(a)

Figure 1:
(b) All slopes eventually become positive, hence all solutions will increase without bound.
(c) The integrating factor is $\mu(t)=e^{-2 t}$, and hence $y(t)=t^{3} e^{2 t} / 3+c e^{2 t}$. It is evident that all solutions increase at an exponential rate.
6.
(a)

Figure 2:
(b) All solutions seem to converge to the function $y_{0}(t)=0$.
(c) The integrating factor is $\mu(t)=t^{2}$ and hence the general solution is

$$
\begin{equation*}
y(t)=-\frac{\cos (t)}{t}+\frac{\sin (t)}{t^{2}}+\frac{c}{t^{2}} \tag{1}
\end{equation*}
$$

in which c is an arbitrary constant. As t becomes large, all solutions converge to the function $y_{0}(t)=0$.
14. The integrating factor is $\mu(t)=e^{2 t}$. After multiplying both sides by $\mu(t)$, the equation can be written as $\left(e^{2 t} y\right)^{\prime}=t$. Integrating both sides of the equation results in the general solution $y(t)=t^{2} e^{-2 t} / 2+c e^{-2 t}$. Invoking the specified condition, we require that $e^{-2} / 2+c e^{-2}=0$. Hence $c=-1 / 2$, and the solution to the initial value problem is $y(t)=\left(t^{2}-1\right) e^{-2 t} / 2$.
19. After writing the equation in standard form, we find that the integrating factor is $\mu(t)=\exp \left(\int \frac{4}{t} d t\right)=t^{4}$. Multiplying both sides by $\mu(t)$, the equation can be written as $\left(t^{4} y\right)^{\prime}=t e^{-t}$. Integrating both sides results in $t^{4} y(t)=$ $-(t+1) e^{-t}+c$. Letting $t=-1$ and setting the value equal to zero gives $c=0$. Hence the specific solution of the initial value problem is $y(t)=-\left(t^{-3}+t^{-4}\right) e^{-t}$.

2

2. For $x \neq-1$, the differential equation may be written as $y d y=\left[x^{2} /\left(1+x^{3}\right)\right] d x$. Integrating both sides, with respect to the appropriate variables, we obtain the relation $y^{2} / 2=\frac{1}{3} \ln \left|1+x^{3}\right|+c$. That is, $y(x)=$ $\pm \sqrt{\frac{2}{3} \ln \left|1+x^{3}\right|+c}$.
3. The differential equation may be written as $y^{-2} d y=-\sin x d x$. Integrating both sides of the equation, with respect to the appropriate variables, we obtain the relation $-y^{-1}=\cos x+c$. That is, $(C-\cos x) y=1$, in which C is an arbitrary constant. Solving for the dependent variable, explicitly, $y(x)=1 /(C-\cos x)$.
4. Write the differential equation as $\left(1+y^{2}\right) d y=x^{2} d x$. Integrating both sides of the equation, we obtain the relation $y+y^{3} / 3=x^{3} / 3+c$, that is, $3 y+y^{3}=x^{3}+C$.
5.

(a) $y(x)=-5 / 2-\sqrt{x^{3}-e^{x}+13 / 4}$.
(b) .

Figure 3:
(c) The solution is valid for $x>-1.45$ and $x<4.6297$. This value is found by estimating the root of $4 x^{3}-4 e^{x}+13=0$.

3

5.

(a) Let Q be the amount of salt in the tank. Salt enters the tank of water at a rate of $2 \frac{1}{4}\left(1+\frac{1}{2} \operatorname{sint}\right)=\frac{1}{2}+\frac{1}{4} \operatorname{sint} o z / \mathrm{min}$. It leaves the tank at a rate of $2 Q / 100 \mathrm{oz} / \mathrm{min}$. Hence the differential equation governing the amount of salt at any time is

$$
\begin{equation*}
\frac{d Q}{d t}=\frac{1}{2}+\frac{1}{4} \sin t-Q / 50 . \tag{2}
\end{equation*}
$$

The initial amount of salt is $Q_{0}=50 \mathrm{oz}$. The governing ODE is linear, with integrating factor $\mu(t)=e^{t / 50}$. Write the equation as $\left(e^{t / 50} Q\right)^{\prime}=$ $e^{t / 50}\left(\frac{1}{2}+\frac{1}{4} \sin t\right)$. The specific solution is $Q(t)=25+[12.5 \sin t-625 \cos t+$ $\left.63150 e^{t / 50}\right] / 2501 \mathrm{oz}$.
(b)

Figure 4:
(c) The amount of salt approaches a steady state, which is an oscillation of amplitude $1 / 4$ about a level of 25 oz .
8.
(a) The equation governing the value of the investment is $d S / d t=r S$. The value of the investment, at any time, is given by $S(t)=S_{0} e^{r t}$. Setting $S(T)=2 S_{0}$, the required time is $T=\ln (2) / r$.
(b) For the case $r=7 \%=.07, T \approx 9.9 y r s$.
(c) Referring to Part(a), $r=\ln (2) / T$. Setting $T=8$, the required interest rate is to be approximately $r=8.66 \%$.
13. Let $P(t)$ be the population of mosquitoes at any time t. The rate of increase of the mosquito population is $r P$. The population decreases by 20,000 per day. Hence the equation that models the population is given by $d P / d t=r P-20,000$. Note that the variable t represents days. The solution is $P(t)=P_{0} e^{r t}-\frac{20,000}{r}\left(e^{r t}-1\right)$. In the absence of predators, the governing equation is $d P_{1} / d t=r P_{1}$, with solution
$P_{1}(t)=P_{0} e^{r t}$. Based on the data, set $P_{1}(7)=2 P_{0}$, that is, $2 P_{0}=P_{0} e^{7 r}$. The growth rate is determined as $r=\ln (2) / 7=.09902$ per day. Therefore the population, including the predation by birds, is $P(t)=2 \times 10^{5} e^{.099 t}-$ $201,997\left(e^{.099 t}-1\right)=201,997.3-1977.3 e^{.099 t}$.

