—1
éj(X) o 0 (L(OT—X) y ifx €cyly;
otherwise.
where 0 is defined by (98). Let
9.
(118) 0(z) == #
Z]/G[N] GJI(Z)

We use the local sections {sj|j € [N]}, defined separately for each j by (117) and the partition of unity
{Bi}ier, to obtain a global section s of D™ defined as follows for x € Uj.

(119) s(x) == Z 0; (x)s; (x).

jeIN]
We also define f:V; — B4 by

(120) {z+s(z)lz € Ui} = {x + Tf(x/T)} ey, -
The above equation fixes an open set V; in R4. The graph of s, i.e.
(121) {x+s(x)|x € Mpur} = Mein

is the output manifold. We see that (121) defines a manifold My, by checking this locally. We will obtain
a lower bound on the reach of Myi,, in Section 15.

15. The reach of the final manifold Mg,
Recall that F° was defined by (103), i.e.

5 F°(Tw)
?0 (W) = T,

(now 0 and o; = id play the role that z and © played in (103)). We place ourselves in the context of

Observation 3. By construction, F° : B,, — R satisfies the conditions of Theorem 13, therefore there exists a

map
_ _ Cio
D : Bn(O,Cn) — Bd(O,Cu)) X Bn_gq <O) 2) )

satisfying the following condition.
(122) O(z) = (x,Ta—qv),
where

z=x+g(x) +v,
and

v e N(x+g(x)).

Also, x and v are C"—smooth functions of z € B,,(0,C771). with derivatives of order up to v bounded above
by C. Let

(123) ® : B, (0,¢117) — Ba(0,€10T) X Br_a (o, C‘z‘“)

be given by
D(x) = TD(x/7).
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Let Dy be the disc bundle over the graph of g, whose fiber at x + g(x) is the disc

B (900, 53 ) (Vx4 gl

By Lemma 23 below, we can ensure, by setting €12 < € for a sufficiently small controlled constant ¢, that
the derivatives of ® — id of order less or equal to r = k — 2 are bounded above by a prescribed controlled
constant c.

Lemma 23. For any controlled constant ¢, there is a controlled constant ¢ such that if 12 < C, then for

each i € [N], and each |«| < 2 the functions @ and g, respectively defined in (122) and (116) satisfy
[0 (d —1id)| < c.

[0%gl <c.

Proof of Lemma 23. We would like to apply Theorem 13 here, but its conclusion would not directly help us,
since it would give a bound of the form

[0*®| < C,

where C is some controlled constant. To remedy this, we are going to use a simple scaling argument. We
first provide an outline of the argument. We change scale by "zooming out", then apply Theorem 13, and
thus obtain a bound of the the desired form

[0*(® —id)| <c.

We replace each cylinder cyl; = o; (cyl) by cle]. = 05(T(Ba % (CBn_4q))). Since the guarantees provided by
Theorem 13 have an unspecified dependence on d (which appears in (102)), we require an upper bound on the
"effective dimension" that depends only on d and is independent of C. If we were only to "zoom out", this
unspecified dependence on d renders the bound useless. To mitigate this, we need to modify the cylinders
that are far away from the point of interest. More precisely, we consider a point x € c{;li and replace each
cyl; that does not contribute to ®(x) by c")vrlj, a suitable translation of

T(Bg x (CBn—qa))-
This ensures that the dimension of

{Z 7\]'\))"}\]' S R,V]‘ S 6]' (Rd)}
j

is bounded above by a controlled constant depending only on d. We then apply Theorem 13 to the function
FO(w) defined in (125). This concludes the outline; we now proceed with the details.

Recall that we have fixed our attention to cyl;. Let
C§71 = T(Ba x (Cand)) = Cyli)

where C is an appropriate (large) controlled constant, whose value will be specified later.
Let

cyl? :=2%(Bq x (CBy_q)) = cyl2.
Given a Packet 0 :={01,...,0x]}, define a collection of cylinders
{ey3,lj € NI}
in the following manner. Let
S:={j € Nl|lo;(0)] < 6T} .
Let
Ti={j € INI[IMa(0;(0))] < Crand|o; (0)] < 4v2C7},
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and assume without loss of generality that T = [N] for some integer [N]. Here 4+/2C is a constant chosen to

ensure that for any j € [N]\ [N], cyvlzj N c3;12 = (. Forv e R™, let Tr, : R™ — R"™ denote the map that takes
x to x +v. For any j € T\S, let

Vj = ]—[dOj (0)
Next, for any j € T, let

< 0j, if S;
0j = S\ %
j Try,, ifjeS\T;

For each j € T, let cyl; := 65(cyl). Define FO : Ujet cyl; — R by
o 2 Ma(6; ' (2))
L [Malo; 20 (M%)

cyiziaz
Mq(6:'(2))
£ o)

cyizjaz

(124) FO(z) =

Taking €12 to be a sufficiently small controlled constant depending on C, we see that
o Fo(Caw)

restricted to By, satisfies the requirements of Theorem 13. Choosing C to be sufficiently large, for each
|| € [2,kl], the function @ defined in (122) satisfies

(126) %] < c,
and
for each || € [0,k — 2], the function g defined in (122) satisfies
(127) [0%gl < c.
Observe that we can choose j € [N]\ [N] such that |0;(0)] < 10T, and for this j, clej Ncyl = 0 and so
(128) 0P| ., o, (0) = -

The Lemma follows from Taylor’s Theorem, in conjunction with (126), (127) and (128).
Observation 8. By choosing C > 2/¢11 we find that the domains of both ® and ®~' may be extended to
contain the cylinder (%) Ba X Bn_a, while satisfying (122).
O
Since [0*(® —1d)(x)| < ¢ for |af < T and x € (3) Bq X Bn_q, we have [0%(® " — Id)(w)| < ¢ for |af < 7

and w € Bq X B;,_gq. For the remainder of this section, we will assume a scale where T = 1.
For u € U;, we have the following equality which we restate from (119) for convenience.

s(w) =) 0j(ws;(w).
jEIN]
Let TTpsewa (for "pseudonormal bundle") be the map from a point x in cyl to the basepoint belonging to
Myt of the corresponding fiber. The following relation exists between TT,eq and @:
Mpsewa = O ' ®.
We define the C¥~2 norm of a local section s; over U C U; NU; by
Isjllcr—2qu) = llsj 0 @ lck2qmy (uy)-

Recall that k —2 = r = 2. Suppose for a specific x and t,

x-i—fj(x) :t+5j(t),
where t belongs to U; NU;. Applying TTysewa to both sides,

ﬂpseud(x + f)’ (X)) =t.
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Let
”pseud(x + fj (X)) = d)]' (X)
Substituting back, we have
(129) X+fj (X) = (bj (X) +Sj(d)j (X))
By definition 20, we have the bound ||fj ||Ck—2(¢]ﬁ1 (u,nu;) < ¢ We have
npseud (x+ f (x)) = (n‘pseud —Ta)(x + T (%)) +x,
which gives the bound
15 = Tdllcr—2 (41 uinuy)) < €
Therefore, from (129),

(130) I[sj o b; Hckfz(op)f‘ (U;nU;)) <c
Also,
(131) ;" o @71 —Tdllcr 2y Uiy < c

From the preceding two equations, it follows that

(132) Isjllce—2uinu;) < c.
The cutoff functions 0 satisfy

(133) 1651l (usnu;) < C.
Therefore, by (119),
(134) Isllcr2uinu;) < Ce,

which we rewrite as
(135) Isllcrx—2(uinu;) < cr.
Recall the statements surrounding (120) for a definition of V;. We will now show that
[fllcr—2(vi) < c.
By (120) in view of T =1, for u € U, there is an x € V; such that
u+s(u) =x+ f(x).
This gives us
Ma(u+s(uw) =x.
Substituting back, we have
Ma(uw+s(u)) +f(IMa(u+s(w)) =u+s(u).
Let
Y(u) = Ta(u+ s(u)).
This gives us

(136) fp(w) = (u—1yd(u) +s(u).
By (135) and the fact that [0%(® — 1d)(x)| < ¢ for || < T, we see that
(137) I — s < c.

By (136),(137) and (135), we have |f o |[cx—2y,) < c.
By (137), we have

W —1d|[cx2 vy < c.
Therefore

(138) [fllcx—2(vy) <c.

For any point u € My, there is by Lemma 14 for some j € [N], a Uj such that My N B(u,1/10) C U;
(recall that T = 1). Therefore, suppose a,b are two points on Myin such that [a — b] < 1/20, then



TESTING THE MANIFOLD HYPOTHESIS 43

Mpsewala) = Mpsena(b)l < 1/10, and so both Mysevala) and Tysewa(b) belong to Uj for some j. Without
loss of generality, let this j be i. This implies that a,b are points on the graph of f over V;. Then, by (138)
and Proposition 1, My, is a manifold whose reach is at least ct.

16. The mean-squared distance to the final manifold Mj;i,, from a random data point
Let Mypt be an approximately optimal manifold in that
reach(Mype) > Cr,
and
vol(Mopt) < V/C,
and

Epd(x, Mopt)? < inf  Epd(x, M)? +e.
Meg(d,Cr,cV)

Suppose that 6 is the packet from the previous section and that the corresponding function F® belongs to
asdf(Mopt). We need to show that the My, constructed using 0 serves the purpose it was designed for;
namely that the following Lemma holds.

Lemma 24.
Ex%Pd(x)Mﬁn)z <G (Ex%Pd(X)Mopt)z + 6) .

Proof. Let us examine the manifold M. Recall that My, was constructed from a collection of local

sections {si}icr, one for each 1 such that o; € 6. These local sections were obtained from functions fj :

base(cyl;) — stalk(cyl;). The s; were patched together using a partition of unity supported on Mp.+.
Let Pin be the measure obtained by restricting P to U;¢yjcyl;. Let Poutr be the measure obtained by

restricting P to (Ujeqnjcyl;) . Thus,
P = Pout + Pin-
For any M € G,
(139) Epd(x, M)> = Ep,  d(x, M)?+Ep_d(x, M)

We will separately analyze the two terms on the right when M is M. We begin with Ep
We make two observations:

(1) By (113), the function f;, satisfies

d(X» Mfin)2~

out

§ T
[fillLee < =
T

(2) By Lemma 23, the fibers of the disc bundle D™™ over My N cyl; are nearly orthogonal to
base(cyl;).
Therefore, no point outside the union of the cyl; is at a distance less than T(1 — %) to M¢in.
Since F° belongs to asdf(Mpt), we see that no point outside the union of the cyl; is at a distance less
than T(1 — C¢y2) to Myp¢. Here C is a controlled constant.
For any given controlled constant ¢, by choosing €12 (i.e. %) appropriately, we can arrange for

(140) Ep,..[d(x, Mtin)?] < (14 ¢)Ep,, [d(x, Mopt)?]

to hold.

Consider terms involving P;, now. We assume without loss of generality that P possesses a density, since
we can always find an arbitrarily small perturbation of P (in the {?—Wasserstein metric) that is supported
on a ball and also possesses a density. Let

Mout : Uieneyly = Mput

be the projection which maps a point in U;cxcyl; to the unique nearest point on Mpy¢. Let ppy denote
the d—dimensional volume measure on M.

Let {PZ }zem,.. denote the natural measure induced on the fiber of the normal disc bundle of radius 27T
over z.
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Then,

(141) Ep,, [d(x, Min)?] = J Eps [d(x, Miin)2Idppu (2).
Mput

Using the partition of unity {6;};c(x; supported on My, defined in (118), we split the right hand side of
(141). We will soon use peices of Myin, which we call ML, .

(142) | e, ldt Min itz = 3 [ (21, ldix Mein It (2):
Mot iENMput

For x € cyl;, let Ny denote the unique fiber of D*°*" that x belongs to. Observe that My, N Ny consists
of a single point. Define d(x, Msin) to be the distance of x to this point, i.e.

a(X, Miin) = d(x, Msin N Ny).
We proceed to examine the right hand side in (142).

By (144)
> J 0:(2)Epz, [d(x, Mrin)Jdppue(z) < ) J 2)Epz [d(x, Mrin)?ldppu ().
U Mo U Mo

For each i € [N], let Mfm denote manifold with boundary corresponding to the graph of fi, i.e.let
(]‘43) flTl = {X + f ( )}XEbase(cyl) .

Since the quadratic function is convex, the average squared "distance" (where "distance" refers to d) to
M¢in is less or equal to the average of the squared "distances" to the local sections in the following sense.

Z J ei(Z)Ean[&(X)Mfin) dUput <Z J ]E’PZ [ (X»Miﬁn)z]duput(z)-
i Mput i Mput

Next, we will look at the summands of the right hand side. Lemma 23 tells us that Ny is almost orthogonal
to 0i(R%). By Lemma 23, and the fact that each f; satisfies (138), we see that

(144) d(X» fln) < d(X Mﬁn) = (] +CO)d(X)M}in)-
Therefore,
Yy J 0u(z)Ep: [d(x, M) dipue(z) < (T+c0) Y J 0i(2)Epz_[d(x, M) 2] ditpue (2).
i Mopur i Miput

We now fix i € [N]. Let P! be the measure which is obtained, by the translation via o] 1 of the restriction
of P to cyl;. In particular, P' is supported on cyl.

Let uibase be the push-forward of Pt onto base(cyl) under My. For any x € cyl;, let v(x) € Mt
unique point such that x —v(x) lies in 0;(R™~9). In particular,

V(X) =TTax + f; (T[dx).

be the

By Lemma 23, we see that
J 0:(2)Ep:, [d(x, Miin) ldiput(z) < CoEpilx —v(x)[.
Mput

Recall that M, is the graph of a function f; : base(cyl) — stalk(cyl). In Section 13, we have shown
how to construct f; so that it satisfies (113) and (145), where € = $F, for some sufficiently small controlled
constant c.

(145) Epi[fi(TTax) — Mnp_ax|* < €+ inf  Epi|f(TTax) — Tn_gx|?.
2| ]| or <cT2
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Let ffpt : base(cyl) — stalk(cyl) denote the function (which exists because of the bound on the reach
of Mopt) with the property that

Mopt Ncyl; =04 ({Xa fgpt(x)}xebase(cyl)) .
By (145), we see that
(146) Epilfi(TTax) — Tn_ax|? < &+ Epi[f2PH (Max) — M ax/?.
Lemma 23 and the fact that each f; satisfies (138), and (145) show that
(147) Ep,, [d(x, Mtin)?] < CoEp,, [d(x, Mopt)?] + Col.
The proof follows from (139), (140) and (147). O

17. Number of arithmetic operations
After the dimension reduction of Section 6, the ambient dimension is reduced to
N, In? (%) +log 5!

n:=0
e2

where
Ny, =V (T’d + (€T)%d) .

The number of times that local sections are computed is bounded above by the product of the maximum
number of cylinders in a cylinder packet, (i.e. N, which is less or equal to %) and the total number of cylinder
packets whose centers are contained inside By, N (€137T)Zn. The latter number is bounded above by (¢;37) "N,
Each optimization for computing a local section requires only a polynomial number of computations as

discussed in Subsection 13.4. Therefore, the total number of arithmetic operations required is bounded above

by
exp <C <\(/1> nln'r]> .
T

18. Conclusion and future work

We developed an algorithm for testing if data drawn from a distribution supported on a separable Hilbert
space has an expected squared distance of O(€e) to a submanifold (of the unit ball) of dimension d, volume
at most V and reach at least T. The number of data points required is of the order of

Npn* (%2) +ms!

n::=
e2

where

1 1
Np :_V<Td+"td/2€d/z>’

and the number of arithmetic operations and calls to the black-box that evaluates inner products in the

ambient Hilbert space is
\%
exp <C (’t“) nln’c1) .

An interesting question is to fit a manifold to data drawn i.i.d from the uniform distribution on a manifold
in G(d,V, 7). In this case an exhaustive search for an appropriate disc bundle is unnecessary. Instead, one
can use local Principal Component Analysis to approximately learn the tangent spaces of the manifold from
which data are being drawn. These tangent spaces can be used to produce a cylinder packet, which in turn
can be used to construct a disc bundle that has as a section, the manifold underlying the data. This manifold
can be reconstructed by patching together local sections obtained using interpolation.
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FIGURE 7

APPENDIX A. Proof of Claim 1
The following is an easy consequence of the implicit function theorem in fixed dimension (d or 2d).
Lemma 25. Let Iy be a patch of radius 1 over Tly centered at z1 and tangent to Tl at z1. Let z belong to
I and suppose ||z; — z1|| < cory. Assume
Co
IPllerr Bz < 1

Let TT, € dPL with dist(TT2,TT7) < co. Then there exists a patch Ty of radius c1m1 over TTy centered at zo with

IM2ller Bro,ermy < ZOOCO»
, "
and
I M By (zz, %) — T N By (Zz, %) .

Here co and ¢ are small constants depending only on d, and by rescaling, we may assume without loss of
generality that vy = 1 when we prove Lemma 25.
The meaning of Lemma 25 is that if I' is the graph of a map

VB, (0,1) — Ty

with W(0) = 0 and 9¥(0) = 0 and the C"'—norm of ¥ is small then at any point z, € T close to 0, and for
any d—plane TT, close to TTy, we may regard I' near z; as the graph I'; of a map

Y. B, (0,¢c) — TIZL;

here T, is centered at z> and the C"'—norm of 1 is not much bigger than that of .

A.0.1. Growing a Patch.

Lemma 26 ("Growing Patch"). Let M be a manifold and let v1,712 be as in the definition of a manifold.
Suppose M has infinitesimal reach > 1. Let ' C M be a patch of radius v centered at 0, over To. M. Suppose
T 18 less than a small enough constant € determined by d. Then there exists a patch T of radius + cry over
ToM, centered at O such that T C TT C M.

Corollary 27. Let M be a manifold with infinitesimal reach > 1 and suppose 0 € M. Then there exists a
patch T of radius € over To M such that T C M.
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Lemma 26 implies Corollary 27. Indeed, we can start with a tiny patch ' (centered at 0) over To.M, with
I' € M. Such T exists because M is a manifold. By repeatedly applying the Lemma, we can repeatedly
increase the radius of our patch by a fixed amount cr;; we can continue doing so until we arrive at a patch
of radius > €.

Proof of Lemma 26. Without loss of generality, we can take H = RY @ H' for a Hilbert space H'; and we
may assume that
ToM =R x {0} CRYDH'.
Our patch T is then a graph
M={(x,¥(x)): x € Bpa(0,7)} CR* & H'
for a C' map
Y : Bra(0,1) = H/,

with W(0) =0, o¥(0) =0, and

Wllerae,qc0,m) < Co-
For y € Bga(0,7), we therefore have [0 (y)| < Cp. If 1 is less than a small enough € then Lemma 25 together
with the fact that M agrees with a patch of radius v1 in Bragy (U, ¥(y)),r2) (because M is a manifold)
tells us that there exists a C1»! map

Wy : Bgra (y, C/T'z) —H'
such that

M N Bragy (Y, ¥(y),c"m2) ={(z,¥y(2)) : z € Bra(y, c'12)} N Brags ((y, ¥(y)), c"r2).
Also, we have a priori bounds on ||0,¥y(z)|| and on [|Wy||&1,1. It follows that whenever yi1,yz € Bra(0,71)
and z € Bga(yr1,c”'r2) N Bra(yz,c”'12), we have Wy, (z) =V, (z).
This allows us to define a global C!»! function
Y Bra (0,7 +¢"'12) —» H;
the graph of ¥* is simply the union of the graphs of

qjy |BRa (y,c"’r2)
as Yy varies over Bga (0, 7). Since the graph of each WU|BM (y,c’'r,) is contained in M, it follows that the graph

of W* is contained in M. Also, by definition, ¥* agrees on Bga(y,c”'r2) with a C"! function, for each
Yy € Bgra(0,7). It follows that
¥ e

Also, for each y € Bra (0, 1), the point (y,¥(y)) belongs to

<C.

O,rc’’ry) —

Cl//.l,,2
> 1000 )
hence it belongs to the graph of WU|BR o« (y,c/7r,) and therefore it belongs to the graph of W*. Thus ' =

graph of W+ satisfies ' € T C M, and 't is a patch of radius r + ¢, over To.M centered at 0. That
proves the lemma. O

M n BRa@H'((%W(U))

A.0.2. Global Reach. For a real number T > 0, A manifold M has reach > 7 if and only if every x € H such
that d(x, M) < T has a unique closest point of M. By Federer’s characterization of the reach in Proposition 1,
if the reach is greater than one, the infinitesimal reach is greater than 1 as well.

Lemma 28. Let M be a manifold of reach > 1, with 0 € M. Then, there exists a patch T of radius € over
ToM centered at 0, such that
N Bx(0,6) = M NBy(0,¢).

Proof. There is a patch I' of radius € over To.M centered at O such that
I'NBx(0,¢%) € M N By(0,c%)

(see Lemma 26.) For any x € I' N By(0,ct), there exists a tiny ball B, (in H) centered at x such that
I'N By = M N By; that’s because M is a manifold.
It follows that the distance from
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ct

Myes = TN B (0, 5)

to Cli Cli
Mo = [M B (0, 2)} \ {rnwo, 2)] .

is strictly positive.
Suppose I, intersects By (0, %); say Yno € Bx (0, %) NTho- Also, 0 € By(0, %) NTyes-
The continuous function By (0, %) >y — d(y,Tho) — d(y,Iyes) is positive at y = 0 and negative at
Y = Yno- Hence at some point,
#
c

YHam € BH(O) m)

we have
d(yHama ryes) = d(yHam) rno)-
It follows that Yynam has two distinct closest points in M and yet
#
c

<
d(yHam)M) = ]OO

since 0 € M and Ypam € Bx(0, %). That contradicts our assumption that M has reach > 1. Hence our

assumption that I, intersects B (0, %) must be false. Therefore, by definition of I, we have

# #
C ) T NBy(0, ).

Since also
M Bx(0,cf) € MNBy(0,c),
it follows that

cf ct
) m) = M N By(0, m)»
proving the lemma. O

TN By (0

This completes the proof of Claim 1.

APPENDIX B. Proof of Lemma 5

Definition 24 (Rademacher Complexity). Given a class F of functions f: X — R a measure u supported
on X, and a natural number n € N, and an n—tuple of points (x1,...xn), where each xi € X we define the
empirical Rademacher complexity Ry (F,x) as follows. Let ¢ = (01,...,0n) be a vector of n independent
Rademacher (i. e. unbiased {—1, 1}—valued) random variables. Then,

Rn(F,x) := ]EG% lsup (i Gif(xi)>] .

feF \ {5

Proof. We will use Rademacher complexities to bound the sample complexity from above. We know (see
Theorem 3.2, [5]) that for all § > 0,

2log(2/0
(148) p [Sup Euf—Eusf‘ < 2R(F,x) + Og(/)l >1-5.
feF s
Using a “chaining argument" the following Claim is proved below.
Claim 6.
> /InN
(149) RS(F,X)§€+12J \/n (T],];,Ez(us))dn_

T
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When e is taken to equal 0, the above is known as Dudley’s entropy integral [21].

A result of Rudelson and Vershynin (Theorem 6.1, page 35 [48]) tells us that the integral in (149) can be
bounded from above using an integral involving the square root of the fat-shattering dimension (or in their
terminology, combinatorial dimension.) The precise relation that they prove is

(150) | viNm AL < ¢ [/t (Fan,

€ €

for universal constants ¢ and C.
From Equations (148), (149) and (150), we see that if

=5 ((

o 2
J fat, (F) dy) +logl /5) ,

Ce

then,
P [sup ‘]Eusf(xi) —E.f| > e} <1-5.
feF
O
APPENDIX C. Proof of Claim 6
We begin by stating the finite class lemma of Massart ([37], Lemma 5.2).
Lemma 29. Let X be a finite subset of B(0,7) C R™ and let 01,...,0n be i.i.d unbiased {—1,1} random

vartables. Then, we have

Eo
n

n
xeX i1

We now move on to prove Claim 6. This claim is closely related to Dudley’s integral formula, but appears
to have been stated for the first time by Sridharan-Srebro [51]. We have furnished a proof following Sridharan-

Srebro [51]. For a function class F C RY and points x1,...,xs € X
* /InN(n, F, L
(151) Rs(F,x) §e+12J \/n , S’ 2(”S))dn.

7

Proof. Without loss of generality, we assume that 0 € F; if not, we choose some function f € F and translate
F by —f. Let M = supscx ||f|lL,(p,), Which we assume is finite. For i > 1, choose oty = M2™" and let T;
be a aq-net of F with respect to the metric derived from L, (us). Here s is the probability measure that is
uniformly distributed on the s points x1,...,xs. For each f € F, and 1i, pick an ﬂ € T; such that f; is an
oii—approximation of f, i.e. ||f — fil[r,(.,) < &i. We use chaining to write

N
(152) f=f—fn+) (-,

i s N
1 AN AN AN
(153) Ri(F) = Esupod o | flxi) —fuba) + 3_(F0x) =i (x0))
€5 %4 j=1
(154) < Elsup- )Y oi(f(xi) —fn(xi))| +E [sup = Y oi(f(xi) — fj_1(x1))
feF S 15 feF 8 15
r N s
(155) < E |sup(o, f fN)Lz(us)):| + ZE sup — Gl(f] (xi) — i1 (Xl))‘|
fer i feF 8 15
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We use Cauchy-Schwartz on the first term to give

(156) E Sup<0<>f-/f\N>Lz(us))} < E [sup oLy o I = PNl Ls ()
feF feF

(157) < e

Note that
(158) 15 = Fr o <16 == G =Dl < o+
(159) < 3o.

We use Massart’s Lemma to bound the second term,

1 s AY A AY AY
(160) E|sup—- ) oi(fj(xi) —fi1(xi))| = E [SUPW» (f5 = F5-1)) 1o (uo)
feF 8 1 feF
(161) < 3(Xj Zln(‘s—l—]‘ . ‘Tj,]U
60 +/In(|T;

(162) < 24V G0 Sn“ i,

Now, from equations (155), (157) and (162),

N
In N (o L
(]_63) ﬁs(f) < €_}_62061\/1’1 (OCJ)]:) 2(“))
j=1 s
= InN(oyj, F, Ly (1))
(164) < e+1ZZ(cx]~—cxjH)\/ ]’S» 2\ Is
i=1
xo In N( L
(165) < €+12J \/n , F, z(us))da
XN +1 S
> [In N( L
(166) < e+ 12J \/n “’f 20s)) 44
T
O
APPENDIX D. Proof of Lemma 6
Proof. We proceed to obtain an upper bound on the fat shattering dimension fat, (Fi,¢). Let x1,...,%s be

s points such that
VYACX :={X1,...,Xs}

there exists V = {vi1,...,vi¢} € B and f € Fi ¢ where f(x) = max; min; vij - x such that for some t =
(t1,...,ts), for all

(167) xr € A,Vj € [f], there exists i € [k] vij-xr <ty —7vy
and
(168) W, € A, Jjell,Vie [kl vij x>t 4.

We will obtain an upper bound on s. Let g := C; (V*Z log(s +k€)) for a sufficiently large universal
constant Cq. Consider a particular A € X and f(x) := max; min; vij - x that satisfies (167) and (168).

Let R be an orthogonal projection onto a uniformly random g—dimensional subspace of span(X U V); we
denote the family of all such linear maps JR. Let RX denote the set {Rxj,...,Rxs} and likewise, RV denote
the set {Rvq1,...,Rvi}. Since all vectors in X UV belong to the unit ball By, by the Johnson-Lindenstrauss
Lemma, with probability greater than 1/2, the inner product of every pair of vectors in RX U RV multiplied
by % is within y of the inner product of the corresponding vectors in XU V.

Therefore, we have the following.
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Observation 9. With probability at least % the following statements are true.

(169) Vxr € A,Vj €[], 31 € [k (?) Rvij - Rxy < tr
and
(170) Vx, & A 3j € U], Vi e [K (?) Rvij - Rxy > t,.

Let R € R be a projection onto a uniformly random g—dimensional subspace in span(X U V). Let
] := span(RX) and let t : ] — R be the function given by

V(y) = ti, if y=Rx; for some i € [s];
vl= 0, otherwise.

Let Fj,x,¢ be the concept class consisting of all subsets of ] of the form

{z:m)axm}n( V\;U > . ( —tIZ(Z) ) < O}>

where wy1,... Wy, are arbitrary vectors in J.

Claim 7. Let yi1,...,Ys € J. Then, the number W(s, Fy ) of distinct sets {yr,...,ys} N1, 1 € Fyie is

less or equal to sO(9+2)k0)

Proof of Claim 7. Classical VC theory (Lemma 3) tells us that the VC dimension of Halfspaces in the span
of all vectors of the form (z;—t/(z)) is at most g+ 2. Therefore, by the Sauer-Shelah Lemma (Lemma 4), the

number W(s, Fj 1,1) of distinct sets {y1,...,Ys}NJ, ) € Fy,1,1 is less or equal to Z?:oz ($), which is less or
equal to s912. Every set of the form {y1,...,ys}N1, 1 € F7,k,¢ can be expressed as an intersection of a union

of sets of the form {y1,...,ys}N), J € Fj1,1, in which the total number of sets participating is kf. Therefore,
the number W(s, Fj i ¢) of distinct sets {y1,...,Ys}N1, 1€ Fj 1,1 is less or equal to W(s, Fj 11 )k¢ which is

in turn less or equal to s(9+2)kE,
O

By Observation 9, for a random R € R, the expected number of sets of the form RXN1, 1 € Fj i ¢ is greater
or equal to 257!, Therefore, there exists an R € % such that the number of sets of the form RXN1, 1 € FJ k.0
is greater or equal to 257!, Fix such an R and set | := span(RX). By Claim 7,

(171) 2571 S Skl(g+2).

Therefore s — 1 < k(g + 2)logs. Assuming without loss of generality that s > k{, and substituting
Cq (y‘z log(s + kﬂ)) for g, we see that

s< O (khF2 log2 s) R

kl
7 <0 <2> >
log”(s) Y

so((8) ()

Thus, the fat shattering dimension fat, (Fx ¢) is O ((%) log2 (%)) . We independently know that fat., (Fi ¢)

is 0 for y > 2.
Therefore by Lemma 5, if

and hence

implying that

2 /kllog? (ke/y?)
¢ J dy | +logl/d |,

(172) s> —
ce Y
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then,

P [sup ‘]Eus f(xi) —E.f
feF

2€}§16.

Let t =1In (@) Then the integral in (172) equals

In(vk1/2) 5
keJ —tdt < CVkL (In(Cke/e?))”,

In(Cke/e2)
and so if
C 4 2
s> (keln (ke/e?) +1og1/5) :
then

P {sup ‘Eusf(xi) —E,.f
feF

2e}§1—6.
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ABsSTRACT. The hypothesis that high dimensional data tend to lie in the vicinity of a low dimensional man-
ifold is the basis of manifold learning. The goal of this paper is to develop an algorithm (with accompanying
complexity guarantees) for testing the existence of a manifold that fits a probability distribution supported
in a separable Hilbert space, only using i.i.d samples from that distribution. More precisely, our setting
is the following. Suppose that data are drawn independently at random from a probability distribution P
supported on the unit ball of a separable Hilbert space H. Let G(d,V,T) be the set of submanifolds of the
unit ball of H whose volume is at most V and reach (which is the supremum of all r such that any point
at a distance less than r has a unique nearest point on the manifold) is at least T. Let £(M,P) denote
mean-squared distance of a random point from the probability distribution P to M. We obtain an algorithm
that tests the manifold hypothesis in the following sense.
The algorithm takes i.i.d random samples from P as input, and determines which of the following two is

true (at least one must be):

(1) There exists M € G(d,CV, &) such that L(M,P) < Ce.

(2) There exists no M € G(d,V/C, Ct) such that £L(M,P) <
The answer is correct with probability at least 1 — 8.
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