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(a) .

Figure 1:

(b) All slopes eventually become positive, hence all solutions will increase with-
out bound.

(c) The integrating factor is µ(t) = e−2t, and hence y(t) = t3e2t/3 + ce2t. It is
evident that all solutions increase at an exponential rate.

6.

(a) .

Figure 2:
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(b) All solutions seem to converge to the function y0(t) = 0.

(c) The integrating factor is µ(t) = t2 and hence the general solution is

y(t) = −cos(t)
t

+
sin(t)

t2
+

c

t2
(1)

in which c is an arbitrary constant. As t becomes large, all solutions converge
to the function y0(t) = 0.

14. The integrating factor is µ(t) = e2t. After multiplying both sides by
µ(t), the equation can be written as (e2ty)′ = t. Integrating both sides of the
equation results in the general solution y(t) = t2e−2t/2 + ce−2t. Invoking the
specified condition, we require that e−2/2 + ce−2 = 0. Hence c = −1/2, and the
solution to the initial value problem is y(t) = (t2 − 1)e−2t/2.

19. After writing the equation in standard form, we find that the integrating
factor is µ(t) = exp(

∫
4
t dt) = t4. Multiplying both sides by µ(t), the equation

can be written as (t4y)′ = te−t . Integrating both sides results in t4y(t) =
−(t+ 1)e−t + c . Letting t = −1 and setting the value equal to zero gives c = 0.
Hence the specific solution of the initial value problem is y(t) = −(t−3+t−4)e−t.
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2. For x 6= −1 , the differential equation may be written as
ydy = [x2/(1 + x3)]dx . Integrating both sides, with respect to the appropriate
variables, we obtain the relation y2/2 = 1

3 ln|1 + x3| + c. That is, y(x) =

±
√

2
3 ln|1 + x3|+ c.

3. The differential equation may be written as y−2dy = −sinxdx. Integrat-
ing both sides of the equation, with respect to the appropriate variables, we
obtain the relation −y−1 = cosx + c. That is, (C − cosx)y = 1, in which
C is an arbitrary constant. Solving for the dependent variable, explicitly,
y(x) = 1/(C − cosx).

8. Write the differential equation as (1 + y2)dy = x2dx. Integrating both
sides of the equation, we obtain the relation y + y3/3 = x3/3 + c, that is,
3y + y3 = x3 + C.

17.

(a) y(x) = −5/2−
√
x3 − ex + 13/4.

(b) .
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Figure 3:

(c) The solution is valid for x > −1.45 and x < 4.6297. This value is found by
estimating the root of 4x3 − 4ex + 13 = 0.
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5.

(a) Let Q be the amount of salt in the tank. Salt enters the tank of water at a
rate of 2 1

4 (1 + 1
2sint) = 1

2 + 1
4sint oz/min. It leaves the tank at a rate of

2Q/100 oz/min. Hence the differential equation governing the amount of
salt at any time is

dQ

dt
=

1

2
+

1

4
sint−Q/50. (2)

The initial amount of salt is Q0 = 50 oz. The governing ODE is linear,
with integrating factor µ(t) = et/50. Write the equation as (et/50Q)′ =
et/50( 1

2 + 1
4sint). The specific solution is Q(t) = 25 + [12.5sint− 625cost+

63150et/50]/2501 oz.

(b) .
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Figure 4:

(c) The amount of salt approaches a steady state, which is an oscillation of
amplitude 1/4 about a level of 25 oz.

8.

(a) The equation governing the value of the investment is dS/dt = rS. The
value of the investment, at any time, is given by S(t) = S0e

rt. Setting
S(T ) = 2S0, the required time is T = ln(2)/r.

(b) For the case r = 7% = .07, T ≈ 9.9yrs.

(c) Referring to Part(a), r = ln(2)/T . Setting T = 8, the required interest rate
is to be approximately r = 8.66%.

13. Let P (t) be the population of mosquitoes at any time t. The rate
of increase of the mosquito population is rP . The population decreases by
20, 000 per day. Hence the equation that models the population is given by
dP/dt = rP − 20, 000. Note that the variable t represents days. The solution
is P (t) = P0e

rt − 20,000
r (ert − 1). In the absence of predators, the governing

equation is dP1/dt = rP1, with solution
P1(t) = P0e

rt. Based on the data, set P1(7) = 2P0 , that is, 2P0 = P0e
7r.

The growth rate is determined as r = ln(2)/7 = .09902 per day. Therefore
the population, including the predation by birds, is P (t) = 2 × 105e.099t −
201, 997(e.099t − 1) = 201, 997.3− 1977.3e.099t.

4


