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Poisson processes

1 Two equivalent definitions

Definition 1.1. (Poisson process)

A 1− dimensional homogeneous Poisson process is a function N(·) on <+, whose value on s ∈ <+ is an

integer valued random variable N(s) satisfying the following conditions:

1. N(0) = 0,

2. N(s) obeys the Poisson distribution:

P (N(s) = n) = e−λs(λs)n/n!.

3. N(s+ t)−N(s), has the same distribution as N(t) and is independent of N(r), 0 ≤ r ≤ s.

A good way of visualising a homogeneous Poisson process is to imagine random points marked on the

nonnegative real line satisfying the following:

1. The probability of n points occurring in the interval [0, s] is given by the above Poisson distribution.

2. The probability of k points occurring in the interval [s, s + t] is the same as that occurring in the

interval [0, t].

3. If [a, b), (c, d] are disjoint intervals the events, k points occurring in [a, b) and m points occurring in

(c, d], are independent.

A second way of imagining a Poisson process is in terms of arrival in a queue which does not reduce in

length because the person at the window is infinitely slow. The arrival takes place at random times and

N(s) counts the number of persons who have arrived in the interval [0, s]. If we take the time between

arrivals to be exponentially distributed and independent, then N(s) can be shown to be a Poisson process.

Also every one dimensional Poisson process can be captured by this description.

The formal definition which can be shown to be equivalent to the earlier definition of Poisson process

is as follows:
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Definition 1.2. (Poisson process)

Let τ1, τ2, · · · be independent exp(λ) random variables. Let Tn ≡ τ1+· · · τn. We define the Poisson process

N(s) as N(s) ≡ max{n : Tn ≤ s}.

(This means that Tn ≤ s and Tn+1 > s.)

We will now look at consequences of Definition 1.2 of a Poisson process.

Theorem 1.1. P (N(s) = n) = e−λs(λs)n/n!, i.e., N(s) has a Poisson distribution with mean λs.

Proof: N(s) = n can be thought of as the disjoint union of the following events: Tn lies in the interval

(ti, ti + ∆(t)) and τn+1 > s− ti, for i = 0, · · · (s/∆t).
(Note that the interval [0, s] has been broken up into disjoint sub intervals of width ∆t.)

Now P (Tn ∈ (ti, ti + ∆(t)) = fTn
(t)∆t, where fTn

(t) is the density of the Poisson distribution. So

probability {Tn lies in the interval (ti, ti + ∆(t)) and τn+1 > s − ti} = fTn(t)P (τn+1 > s − ti)∆t. As

∆t→ 0, therefore

P (N(s) = n) =

∫ s

0

fTn
(t)P (τn+1 > s− t)dt.

We show in the next section that fTn
(t) = λe−λt[(λt)n−1/(n− 1)!]for t ≥ 0 and we know

P (τn+1 > s− t) = es−t. So

P (N(s) = n) =

∫ s

0

λe−λt[(λt)n−1/(n− 1)!]e−λ(s−t)dt

= [λn/(n− 1)!]e−λs
∫ s

0

tn−1dt = e−λs(λs)n/n!.

2 Axiomatic approach to Poisson processes

The previous section describes the Poisson process in a way which strongly brings in properties of the

positive real line. While this is convenient for the 1 dimensional process, it masks its very general nature -

that it can be viewed in terms of random occurrence of points in regions of n dimensions. We therefore give

an axiomatic characterization of the Poisson process which is valid in n dimensions. For easy readability

we confine ourselves to the homogeneous process. The axioms are stated for the n dimensional process.

But the reader may, for a first reading, take n = 1.

Definition 2.1. Let S be a region in <n, such that S =
⋃∞
i=1 Si, where the volume

∫
Si
dx of each region Si

is finite. Let λ ≥ 0. (The volume is a measure assigned to a σ− algebra of regions, ‘dx’ is the infinitesimal

volume.) A Poisson process of intensity λ on S satisfies the folowing:

1. The probability pk(µ) that a region T ⊂ S contains k random points depends only on its mass

µ =
∫
T
λdx. If µ(T ) is infinite then all pk(µ) are zero. The mass of a single point is taken to be

zero.

2. The numbers of points in disjoint regions are independent.

3. The first two probabilities p0(µ), p1(µ) have the asymptotic values as µ tends to zero,

p0(µ) = 1− µ+ o(µ)
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p1(µ) = µ+ o(µ).

Therefore for all k > 1, we have pk(µ) = o(µ).

Note that a function f(x) is o(x) if limx→0f(x)/x = 0.

3 Consequences of the Poisson process axioms

3.1 Number of points follows Poisson distribution

A consequence of the axioms is the following

Theorem 3.1. If the conditions in Definition 2.1 are satisfied, then the number of random points in a

region of mass µ has the Poisson distribution

pk(µ) = e−µ(µ)k/k!.

Proof: Let µ, dµ be the masses of two non overlapping regions. By making the region as small as we

please (this is possible because the space is <n), we can make dµ as small as we please. The probability

of there being no points in the union of the disjoint regions is, using the independence and asymptotic

conditions,

p0(µ+ dµ) = p0(µ)p0(dµ) = p0(µ)(1− dµ+ o(dµ)).

Rearranging terms we get

(p0(µ+ dµ)− p0(µ))/dµ = −p0(µ) + o(1).

In the limit as dµ tends to zero, we get,

d/dµ[p0(µ)] = −p0(µ).

From the asymptotic conditions we infer p0(0) = 1. Therefore, the solution to the above differential

equation is

p0(µ) = e−µ.

For k ≥ 1, we get from the postulates,

pk(µ+ dµ) = pk(µ)p0(dµ) + pk−1(µ)p1(dµ) + · · ·+ p0(µ)pk(dµ)

= pk(µ)p0(dµ) + pk−1(µ)p1(dµ) + o(dµ).

Rearranging terms we get

(pk(µ+ dµ)− pk(µ))/dµ = −pk(µ) + pk−1(µ) + o(1).

Taking limits we get the differential equation

d/dµ[pk(µ)] = −pk(µ) + pk−1(µ),

with initial condition pk(0) = 0.

3



To solve these differential equations we make the transformation,

qk(µ) = pk(µ)eµ.

We have,

d/dµ[qk(µ)] = d/dµ[pk(µ)]eµ + pk(µ)eµ = eµ[−pk(µ) + pk−1(µ) + pk(µ)] = qk−1(µ).

Thus,

qk(µ) =

∫ µ

0

qk−1(α)dα.

We therefore get

q0(µ) = 1, p0(µ) = e−µ

q1(µ) = µ, p1(µ) = e−µµ

q2(µ) = µ2/2, p2(µ) = e−µµ2/2

· · · ,

qr(µ) = µr/r!, pr(µ) = e−µµr/r!.

3.2 Superposition

Suppose we have random points assigned to subregions of S according to two independent processes

which have intensities λ1, λ2 respectively. The superposition of these two processes on S, would satisfy

all the axioms but with mass of a region T ⊂ S being given by µ12(T ) =
∫
T

[λ1 + λ2]dx. We therefore

would have a Poisson process with intensity λ1 + λ2.

3.3 Coloring

Consider the following process: we assign random points to subregions of S according to a Poisson process

of intensity λ, after that we color them as belonging to one of k− colors with the probability of being

colored by ith color being p(i). The axioms would be satisfied again but with n× p(i) points in a region

assigned to color i, when the original process assigned it n points. It follows that the ith color process is

Poisson with intensity λp(i).

3.4 Conditional distribution of arrival times

Suppose, in the interval [0, t], we know that exactly one event of a Poisson process N(t) has taken place.

What is the probability that it lies in the interval [s, r]?

We have

Pr{X1 ∈ [s, r] | N(t) = 1} = Pr{X1 ∈ [s, r], N(t) = 1}/Pr{N(t) = 1}

Pr{X1 ∈ [s, r], 0 events in[0, s], 0 events in(s, t]}/Pr{N(t) = 1}

= λ(r − s)e−λ(r−s)e−λse−λ(t−r)/λte−λt = (r − s)/t.
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Thus under the condition that exactly 1 event has occurred, the probability that the event lies in an

interval is simply the ratio of the length of the interval to the length of the overall interval, i.e., according

to the uniform distribution.

Next given that N(t) = n, we will compute the density of the distribution of the arrrival times

S1, · · · , Sn.
Let 0 < t1 < · · · < tn+1 = t and let hi be small enough so that ti + hi < ti+1, i = 1, · · · , n. We then

have

Pr{ti ≤ Si ≤ ti + hi, i = 1, 2 · · ·n | N(t) = n}

= Pr{exactly one event in [ti, ti + hi], i = 1, 2 · · ·n, no events elsewhere in [0, t]}/Pr{N(t) = n}

= [λh1e
−λh1 · · ·λhne−λhne−λ(t−h1−h2−···−hn)]/[e−λt(λt)n/n!]

= [n!/tn][h1h2 · · ·hn].

Therefore, the conditional density f(t1, · · · tn) of S1, · · · , Sn at arrivals t1, · · · tn,

= lim
hi→0

[Pr{ti ≤ Si ≤ ti + hi, i = 1, 2 · · ·n | N(t) = n}/h1h2 · · ·hn] = n!/tn.

4 Exponential distribution

Since Poisson processes can be defined in terms of the exponential distribution, we list the properties of

the latter which give Poisson processes their characteristics.

1. We say T = exp(λ), if P (T ≤ t) = 1− e−λt,∀t ≥ 0.

2. If T = exp(λ), then its density function

fT (t) = λe−λt, t ≥ 0; fT (t) = 0, t < 0.

E[T ] = 1/λ;E[T 2] = 2/(λ)2;E[Tn] = n!/(λ)n;

V ar[T ] = 1/(λ)2.

3. (memory less)

P (T > t+ s | T > t) = P (T > s)

Proof: P (T > t+ s | T > t) = P (T > t+ s;T > t)/P (T > s) = P (T > t+ s)/P (T > s)

= e−λ(t+s)/e−λt = e−λs = P (T > s).

4. (P (min(S, T ) > t), S, T independent)

Let S = exp(µ), T = exp(λ). Then, if they are also independent,

P (min(S, T ) > t) = P (S > t, T > t) = P (S > t)P (T > t) = e−µte−λt = e−(λ+µ)t.

More generally given independent random variables Ti = exp(λi), the probability that the minimum

of them is greater than t is e−Σiλit.
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5. (P (S < T ), S, T independent)

Probability that S < T in an interval (t, t+ ∆s) is the probability that S lies in that interval and

that T > t+ ∆s. This is (fS(s)∆s)× P (T > s). We divide [0,∞] into such intervals and sum this

probability over all of them letting ∆s tend to 0.

P (S < T ) =

∫ ∞
0

fS(s)P (T > s)ds

=

∫ ∞
0

fS(s)e−µsds

=

∫ ∞
0

λe−λse−µsds

= λ/(λ+ µ).

More generally, the probability that among the independent random variables Ti = exp(λi), Tj is

the minimum, is

λj/Σiλi.

6. If τ1, τ2, · · · are independent exp(λ) random variables, then the sum Tn = τ1 + τ2 + · · ·+ τn has a

gamma(n, λ) distribution, its density function being

fTn
(t) = λe−λt[(λt)n−1/(n− 1)!]for t ≥ 0 and 0 for t < 0.

Proof:

The proof is by induction. For n = 1, we have fT1
(t) = λe−λt = λe−λt[(λt)0/(0)!], so the result is

true.

Suppose it is true for n. Recall that if X,Y are independent and take value 0 for t < 0, the density

fX+Y (t) at t is given by
∫ t

0
fX(s)fY (t− s)ds.

In the present case Tn and τn+1 are independent. Therefore

fTn+1
(t) =

∫ t

0

λe−λs[(λs)n−1/(n−1)!]×λe−λ(t−s)ds = e−λtλn+1

∫ t

0

sn−1/(n−1)!ds = λe−λtλntn/n!,

proving the result.
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